Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Positive Zero-field Splitting and Unexpected Slow Magnetic Relaxation in the Magnetochemical Calibrant HgCo(NCS)₄ Roman Boča, Ján Titiš, Cyril Rajnák and J. Krzystek

Supporting information

Figure S1. Electronic spectrum of 1 measured in the Nujol mull. Left – NIR region, right – UV/Vis. Absorbances are different due to different thickness of the samples.

Figure S2. Energy levels diagram relevant to 1.

Positive Zero-field Splitting and Unexpected Slow Magnetic Relaxation in the Magnetochemical Calibrant HgCo(NCS)₄ Roman Boča, Ján Titiš, Cyril Rajnák and J. Krzystek

States	Energy (cm-1)	Wavelen (nm)	gth fosc	T2 (D**2)	TX (D)	TY (D)	TZ (D)
$\begin{array}{c} 0(0) >> 1(0) \\ 4\\ 0(0) >> 2(0) \\ 4\\ 0(0) >> 3(0) \\ 4\\ 0(0) >> 4(0) \\ 4\\ 0(0) >> 5(0) \\ 4\\ 0(0) >> 6(0) \\ 4\\ 0(0) >> 7(0) \\ 4\\ 0(0) >> 8(0) \\ 4\\ 0(0) >> 9(0) \\ 4\end{array}$	4648.6 4648.6 5490.0 8319.9 8621.4 8621.4 20352.0 20352.1 20878.6	2151.2 2151.2 1821.5 1201.9 1159.9 1159.9 491.4 491.4 479.0	0.000000153 0.000000000 0.000055634 0.000064577 0.000064576 0.000347072 0.000347071 0.000347071	$\begin{array}{c} 0.00007\\ 0.00007\\ 0.00000\\ 0.01420\\ 0.01591\\ 0.01591\\ 0.03621\\ 0.03621\\ 0.04206 \end{array}$	-0.00508 -0.00665 0.00000 -0.00000 -0.12056 -0.03702 -0.06351 0.17938 -0.00000	 0.00665 -0.00508 0.00000 -0.00000 0.03702 -0.12056 -0.17938 -0.06351 0.00000 	0.00000 0.00000 0.00000 0.011916 0.00000 0.00000 0.00000 0.00000 0.00000 0.20509
Lransition	4000 600	0 8000 10			000200002	220002400	

 Table S1. Calculated absorption spectrum by CASSCF (NEVPT2 diagonal energies)

Figure S3. Calculated electronic transitions (spin-orbit corrected).

Table S2. Individual contributions to D-tensor

Block	Mult	Root	D	E
0	4	0	0.000	0.000
0	4		12.465	-8.660
0	4	2	12.405 -21 252	0.000
0	4	4	-0.000	0.000
0	4	5	0.003	-0.003
0	4	6	0.003	0.003
0	4	7	0.000	0.000
0	4	8	0.000	-0.000
0	4	9	0.000	0.000
1	2	0	0.000	-0.000
1	2	2	-0.068	-0.000
1	2	3	-0.068	0.067
1	2	4	0.000	-0.000
1	2	5	0.000	0.000
1	2	6	-3.156	-1.393
1	2	7	-3.156	1.393
1	2	8	6.09 8	0.000
1	2	10	-0.073	-0.073
1	2	11	-0.186	-0.118
1	2	12	-0.186	0.118
1	2	13	-0.000	-0.000
1	2	14	0.405	0.000
1	2	15	0.000	0.000
1	2	16 17	0.000	0.000
1	2	18	-0.000	-0.000
1	2	19	0.000	0.000
1	2	20	0.000	0.000
1	2	21	-0.003	-0.003
1	2	22	-0.003	0.003
1	2	23	1.326	0.000
1	2	24	-0.500	-0.480
1	2	26	0.000	0.000
1	2	27	0.000	-0.000
1	2	28	0.000	0.000
1	2	29	-0.142	-0.136
1	2	30	-0.142	0.136
1	2	31	0.246	0.000
1	2	32	0.000	-0.000
1	2	34	-0.003	-0 001
1	2	35	0.000	-0.000
1	2	36	0.000	0.000
1	2	37	0.048	-0.000
1	2	38	-0.023	0.023
1	2	39	-0.023	-0.023
		DY		
		1		
		1		
		1	•	
		1		
	0			
	8	a a		
				x
DZ		-		

Figure S4. Calculated main axes of the D-tensor.

Figure S5. A 10 K EPR spectrum of HgCo(NCS)₄ at 214 GHz (black trace) and its simulations (colored traces) using the following spin Hamiltonian parameters: $|D| = 5.39 \text{ cm}^{-1}$, E = 0, $g_{\parallel} = 2.2$, $g_{\perp} = 2.14$. Blue trace: D < 0; red trace: D > 0.

Figure S6. A 10 K EPR spectrum of HgCo(NCS)₄ at 406 GHz (black trace) and its simulations (colored traces) using the following spin Hamiltonian parameters: $|D| = 5.39 \text{ cm}^{-1}$, E = 0, $g_{iso} = 2.2$. Blue trace: D < 0; red trace: D > 0.

AC susceptibility data

Figure S7. Field dependence of the AC susceptibility for 1 at T = 2.0 K.

Figure S8. Temperature dependence of the AC susceptibility for 1.

A quantitative analysis is based upon an extended Debye model with two relaxation processes a) in phase component

$$\chi'(\omega) = \chi_{S} + (\chi_{T1} - \chi_{S}) \frac{1 + (\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2)}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2) + (\omega\tau_{1})^{2-2\alpha_{1}}} + (\chi_{T2} - \chi_{T1}) \frac{1 + (\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2)}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2) + (\omega\tau_{2})^{2-2\alpha_{2}}}$$

b) out of phase component

$$\chi''(\omega) = (\chi_{T1} - \chi_S) \frac{(\omega\tau_1)^{1-\alpha_1} \cos(\pi\alpha_1/2)}{1 + 2(\omega\tau_1)^{1-\alpha_1} \sin(\pi\alpha_1/2) + (\omega\tau_1)^{2-2\alpha_1}} + (\chi_{T2} - \chi_{T1}) \frac{(\omega\tau_2)^{1-\alpha_2} \cos(\pi\alpha_2/2)}{1 + 2(\omega\tau_2)^{1-\alpha_2} \sin(\pi\alpha_2/2) + (\omega\tau_2)^{2-2\alpha_2}}$$

for $\omega = 2\pi f$; χ_T – isothermal susceptibility (low-frequency limit), χ_S – adiabatic susceptibility (high-frequency limit). The fitting procedure contains 7 free parameters and a combined functional $F = w_1 \cdot R(\chi') + w_2 \cdot R(\chi'')$ is to be minimized (R_i – relative error, w_i – weight of the component).

Positive Zero-field Splitting and Unexpected Slow Magnetic Relaxation in the Magnetochemical Calibrant HgCo(NCS)₄ Roman Boča, Ján Titiš, Cyril Rajnák and J. Krzystek

Figure S9. Dependence of the AC-susceptibility components upon the frequency of the AC field and temperature at $B_{DC} = 0.5$ T. Solid lines – calculated. The fitted parameters along with their standard deviations are listed in Table S3.

While the first (low-frequency) maximum is recovered by the fitted parameters well, the characteristics of the second (high-frequency) maximum are only tentative (the signal is too low and noisy). Note, the AC susceptibility data are taken with very low amplitude of the oscillating field $B_{AC} = 0.38$ mT and thus the data are influenced by the eddy currents and other instabilities of the superconducting magnet that rise with B_{DC} .

<i>T</i> /K	$R(\chi')/\%$	$R(\chi'')/\%$	χs	$\chi_{T m LF}$	$lpha_{ m LF}$	$ au_{ m LF}$ /s	χ_{T} HF	$lpha_{ m HF}$	τ _{HF} /10 ⁻³ s	$x_{\rm LF}$
1.9	0.31	2.2	6.13(2)	8.59(5)	.28(1)	0.46(1)	8.73(3)	.18(16)	0.58(17)	.95
2.1	0.32	3.2	6.10(3)	8.05(6)	.25(1)	0.44(1)	8.21(3)	.30(18)	0.63(26)	.92
2.3	0.26	4.1	6.11(2)	7.73(5)	.27(1)	0.48(1)	7.86(2)	.20(17)	0.38(13)	.92
2.5	0.31	6.9	6.12(2)	7.30(5)	.25(2)	0.53(3)	7.44(3)	.20(18)	0.47(16)	.89
2.7	0.27	6.9	6.10(2)	7.00(5)	.26(3)	0.62(4)	7.11(3)	.29(20)	0.65(30)	.88
2.9	0.17	4.8	6.04(1)	6.71(3)	.22(2)	0.71(3)	6.81(2)	.23(12)	0.97(23)	.87
3.1	0.22	6.5	5.93(1)	6.43(3)	.19(3)	0.81(5)	6.52(2)	.29(15)	1.05(36)	.84
3.3	0.17	8.5	5.81(1)	6.19(2)	.13(3)	0.86(5)	6.27(1)	.10	1.18(27)	.84
3.5	0.16	13	5.67(1)	6.00(2)	.12(4)	0.96(7)	6.06(1)	.04	1.04(21)	.82
3.7	0.23	13	5.54(1)	5.76(1)	.01	0.88(7)	5.82(1)	.001	1.15(30)	.80

Table S3. Parameters of the two-set Debye model for 1 (two relaxation processes) at $B_{\rm DC} = 0.5$ T.^a

^a Susceptibility in 10⁻⁶ m³ mol⁻¹ (SI units). $R(\chi)$ and $R(\chi)$ – discrepancy factors of the fit for the in-phase and out-of-phase susceptibility; standard deviations in parentheses.

Positive Zero-field Splitting and Unexpected Slow Magnetic Relaxation in the Magnetochemical Calibrant HgCo(NCS)₄ Roman Boča, Ján Titiš, Cyril Rajnák and J. Krzystek

Figure S10. Arrhenius-like plot (left) based upon fitted data. LF – low frequency, HF – high frequency data.

Figure S11. View of the unit cell of **1** showing the 3D structural motif [ICSD 36062]. J.W. Jeffery, K.M. Rose, Acta Crystallographica, Section B: Struct.Crystallogr.Cryst.Chem., 1968, 24, 653, DOI: <u>10.1107/S0567740868002980</u>

Technique	Detail	$\mu_{ m eff}$ / $\mu_{ m B}$	g_{z}, g_{iso}	g_x	θ [K]	D/hc [cm ⁻¹]	Ref.
Gouy	80-300 K	4.33 (300 K)			-10 *		S1
-		4.18 (90 K)					
Gouy		4.32			-4		S2
Faraday	5.8-293 K				+2		S3
Faraday					+2.4		S4
					-1.0		
					-0.95		
SQUID					-1.1		S4
VSM	B = 1.0 T		2.24,		-1.86	+19	S5
			2.21,				
			2.22(rec.)				
SQUID	B = 0.008	4.37 (30-100 K)	2.26		-0.62		S6
	– 0.38 T						
SQUID	B = 0.5 T	4.36 (293 K)	2.22		-0.32	2D = +10.6 *	S7
SQUID	B = 0.1 T	4.36 (295 K)	2.223	2.292	zj = -0.114	+3.86	This work
HFEPR			2.13(8)	2.16(5)		+5.23(10)	This work
						E = 0.046(2)	
Ab initio			2.211	2.264		+3.41	This work
Generalized	10Dq =		2.252	2.294		+3.65	This work
crystal field	5000 cm ⁻¹						

Table S4. Magnetic data and parameters for HgCo(NCS)₄

* Corrected data to usual convention.

(S1) Figgis, F. N.; Nyholm, R. C. 61. Magnetochemistry. Part II. The temperature-dependence of the magnetic susceptibility of bivalent cobalt compounds. *J. Chem. Soc.*, **1959**, 338-345.

(S2) Cotton, F. A.; Goodgame, D. M. L.; Sacco, M. Magnetic Studies of High-spin Cobaltous Compounds. VII. Some Thiocyanate Complexes. J. Am. Chem. Soc. 1961, 83, 4157-4161.

(S3) Rade, H.-St. Temperature dependence of the magnetic susceptibility of mercury tetrathiocyanatocobalt. J. Phys. Chem. 1973, 77, 424.

(S4) Bunzli, J.-C. G. Comment of the use of HgCo(NCS)₄ as susceptibility standard. *Inorg. Chim. Acta.* **1979**, 36, L413-L414.

(S5) Brown, D. B.; Crawford, V. H.; Hall, J. W.; Hatfield, W. E. Standards for magnetic measurements. A comparison and a proposal for the use of tetramethylethylenediammonium tetrachlorocuprate(II). J. Phys. Chem. 1977, 81, 1303–1306.

(S6) O' Connor, C. J.; Sinn, E.; Cukauskas, E. J.; Deaver, B. S. Low temperature magnetic properties and antiferromagnetic interactions of the magnetic susceptibility calibrant HgCo(NCS)₄. *Inorg. Chim. Acta*, **1979**, 32, 29-32.

(S7) Nelson, D.; ter Haar, L. W. Single-crystal studies of the zero-field splitting and magnetic exchange interactions in the magnetic susceptibility calibrant mercury cobalt-thiocyanate (HgCo(NCS)₄), *Inorg. Chem.* **1993**, *32*, 182-188.

Modelling of the two-set susceptibility

A three-level model [L. T. A. Ho and L. Chibotaru, Phys. Rev. 2016, B94, 104422] brings the AC susceptibility components (in the original symbolism)

$$\chi'(\omega) = \frac{1}{T} \frac{c}{1+2c} \left(m_{11}^2 \frac{1}{1+\omega^2 \tau_2^2} + \frac{m_{33}^2}{1+2c} \frac{1}{1+\omega^2 \tau_3^2} \right)$$
$$\chi''(\omega) = \frac{1}{T} \frac{c}{1+2c} \left(m_{11}^2 \frac{\omega \tau_2}{1+\omega^2 \tau_2^2} + \frac{m_{33}^2}{1+2c} \frac{\omega \tau_3}{1+\omega^2 \tau_3^2} \right)$$

The relaxation rates involving the direct and Orbach terms are

$$\begin{aligned} \lambda_2 / \Gamma_0 &= a_n T + \Gamma_0 / (c-1) = A(\Delta / k_{\rm B} T)^{-1} + 1 / (c-1), \quad \tau_2^{-1} &= \lambda_2 \\ \lambda_3 / \Gamma_0 &= (2c+1) / (c-1), \quad \tau_3^{-1} &= \lambda_3 \end{aligned}$$

with $A = a(\Delta/k_{\rm B})/\Gamma_0$ and $c = \exp(\Delta/k_{\rm B}T)$; matrix elements of the magnetic momentum $m_{ii} = \langle i | \hat{m}_z | i \rangle$. The direct term is field-dependent $\lambda_{\rm direct} = A_{\rm direct} B^n T = a_n T$ with typical values of n = 2 - 4.

For $m_{33} = m_{11} = 1$ a) Effect of field: $A = 200 \rightarrow 2000$, green *vs* black; peak separations increases;

b) Effect of temperature, $T = 2 \rightarrow 4$ K, green vs red and black vs blue; peak maxima decrease and move to higher frequency.

|3>

12)

Δ

ħω

Effect of matrix elements: m_{33} / m_{11} : low-frequency peak increases.

Effect of the energy gap Δ:a) peak movement to lower frequencies;b) peak intensity changes

Figure S12. A modelling of the out-of-phase AC susceptibility using a three-level model.