Role of π -conjugation on the coordination behaviour, substitution kinetics, DNA/BSA

interactions, and in vitro cytotoxicity of carboxamide palladium(II) complexes

Reinner O. Omondi^a, Nicole RS. Sibuyi^b, Adewale O. Fadaka^b, Mervin Meyer^b, Deogratius Jaganyi^{c,d}, Stephen O. Ojwach^{*a}

^aSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
^bDepartment of Biotechnology, University of the Western Cape, Bag X17, Bellville, 7535, Cape Town, South Africa.
^cSchool of Pure and Applied Sciences, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya.
^dDepartment of Chemistry, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.

Table of Contents

1.0 Synthesis of ligands	3
1.1. N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (L1)	3
1.2. N-(quinolin-8-yl)pyrazine-2-carboxamide (L ₂)	4
1.3. N-(quinolin-8-yl)picolinamide (L ₃)	4
1.4. N-(quinolin-8-yl)quinoline-2-carboxamide (L4)	5
2. ¹ H NMR spectra of ligands	5
Fig. S1: ¹ H NMR of L ₁	6
Fig. S2: ¹ H NMR of L ₂	6
Fig. S4: ¹ H NMR of L ₄	7
3. ¹ H NMR spectra of Pd(II) complexes	8
Fig. S5: ¹ H NMR of PdL ₁	8
Fig. S8: ¹ H NMR of PdL ₄	9
4. ¹³ C NMR spectra of ligands	10
Fig. S9 : ¹³ C NMR of L ₁	10
Fig. S10 : ¹³ C NMR of L ₂	10
Fig. S11: ¹³ C NMR of L ₃	11
Fig. S12 : ¹³ C NMR of L ₄	11
5. ¹³ C NMR spectra of Pd(II) complexes	12
Fig. S13 : ¹³ C NMR of PdL ₁	12
Fig. S14: ¹³ C NMR of PdL ₂	12
Fig. S15 : ¹³ C NMR of PdL ₃	13

Fig. S16: ¹³ C NMR of PdL ₄	13
6.1 FT-IR for ligands	14
Fig. S17 : FT-IR of L ₁	14
Fig. S18 : FT-IR of L ₂	15
Fig. S19: FT-IR of L ₃	15
6.2 FT-IR for Pd(II) complexes	15
Fig. S20: FT-IR of PdL ₁	15
Fig. S21: FT-IR of PdL ₂	16
Fig. S22: FT-IR of PdL ₃	16
Fig. S23: FT-IR of PdL ₄	17
9. Electrochemical voltammograms for the complexes	19
Fig. S25: (a); Overlays of CV; (b) SWV of PdL ₁ in DMSO. The arrows denote aggregate peaks	19
Fig. S26: (a); Overlays of CV; (b) SWV of PdL ₃ in DMSO. The arrows denote aggregate peaks	19
Fig. S27: Overlays of CV; (b) SWV of PdL ₄ in DMSO. The arrows denote aggregate peaks	20
10. Stability of complexes in aqueous and DMSO solutions	20
Fig. S29: UV-Vis absorption spectra of PdL ₂ (a), PdL ₃ (b) in DMSO over a 72 h period	21
11. Dependence of <i>k</i> _{obs} on the nucleophile concentration	22
12. Eyring plots for the reaction of complexes with the nucleophiles	23
Fig. S34: Eyring plots for PdL ₂	23
Fig. S36: Eyring plots for PdL ₄	24
Fig. S37: Absorption spectra for PdL ₁	25
Fig. S39: Absorption spectra for PdL ₃	26
Fig. S41 : (a); Fluorescence emission of EB-CT-DNA in PdL_2 : [EB] = 50 μ M, [CTDNA] = 50 μ M [PdL_2] = 0 - 400 μ M. (b); Stern-Volmer plot of $I_0/I vs$ [Q]. (c); Scatchard plot of $\log[(I_0-I)/I] vs \log I_0$	I and g[Q]. 27
15. Fluorescence emission spectra of BSA studies	28
Fig. S43: (a): Fluorescence emission of BSA for PdL_2 : [BSA] = 12 µM and [PdL_2] = 0-10 µM. Stern-Volmer plot of $I_0/I vs$ [Q] and (c): Scatchard plot of $log[(I_0-I)/I] vs log[Q]$	(b): 28
Fig. S45 : (a); Fluorescence emission of BSA for PdL_4 : [BSA] = 12 µM and [PdL_4] = 0-10 µM. Stern-Volmer plot of $I_0/I vs$ [Q] and (c): Scatchard plot of $log[(I_0-I)/I] vs log[Q]$. (b): 29
16. In silico DNA binding affinity	30
Fig. S46: Interacting atoms and molecules of DNA-complexes and their specific bonds. a) Interaction PdL ₁ with B-DNA: the compound forms two hydrogen bond (OH group and N atom) with G10 and	on of d C9

 PdL_1 with B-DNA; the compound forms two hydrogen bond (OH group and N atom) with G10 and C9 with at 1.80 Å and 2.44 Å respectively; b) Interaction of PdL_2 with B-DNA; the compound forms two hydrogen bond (OH group and N atom) with G10 (1.73 Å) and (2.03 Å) respectively; c). Interaction of

PdL ₃ with B-DNA, formed a single hydrogen bond between the OH-group of the compour chain of the DNA at 2.31 Å; d). Interaction of PdL ₄ with B-DNA; this compound es hydrogen bonds (OH group and N atom) with G10 (2.04 Å) and C9 (2.38 Å) respectint interactions observed include hydrophobic interactions between atoms, metal coordination bonds between the nitrogen atoms of all the compounds and the residue D1 of the recepto < 2.5 Å.	nd and the B- stablishes two ctively. Other and covalent r at a distance
17. FT-IR summary for ligands and their respective Pd(II) complexes	31
Table S1: FT-IR data for ligands L_1 - L_4 and their respective Pd(II) complexes	31
18. Crystal data information for the complexes	32
Table S2: Crystal data and structure refinement details for PdL2-PdL4	32
Table S3: Selected bond lengths [Å] and bond angles [°] for PdL_2 - PdL_4	33
19. Selected computational information	34
Table S4: Summary of selected computational data for PdL1-PdL4	34
20. Concentration dependant Table	35
Table S5 : Average values of k_{obs} (s ⁻¹) for PdL_1	35
Table S6 : Average values of k_{obs} (s ⁻¹) for PdL ₂	35
Table S7 : Average values of k_{obs} (s ⁻¹) for PdL ₃	35
Table S8 : Average values of k_{obs} (s ⁻¹) for PdL ₄	36
21. Temperature dependant Table	36
Table S10 : Temperature dependence of k_2 M ⁻¹ s ⁻¹ for PdL ₂	37
Table S12: Temperature dependence of k_2 M ⁻¹ s ⁻¹ for PdL ₄	

1.0 Synthesis of ligands

1.1. N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (L_1)

To a solution of pyrazine-2-carboxylic acid (0.62 g, 5.00 mmol) and 2-picolylamine (0.54 g, 5.00 mmol) in pyridine (15 mL) was slowly added triphenyl phosphite (1.55 g, 5.00 mmol) for 15 min. The reaction mixture was refluxed at 100 °C for 12 h. The mixture was cooled to room temperature and poured into ice-cold water (40 mL). The resulting dark brown precipitate was collected by suction filtration, washed with copious amount of cold methanol and dried. Yield: 0.81 g (76%). ¹H NMR (400 MHz, DMSO-d₆): $\delta_{\rm H}$ (ppm): 4.66 (d, ³J_{HH} = 6.0, 2H, CH₂); 7.28 (dd, ³J_{HH} = 6.0, 1H,

pyridine); 7.36 (d, ${}^{3}J_{HH} = 7.9$, 1H, pyridine); 7.74 -7.79 (m, 1H, pyridine); 8.54 (d, ${}^{3}J_{HH} = 4.7$, 1H, pyridine); 8.78 (t, ${}^{3}J_{HH} = 3.9$, 1H, pyrazine); 8.91 (d, ${}^{3}J_{HH} = 2.5$, 1H, pyrazine); 9.24 (d, $J_{HH} = 1.4$, 1H, pyrazine); 9.47 (t, ${}^{3}J_{HH} = 5.5$, 1H, NH). ${}^{13}C$ NMR (DMSO-d6): δC (ppm): 44.16 (CH₂); 121.06 (CH, pyridine); 122.17 (CH, pyridine); 136.73 (CH, pyridine); 143.43 (CH, pyridine); 143.52 (CH, pyrazine); 144.61 (CH, pyrazine); 147.64 (CH, pyrazine); 148.81 (C, pyrazine); 157.65 (C, pyridine); 163.06 (C=O). FT-IR (cm⁻¹): υ (N-H) = 3313; υ (C=O) =1660; υ (C=C) = 1520; υ (C-N) = 1469.

The synthesis of ligands L_2 - L_4 were performed in a similar manner as described for ligand L_1 using the appropriate carboxylic acids and carboxamides.

1.2. N-(quinolin-8-yl)pyrazine-2-carboxamide (L₂)

Pyrazine-2-carboxylic acid (0.62 g, 5.00 mmol) and 8-aminoquinoline (0.72 g, 5.00 mmol). Light brown solid: Yield: 0.92 g (74%). ¹H NMR (400 MHz, DMSO-d₆): $\delta_{\rm H}$ (ppm): 7.67-7.71 (m, 2H, quinoline); 7.77 (dd, ³J_{HH} = 7.8, 1H, quinoline); 8.48 (dd, ³J_{HH} = 8.3, 1H, quinoline); 8.86 (dd, ³J_{HH} = 7.6, 1H, quinoline); 8.93 (t, ³J_{HH} = 3.8, 1H, quinoline); 9.01-9.02 (m, 2H, pyrazine); 9.42 (d, ³J_{HH} = 1.4, 1H, pyrazine); 11.94 (s, 1H, NH). ¹³C NMR (DMSO-d6): δ C (ppm): 116.06 (CH, quinoline); 122.42 (CH, quinoline); 122.73 (CH, quinoline); 127.02 (CH, quinoline); 127.85 (CH, quinoline); 133.33 (CH, quinoline); 136.73 (C, quinoline); 138.09 (C, quinoline); 143.52 (C, quinoline); 143.73 (CH, pyrazine); 144.06 (CH, pyrazine); 148.22 (CH, pyrazine); 149.37 (C, pyrazine); 160.76 (C=O). FT-IR (cm⁻¹): v(N-H) = 3303; v(C=O) = 1674; v(C=C) = 1530; v(amidic C-N) = 1482.

1.3. N-(quinolin-8-yl)picolinamide (L_3)

Pyridine-2-carboxylic acid (0.62 g, 5.00 mmoles) and 8-aminoquinoline (0.72 g, 5.00 mmoles). Light brown solid. Yield: 0.90 g (72%).¹H NMR (400 MHz, DMSO-d₆): $\delta_{\rm H}$ (ppm): 7.67-7.72 (m, 2H, quinoline); 7.73- 7.78 (m, 2H, quinoline); 8.14 (t, ${}^{3}J_{HH} = 7.8$, 1H, quinoline); 8.29 (d, ${}^{3}J_{HH} =$ 7.8, 1H, quinoline); 8.48 (d, ${}^{3}J_{HH} =$ 8.3, 1H, pyridine); 8.86-8.88 (m, 1H, pyridine); 8.93 (dd, ${}^{3}J_{HH} =$ 7.6, 1H, pyridine); 9.04 (dd, ${}^{3}J_{HH} =$ 5.9, 1H, pyridine); 12.17 (s, 1H, NH). ${}^{13}C$ NMR (DMSO-d6): ${}^{5}C$ (ppm): 115.86 (CH, quinoline); 122.17 (CH, quinoline); 122.33 (CH, quinoline); 127.04 (CH, quinoline); 127.24 (CH, quinoline); 127.88 (CH, quinoline); 133.71 (C, quinoline); 136.66 (C, quinoline); 138.21 (C, quinoline); 138.37 (CH, pyridine); 148.81 (CH, pyridine); 149.29 (CH, pyridine), 149.36 (C, pyridine), 161.84 (C=O). FT-IR (cm⁻¹): ν (N-H) = 3290; ν (C=O) =1672; ν (C=C) = 1518; ν (amidic C-N) = 1480.

1.4. N-(quinolin-8-yl)quinoline-2-carboxamide (L₄)

Quinoline-2-carboxylic acid (0.86 g, 5.00 mmol) and 8-aminoquinoline (0.72 g, 5.00 mmoles). Light brown solid. Yield: 1.12 g (75%). ¹H NMR (400 MHz, DMSO-d₆): $\delta_{\rm H}$ (ppm): 7.70-7.76 (m, 2H, quinoline); 7.78-7.84 (m, 2H, quinoline); 7.98 (t, ³J_{HH} = 7.6, 1H, quinoline); 8.18 (d, ³J_{HH} = 8.1, 1H, quinoline); 8.30 (d, ³J_{HH} = 8.5, 1H, quinoline); 8.39 (d, ³J_{HH} = 8.5, 1H, quinoline); 8.50 (dd, ³J_{HH} = 8.3, 1H, quinoline); 8.73 (d, ³J_{HH} = 8.5, 1H, quinoline); 8.96 (dd, ³J_{HH} = 7.6, 1H, quinoline); 9.11(dd, ³J_{HH} = 5.9, 1H, quinoline); 12.39 (s, 1H, NH). ¹³C NMR (DMSO-d6): δ C (ppm): 115.89; 118.49; 122.43; 127.09; 127.94; 128.21; 128.57; 129.15; 129.36; 130.94, 133.76; 136.69; 138.36; 138.62; 145.80; 149.45; 149.59 (quinoline carbons); 161.95 (C=O). FT-IR (cm⁻¹): ν (N-H) = 3300; ν (C=O) = 1680; ν (C=C) = 1545; ν (amidic C-N) = 1492.

2. ¹H NMR spectra of ligands

Fig. S3: ¹H NMR of L₃

Fig. S4: ¹H NMR of L₄

3. ¹H NMR spectra of Pd(II) complexes

Fig. S5: ¹H NMR of PdL₁

Fig. S6: ¹H NMR of PdL₂

Fig. S7: ¹H NMR of PdL₃

Fig. S8: ¹H NMR of PdL₄

4. ¹³C NMR spectra of ligands

Fig. S10: ¹³C NMR of L₂

Fig. S11: ¹³C NMR of L₃

Fig. S12: ¹³C NMR of L₄

5. ¹³C NMR spectra of Pd(II) complexes

Fig. S13: ¹³C NMR of **PdL**₁.

Fig. S14: ¹³C NMR of PdL₂

Fig. S16: ¹³C NMR of PdL₄

6. FT-IR spectra of the ligands and their respective Pd-complexes

6.1 FT-IR for ligands

Fig. S17: FT-IR of L₁

Fig. S18: FT-IR of L₂

6.2 FT-IR for Pd(II) complexes

Fig. S20: FT-IR of PdL₁

Fig. S21: FT-IR of PdL₂

Fig. S22: FT-IR of PdL₃

Fig. S23: FT-IR of PdL₄

8. DFT details for the complexes

Fig. S24: DFT-optimised HOMO, LUMO frontier molecular orbitals, with respective planarity structures of PdL_1 - PdL_4 .

9. Electrochemical voltammograms for the complexes

Fig. S25: (a); Overlays of CV; (b) SWV of PdL₁ in DMSO. The arrows denote aggregate peaks.

Fig. S26: (a); Overlays of CV; (b) SWV of PdL₃ in DMSO. The arrows denote aggregate peaks.

Fig. S27: Overlays of CV; (b) SWV of PdL₄ in DMSO. The arrows denote aggregate peaks.

10. Stability of complexes in aqueous and DMSO solutions

Fig. S28: UV–Vis spectra of PdL_1 (a), PdL_2 (b), PdL_3 (c), and PdL_4 (d) in buffer (pH = 7.4) over a 12 h period.

Fig. S29: UV-Vis absorption spectra of PdL₂ (a), PdL₃ (b) in DMSO over a 72 h period.

Fig. S30: ¹H NMR spectral data of PdL₄ in DMSO-d6 over 72 h.

11. Dependence of k_{obs} on the nucleophile concentration

Fig. S31: Dependence of k_{obs} on [Nu] for PdL₂

Fig. S32: Dependence of k_{obs} on [Nu] for PdL₃

Fig. S33: Dependence of k_{obs} on [Nu] for PdL₄

12. Eyring plots for the reaction of complexes with the nucleophiles

Fig. S34: Eyring plots for PdL₂

Fig. S35: Eyring plots for PdL₃.

Fig. S36: Eyring plots for PdL₄

13. UV-visible absorption measurements for CT-DNA studies

Fig. S37: Absorption spectra for PdL₁

Fig. S38: Absorption spectra for PdL₂

Fig. S39: Absorption spectra for PdL₃

14. Fluorescence emission spectra of EB bounded to CT-DNA studies

Fig. S40: (a); Fluorescence emission of EB-CT-DNA in PdL_1 : [EB] = 50 μ M, [CTDNA] = 50 μ M and [PdL1] = 0-400 μ M. (b); Stern-Volmer plot of Io/I vs [Q]. (c); Scatchard plot of log[(Io–I)/I] vs log[Q].

Fig. S41: (a); Fluorescence emission of EB-CT-DNA in PdL_2 : [EB] = 50 μ M, [CTDNA] = 50 μ M and [PdL_2] = 0 - 400 μ M. (b); Stern-Volmer plot of $I_0/I vs$ [Q]. (c); Scatchard plot of $log[(I_0-I)/I] vs log[Q]$.

Fig. S42: (a); Fluorescence emission of EB -CT-DNA in PdL₃: [EB] = 50 μ M, [CTDNA] = 50 μ M and [PdL₃] = 0-400 μ M. (b); Stern-Volmer plot of Io/I vs [Q]. (c); Scatchard plot of log[(Io-I)/I] vs log[Q].

15. Fluorescence emission spectra of BSA studies

Fig. S43: (a): Fluorescence emission of BSA for PdL_2 : [BSA] = 12 µM and [PdL_2] = 0-10 µM. (b): Stern-Volmer plot of $I_0/I vs$ [Q] and (c): Scatchard plot of $log[(I_0-I)/I] vs log[Q]$

Fig. S44: (a); Fluorescence emission of BSA for PdL3: [BSA] = 12μ M and [PdL₃] = $0-10 \mu$ M. (b): Stern-Volmer plot of Io/I vs [Q] and (c): Scatchard plot of log[(Io–I)/I] vs log[Q].

Fig. S45: (a); Fluorescence emission of BSA for PdL_4 : [BSA] = 12 µM and [PdL_4] = 0-10 µM. (b): Stern-Volmer plot of $I_0/I vs$ [Q] and (c): Scatchard plot of $log[(I_0-I)/I] vs log[Q]$.

16. In silico DNA binding affinity

Fig. S46: Interacting atoms and molecules of DNA-complexes and their specific bonds. a) Interaction of PdL_1 with B-DNA; the compound forms two hydrogen bond (OH group and N atom) with G10 and C9 with at 1.80 Å and 2.44 Å respectively; b) Interaction of PdL_2 with B-DNA; the compound forms two hydrogen bond (OH group and N atom) with G10 (1.73 Å) and (2.03 Å) respectively; c). Interaction of PdL_3 with B-DNA, formed a single hydrogen bond between the OH-group of the compound and the B-chain of the DNA at 2.31 Å; d). Interaction of PdL_4 with B-DNA; this compound establishes two hydrogen bonds (OH group and N atom) with G10 (2.04 Å) and C9 (2.38 Å) respectively. Other interactions observed include hydrophobic interactions between atoms, metal coordination and covalent bonds between the nitrogen atoms of all the compounds and the residue D1 of the receptor at a distance < 2.5 Å.

17. FT-IR summary for ligands and their respective Pd(II) complexes

Compounds	υ(N-H)	v(C=O)	υ(C=C)	υ(C-N)
L ₁	3313	1660	1520	1469
PdL ₁	-	1642	1524	1470
L_2	3303	1674	1530	1482
PdL ₂	-	1633	1575	1459
L_3	3290	1672	1518	1480
PdL ₃	-	1634	1595	1497
L_4	3300	1680	1545	1492
PdL ₄	-	1628	1502	1461

Table S1: FT-IR data for ligands L_1 - L_4 and their respective Pd(II) complexes

18. Crystal data information for the complexes

Parameter	PdL ₂	PdL ₃	PdL ₄
Empirical formula	C14H9ClN4OPd	C15H10CIN3OPd	C19H12CIN3OPd
Formula weight	391.10	390.11	440.17
Temperature (K)	100.05	100.05	100.15
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	P -1	P 21/ c	P n
Unit cell dimension			
a (Å)	8.8485(6)	17.9471(14)	4.5553(3)
b (Å)	10.7306(8)	4.5613(4)	18.3946(9)
c (Å)	15.2015(11)	17.8033(14)	9.1957(4)
α (°)	88.126(3)	90	90
β (°)	74.988(3)	114.681(4)	94.978(2)
γ (°)	69.294(3)	90	90
Volume (Å ³)	1301.30(16)	1324.28(19)	767.63(7)
Ζ	4	4	2
Density (Mg/m ³)	1.996	1.957	1.904
Absorption coefficient	1.634	1.603	1.395
(mm ⁻¹)			
F(000)	768.0	768	436.0

Table S2: Crystal data and structure refinement details for PdL₂-PdL₄

	Bond lengths [Å]			
	PdL ₂	PdL ₃	PdL ₄	
Pd(1)-N(3)	2.0132(19)	2.0168(16)	2.044(9)	
Pd(1)-N(1)	2.0136(19)	2.0229(16)	2.095(8)	
Pd(1)-N(2)	1.9608(19)	1.9802(15)	1.962(8)	
Pd(1)-Cl(1)	2.3191(6)	2.3152(5)	2.326(2)	
	Bond angles [°]		
N(3)-Pd(1)-N(1)	164.31(8)	164.12(6)	162.4(3)	
N(3)-Pd(1)-N(2)	82.86(8)	82.46(6)	81.3(3)	
N(1)-Pd(1)-N(2)	81.45(8)	81.67(6)	81.1(3)	
N(3)-Pd(1)-Cl(1)	97.89(6)	97.69(5)	91.5(3)	
N(1)-Pd(1)-Cl(1)	97.80(6)	98.19(5)	106.1(2)	
N(2)-Pd(1)-Cl(1)	179.25(5)	179.73(5)	171.7(3)	

Table S3: Selected bond lengths [Å] and bond angles [°] for PdL_2 - PdL_4

19. Selected computational information

Properties	PdL ₁	PdL ₂	PdL ₃	PdL ₄
Natural bond orbital (NBO) charge				
Pd^{2+}	0.348	0.365	0.340	0.359
0-	0.392	0.348	0.355	0.357
Bond lengths (Å)				
Computed Pd-Cl	2.444	2.433	2.439	2.466
X-ray Pd(1)-Cl(1)	-	2.3191(6)	2.315(5)	2.328(2)
HOMO-LUMO energy / eV				
- LUMO	3.178	2.979	2.517	2.312
- HOMO	6.246	6.125	6.030	5.826
$\Delta E_{LUMO-HOMO}$	3.068	3.146	3.513	3.514
Chemical hardness (ŋ)	1.534	1.573	1.757	1.757
Electronic chemical potential (-µ)	4.711	4.553	4.274	4.069
Electrophilicity index (ω)	7.233	6.589	5.199	4.711
Dipole moment (Debye)	7.249	5.956	2.529	1.816

 Table S4: Summary of selected computational data for PdL1-PdL4

20. Concentration dependant Table

		$k_{\rm obs, S}^{-1}$		
[Nu]	Tu	L-Met	5'-GMP	
0.002	190.4	101.4	17.8	
0.004	380.4	205.2	35.08	
0.006	570.2	309.6	51.76	
0.008	770.64	408	70.48	
0.01	960.2	514	89.3	

Table S5: Average values of k_{obs} (s⁻¹) for PdL₁

Table S6: Average values of k_{obs} (s⁻¹) for PdL₂

		$k_{\rm obs, S}$ -1		
[Nu]	Tu	L-Met	5'-GMP	
0.002	67.2	35.78	6.3	
0.004	135.4	73.56	12.7	
0.006	200.6	112.34	18.1	
0.008	271.8	145.12	24.2	
0.01	344.1	182.9	30.3	

Table S7: Average values of k_{obs} (s⁻¹) for PdL₃

	$k_{\rm obs, S}^{-1}$		
[Nu]	Tu	L-Met	5'-GMP
0.002	51.262	25.82	4.308
0.004	103.524	51.8	8.592
0.006	150.786	78.76	12.899
0.008	200.048	101.68	17.8
0.01	250.31	128.6	21.61

	$k_{\rm obs, S}^{-1}$		
[Nu]	Tu	L-Met	5'-GMP
0.002	20.902	11.068	1.692
0.004	41.404	20.386	3.394
0.006	59.906	31.294	5.406
0.008	79.908	41.372	6.908
0.01	102.01	51.74	8.606

Table S8: Average values of k_{obs} (s⁻¹) for PdL₄

21. Temperature dependant Table

Table S9: Temperature dependence of k_2 M⁻¹s⁻¹ for PdL₁

	$In(k_2/T)$		
1/T, K ⁻¹	Tu	L-Met	5'-GMP
0.00336	5.7648	5.1541	3.3655
0.0033	5.9361	5.3191	3.5121
0.00325	6.1308	5.5071	3.7129
0.00319	6.3097	5.7139	3.9002
0.00314	6.5091	5.8991	4.1129

	$\ln(k_2/T)$			
1/T, K ⁻¹	Tu	L-Met	5'-GMP	
0.00336	4.7208	4.1404	2.3148	
0.0033	4.9301	4.3617	2.5221	
0.00325	5.0991	4.5567	2.7097	
0.00319	5.3221	4.6987	2.9121	
0.00314	5.5421	4.8877	3.1446	

Table S10: Temperature dependence of k_2 M⁻¹s⁻¹ for PdL₂

Table S11: Temperature dependence of k_2 M⁻¹s⁻¹ for PdL₃

	$In(k_2/T)$			
1/T, K ⁻¹	Tu	L-Met	5-GMP	
0.00336	4.4347	3.7853	1.9763	
0.0033	4.6612	3.9774	2.1754	
0.00325	4.9452	4.1689	2.3596	
0.00319	5.1375	4.3734	2.5621	
0.00314	5.4561	4.5861	2.7683	

	$In(k_2/T)$			
1/T, K ⁻¹	Tu	L-Met	5'-GMP	
0.00336	3.5116	2.8623	1.1064	
0.0033	3.7354	3.0652	1.3468	
0.00325	3.9737	3.2654	1.5599	
0.00319	4.1892	3.5463	1.7737	
0.00314	4.4367	3.6987	1.9734	

Table S12: Temperature dependence of k_2 M⁻¹s⁻¹ for PdL₄