ELECTRONIC SUPPLEMENTARY MATERIAL

Vanadium aminophenolates in catechol oxidation: conformity with Finke's common catalyst hypothesis

Pasi Salonen,^a Risto Savela,^b Anssi Peuronen,^a Ari Lehtonen^a*

* Corresponding author

^a Group of Inorganic Materials Chemistry, Department of Chemistry, University of Turku, FI-20014 Turku, Finland.

^b Laboratory of Molecular Science and Technology, Åbo Akademi University, FI-20500 Turku, Finland

Contents

GC-FID reference chromatograms	5
GC-MS Chromatograms	8
GC-FID Chromatograms from reactions	10
⁵¹ V NMR spectroscopy	16
Negative mode ESI-MS	
EPR spectroscopy	
Identification of complex giving 8-line EPR spectrum	35
Non-catalytic oxidation of 2 to 3	
References	

Table of Figures

Figure S 1. All proligands and vanadium complexes used in this study1
Figure S 2. The reaction apparatus for 3,5-DTBC oxidation
Figure S 3. Approximate product distribution using column chromatography4
Figure S 4. GC-FID chromatogram of authentic 3,5-di-tert-butylcatechol5
Figure S 5. GC-FID chromatogram of authentic 3,5-di-tert-butyl-1,2-benzoquinone
Figure S 6. GC-FID chromatogram of authentic 3,5-di-tert-butyl muconic acid anhydride7
Figure S 7. GC-MS chromatogram of 3,5-di-tert-butyl-2-pyrone/ 4,6-di-tert-butyl-2-pyrone8
Figure S 8. GC-MS chromatogram of 4,6-di-tert-butyl-2-pyrone/ 3,5-di-tert-butyl-2-pyrone8
Figure S 9. GC-MS chromatogram of 4',6,6',8-tetra-tert-butyl-3H-spiro[benzo[b][1,4]dioxine-2,2'-pyran]-
3-one
Figure S 10. GC-FID chromatogram from reaction between V1 and 3,5-di-tert-butylcatechol
Figure S 11. GC-FID chromatogram from reaction between V2 and 3,5-di-tert-butylcatechol11
Figure S 12. GC-FID chromatogram from reaction between V3 and 3,5-di-tert-butylcatechol
Figure S 13. GC-FID chromatogram from reaction between V4 and 3,5-di-tert-butylcatechol
Figure S 14. GC-FID chromatogram from reaction between V5 and 3,5-di-tert-butylcatechol14
Figure S 15. GC-FID chromatogram from reaction between V6 and 3,5-di-tert-butylcatechol15
Figure S 16. Full width ⁵¹ V NMR 48-hour post-reaction spectra of V1–V6 in CDCl ₃ after treatment with
100 eq. 3,5-DTBC. Very faint ⁵¹ V NMR signals can be seen at ca. +1550 ppm vs. VOCl ₃ in the case of V3
and V4 (highlighted in red)
Figure S 17. Full width ⁵¹ V NMR spectra of V1–V6 in CDCl ₃ immediately after treatment with 100 eq. 3,5-
DTBC
Figure S 18. Negative mode ESI-MS spectrum of V1 + 100 eq. 3,5-DTBC at reaction t = 30 min18
Figure S 19. Negative mode post-reaction ESI-MS spectrum of V1 + 100 eq. 3,5-DTBC at reaction t = 48 h.
Figure S 20 Negative mode ESI-MS spectrum of V1 + 100 eq. 3 5-DTBC at reaction $t = 30$ min 20
Figure S 21. Negative mode post-reaction ESI-MS spectrum of V2 + 100 eq. 3.5-DTBC at reaction $t = 48$ h.
21
Figure S 22. Negative mode ESI-MS spectrum of V3 + 100 eg. 3.5-DTBC at reaction t = 30 min22
Figure S 23. Negative mode post-reaction ESI-MS spectrum of $V3 + 100$ eq. 3.5-DTBC at reaction t = 48 h.
23
Figure S 24. Negative mode ESI-MS spectrum of V4 + 100 eq. 3.5-DTBC at reaction t = 30 min24
Figure S 25. Negative mode post-reaction ESI-MS spectrum of V4 + 100 eq. 3,5-DTBC at reaction t = 48 h.
Figure S 26. Negative mode ESI-MS spectrum of V5 + 100 eq. 3,5-DTBC at reaction t = 30 min26
Figure S 27. Negative mode post-reaction ESI-MS spectrum of V5 + 100 eq. 3,5-DTBC at reaction t = 48 h.
Figure S 28. Negative mode ESI-MS spectrum of V6 + 100 eq. 3,5-DTBC at reaction t = 30 min28
Figure S 29. Negative mode post-reaction ESI-MS spectrum of V6 + 100 eq. 3,5-DTBC at reaction t = 48 h.
Figure S 30. Ambient atmosphere center field EPR spectra of V1–V6 in toluene recorded at RT 30 min
after treatment with 100 eq. 3,5-DTBC31

Figure S 31. Ambient atmosphere center field EPR spectra of V1–V6 in toluene recorded at RT 6 hours	
after treatment with 100 eq. 3,5-DTBC3	2
Figure S 32. Ambient atmosphere center field EPR spectra of V1–V6 in toluene recorded at RT 24 hours	
after treatment with 100 eq. 3,5-DTBC3	3
Figure S 33. Ambient atmosphere center field EPR spectra of V1–V6 in toluene recorded at RT 72 hours	
after treatment with 100 eq. 3,5-DTBC3	4
Figure S 34. Newly recorded ambient atmosphere center field EPR spectrum of V2 in toluene at RT 48	
hours after treatment with 100 eq. 3,5-DTBC3	5
Figure S 35. Negative mode ESI-MS spectrum of V2 at 48 hours after treatment with 100 eq. 3,5-DTBC. 3	6

Figure S 1. All proligands and vanadium complexes used in this study.

Scheme S 1. The overall mechanism of vanadium-catalyzed intra- and extradiol catechol dioxygenase reactions as proposed by Finke. **V1–V6** have been fitted to the mechanism.[1]

Figure S 2. The reaction apparatus for 3,5-DTBC oxidation.

Figure S 3. Approximate product distribution using column chromatography.

GC-FID reference chromatograms

Data File C:\CHEM32\2\DATA\RISTO\TSCH 2020-11-03 12-16-14\170524000008.D Sample Name: 3,5-ditbucat

Acq. Operator	: RMS	Seq. Line: 7
Acq. Instrument	: Instrument 2	Location : Vial 7
Injection Date	: 03-Nov-20, 16:54:07	Inj: 1
		Inj Volume : 1 µl
Acq. Method	: C:\CHEM32\2\DATA\RISTO\TS	CH 2020-11-03 12-16-14\AA-DEFAULT.M
Last changed	: 9/11/2020 12:47:18 PM by	RMS
Analysis Method	: C:\CHEM32\2\METHODS\RMS1_	HP1.M
Last changed	: 11/5/2020 11:37:10 AM by	RMS
	(modified after loading)	
FID1 A, (C:\0	CHEM32\2\DATA\RISTO\TSCH 2020-11-03 12-	16-14\170524000008.D)
pA _		
180		
160		N
140 -		÷
120 -		
3		
100 -		ОН
-		
80 -		
-		
60 -		
40 -		
20		
20		
0	<u> </u>	
0	5 10	15 20 25 30 min
nal 1: FID1 A,		
k RetTime Type Widt	th Area Height Area	
-	[[] [1
1 19.047 BB 0.02	236 191.71303 127.17262 1.000e2	
als :	191.71303 127.17262	

Data File C:\CHEM32\2\DATA\RISTO\TSCH 2020-11-03 12-16-14\170524000009.D Sample Name: 3,5-ditbuqin

Peak #	RetTime [min]	Туре	Width [min]	Area [pA*s]	Height [pA]	Area %
	18.267	BB	0.0268	264.38159	155.59264	1.000e2
Total	ls :			264.38159	155.59264	

Figure S 5. GC-FID chromatogram of authentic 3,5-di-tert-butyl-1,2-benzoquinone.

Data File C:\CHEM32\2\DATA\RISTO\TSCH 2020-11-05 12-05-25\170524000001.D Sample Name: 3,5-DitbuAnhydr

Peak RetTime Type # [min]	Width [min]	Area [pA*s]	Height [pA]	Area %
1 17.766 BB	0.0253	325.28619	196.35132	1.000e2
Totals :		325.28619	196.35132	

Figure S 6. GC-FID chromatogram of authentic 3,5-di-tert-butyl muconic acid anhydride.

GC-MS Chromatograms

Figure S 7. GC-MS chromatogram of 3,5-di-tert-butyl-2-pyrone/ 4,6-di-tert-butyl-2-pyrone.

Figure S 8. GC-MS chromatogram of 4,6-di-tert-butyl-2-pyrone/ 3,5-di-tert-butyl-2-pyrone.

Figure S 9. GC-MS chromatogram of 4',6,6',8-tetra-tert-butyl-3H-spiro[benzo[b][1,4]dioxine-2,2'-pyran]-3-one.

GC-FID Chromatograms from reactions

Data File C:\CHEM32\2\DATA\RISTO\TSCH 2020-11-03 12-16-14\170524000002.D Sample Name: PV1

Signa	1 1 · FT	01 A					Peak	RetTime	Туре	Width	Area	Height	Area
orgin		/1 /1/					#	[min]		[min]	[pA*s]	[pA]	90
Peak	RetTime	Tvpe	Width	Area	Height	Area							
#	[min]	-11-	[min]	[nA*s]	[nA]	8	7	18.203	BV	0.0223	1.81505	1.29941	0.37243
		1		l			8	18.260	VB	0.0260	115.38091	70.78101	23.67478
1	16 /10	DD I	0 0251	2 35079	1 43703	0 49235	9	18.772	BB	0.0253	3.83337	2.32233	0.78656
1	16.700	DD	0.0251	2.33078	1.43703	0.40235	10	19.045	BB	0.0252	33.69747	21.58197	6.91432
2	16.703	вв	0.0256	4.66719	2.93486	0.95765	11	24 947	BB	0 0264	11 67083	7 00444	2 39471
3	17.056	BB	0.0258	17.06114	10.59470	3.50074	11	24.547	55	0.0204	11.07005	7.00444	2.55471
4	17.399	BB	0.0258	21.80996	13.50355	4.47514	12	25.815	BB	0.0270	105.87702	61.72866	21.72470
5	17.757	BB	0.0261	166.28056	101.34944	34.11878							
6	17.853	BB	0.0280	2.91353	1.54254	0.59782	Total	s:			487.35782	296.07992	

Figure S 10. GC-FID chromatogram from reaction between V1 and 3,5-di-tert-butylcatechol.

Data File C:\CHEM32\2\DATA\RISTO\TSCH 2020-11-03 12-16-14\170524000003.D Sample Name: PV2

Figure S 11. GC-FID chromatogram from reaction between V2 and 3,5-di-tert-butylcatechol.

656.19515 399.05023

5 17.400 BB 0.0244 23.76119 15.07506 3.62106 Totals :

Data File C:\CHEM32\2\DATA\RISTO\TSCH 2020-11-03 12-16-14\170524000004.D Sample Name: PV3

	==	
Acq. Operator	:	RMS Seq. Line : 3
Acq. Instrument	:	Instrument 2 Location : Vial 3
Injection Date	:	03-Nov-20, 14:16:10 Inj : 1
		Inj Volume : 1 µl
Acq. Method	:	C:\CHEM32\2\DATA\RISTO\TSCH 2020-11-03 12-16-14\AA-DEFAULT.M
Last changed	:	9/11/2020 12:47:18 PM by RMS
Analysis Method	:	C:\CHEM32\2\METHODS\RMS1_HP1.M
Last changed	:	11/5/2020 11:37:10 AM by RMS
		(modified after loading)
FID1 A, (C:\0	CHI	EM32\2\DATA\RISTO\TSCH 2020-11-03 12-16-14\170524000004.D)
pA _		
180		
100		
160 -		
140		
		5
120 -		32.7
		Ī
100 -		
		α 4
80 -		5.8
60 -		8
		₹ <u>E</u>
40 -		946 212 212 212 212 212
20		24.
20		
0	_	
0		5 10 15 20 25 30 min

Signa	l 1: FII	01 A,					Peak	RetTime	Туре	Width	Area	Height	Area
Peak	RetTime	Туре	Width	Area	Height	Area	#	[min]		[min]	[pA*s]	[pA]	8
#	[min]		[min]	[pA*s]	[pA]	do							
							6	18.258	VB	0.0244	82.69583	52.29529	20.38286
1	16.410	BB	0.0253	3.11322	1.88092	0.76735	7	18.771	BB	0.0259	3.75358	2.31957	0.92518
2	17.054	BB	0.0260	21.98598	13.48777	5.41910	8	24.946	BB	0.0247	8.50840	5.30906	2.09715
3	17.399	BB	0.0256	37.67933	23.66763	9.28720	9	25.814	BB	0.0271	91.44478	53.07932	22.53930
4	17.757	BB	0.0258	154.80180	96.05413	38.15554							
5	18.202	BV	0.0237	1.72961	1.20902	0.42632	Total	s:			405.71255	249.30270	

Data File C:\CHEM32\2\DATA\RISTO\TSCH 2020-11-03 12-16-14\170524000005.D Sample Name: PV4

cq. Operator	: RMS	Seq. Line: 4		
cq. Instrument	: Instrument 2	Location : Vial 4		
injection Date	: 03-Nov-20, 14:55:44	Inj: 1		
		Inj Volume : 1 µl		
.cq. Method	: C:\CHEM32\2\DATA\RISTO\TS	CH 2020-11-03 12-16-14\AA-DEF	AULT.M	
ast changed	: 9/11/2020 12:47:18 PM by	RMS		
nalysis Method	: C:\CHEM32\2\METHODS\RMS1	HP1.M		
ast changed	: 11/5/2020 11:37:10 AM by	RMS		
	(modified after loading)			
FID1 A, (C:\0	HEM32\2\DATA\RISTO\TSCH 2020-11-03 12-	16-14\170524000005.D)		
pA _				
100				
180 -				
160				
100				
140				
		2		
120 -		27.75		
		Ī		
100 -				
		260	4	
80 -		18	5.81	
-			-2	
60 -		44		
		19.0		
40 -		4 1.40	1 947	
		8.7	6.71	
207		· · · · · · · · · · · · · · · · · · ·		
_				18 - 1
0	5 10	15 20	25 3	

							Peak	RetTime	Type	Width	Area	Height	Area
Signa	al 1: FII	D1 A,					#	[min]		[min]	[pA*s]	[pA]	8
Peak	RetTime	Type	Width	Area	Height	Area	6	18.260	VB	0.0246	96.76943	60.66752	21.43655
#	[min]		[min]	[pA*s]	[pA]	olo	7	18.772	BB	0.0261	5.55104	3.38427	1.22968
							8	19.047	BB	0.0236	38.78708	25.65917	8.59219
1	16.704	BB	0.0251	5.68294	3.47825	1.25890	9	24.947	BB	0.0263	9.56491	5.79613	2.11884
2	17.056	BB	0.0249	24.02365	14.84021	5.32176	10	25.814	BB	0.0274	93.98115	53.67443	20.81888
3	17.400	BB	0.0250	19.18103	11.80402	4.24902	11	26.711	BB	0.0263	2.21271	1.33684	0.49016
4	17.757	BB	0.0244	153.83675	97.55687	34.07821							
5	18.204	BV	0.0227	1.83198	1.28207	0.40582	Total	s:			451.42266	279.47980	

Figure S 13. GC-FID chromatogram from reaction between V4 and 3,5-di-tert-butylcatechol.

Data File C:\CHEM32\2\DATA\RISTO\TSCH 2020-11-03 12-16-14\170524000006.D Sample Name: PV5

							Peak	RetTime	Туре	Width	Area	Height	Area
<i>ci</i>	-1 1. DT	D1 3					#	[min]		[min]	[pA*s]	[pA]	8
Sign	ai i; ri	DI A,					6	18.202	BV	0.0238	2.02898	1.41171	0.44007
Peak	RetTime	Type	Width	Area	Height	Area	7	18.259	VB	0.0245	116.34693	73.24644	25.23467
#	[min]		[min]	[pA*s]	[pA]	90	8	18.770	BB	0.0259	5.77262	3.57059	1.25203
							9	19.046	BB	0.0276	3.99142	2.15456	0.86571
1	16.409	BB	0.0249	2.03157	1.25662	0.44063	10	24.945	BB	0.0262	12.26059	7.46217	2.65922
2	16.702	BB	0.0257	3.94417	2.45958	0.85546	11	25.813	BB	0.0279	86.51313	48.30260	18.76397
3	17.055	BB	0.0246	32.23523	20.18182	6.99155	12	26.710	BB	0.0268	2.42463	1.43062	0.52588
4	17.398	BB	0.0259	23.45242	14.44827	5.08663							
5	17.757	BB	0.0248	170.05820	105.74660	36.88419	Tota:	ls :			461.05990	281.67159	

Figure S 14. GC-FID chromatogram from reaction between V5 and 3,5-di-tert-butylcatechol.

Data File C:\CHEM32\2\DATA\RISTO\TSCH 2020-11-03 12-16-14\170524000007.D Sample Name: PV6

0	10.203 BV	0.0227	2.10907	1.4/100	0.40400	10	f 1 1		1	(6	0
7	18.258 VB	0.0258	96.88969	60.24203	22.22906	#	[min]		[min]	[pA*s]	[pA]	75
8	18.770 BB	0.0245	4.22168	2.65918	0.96856							
9	19.045 BB	0.0257	11.62446	7.26762	2.66696	1	16.409	BB	0.0249	2.70273	1.67173	0.62008
10	24.946 BB	0.0246	8.58679	5.37223	1.97004	2	16.703	BB	0.0247	1.86127	1.16032	0.42702
11	25 814 BB	0 0278	95 88039	53 87613	21 99750	3	17.055	BB	0.0256	22.41176	14.04570	5.14185
	20.011 00	0.0270	30.00000	00.07010	21.55750	4	17.399	BB	0.0246	31.84826	19.94337	7.30683
Totals :			435.86957	265.70329		5	17.757	BB	0.0258	157.73267	97.99398	36.18804

Figure S 15. GC-FID chromatogram from reaction between V6 and 3,5-di-tert-butylcatechol.

⁵¹V NMR spectroscopy

Figure S 16. Full width ⁵¹V NMR 48-hour post-reaction spectra of **V1–V6** in CDCl₃ after treatment with 100 eq. 3,5-DTBC. Very faint ⁵¹V NMR signals can be seen at ca. +1550 ppm vs. VOCl₃ in the case of **V3** and **V4** (highlighted in red).

Figure S 17. Full width ⁵¹V NMR spectra of **V1–V6** in $CDCl_3$ immediately after treatment with 100 eq. 3,5-DTBC.

Negative mode ESI-MS

Figure S 18. Negative mode ESI-MS spectrum of V1 + 100 eq. 3,5-DTBC at reaction t = 30 min.

Figure S 19. Negative mode post-reaction ESI-MS spectrum of V1 + 100 eq. 3,5-DTBC at reaction t = 48 h.

Figure S 20. Negative mode ESI-MS spectrum of V1 + 100 eq. 3,5-DTBC at reaction t = 30 min.

Figure S 21. Negative mode post-reaction ESI-MS spectrum of V2 + 100 eq. 3,5-DTBC at reaction t = 48 h.

Figure S 22. Negative mode ESI-MS spectrum of V3 + 100 eq. 3,5-DTBC at reaction t = 30 min.

Figure S 23. Negative mode post-reaction ESI-MS spectrum of **V3** + 100 eq. 3,5-DTBC at reaction t = 48 h.

Figure S 24. Negative mode ESI-MS spectrum of V4 + 100 eq. 3,5-DTBC at reaction t = 30 min.

Figure S 25. Negative mode post-reaction ESI-MS spectrum of V4 + 100 eq. 3,5-DTBC at reaction t = 48 h.

Figure S 26. Negative mode ESI-MS spectrum of **V5** + 100 eq. 3,5-DTBC at reaction t = 30 min.

Figure S 27. Negative mode post-reaction ESI-MS spectrum of V5 + 100 eq. 3,5-DTBC at reaction t = 48 h.

Figure S 28. Negative mode ESI-MS spectrum of V6 + 100 eq. 3,5-DTBC at reaction t = 30 min.

Figure S 29. Negative mode post-reaction ESI-MS spectrum of V6 + 100 eq. 3,5-DTBC at reaction t = 48 h.

259 EPR spectroscopy

260 Discussion

30 min (Figure S 30a-f): EPR spectra recorded shortly (30 min) after treatment of V1–V6 with 100 eq. 3,5-DTBC reveal that, with the exception of V2 (figure 30b), all complexes (figure 30a, c-f) show a rather similar EPR spectrum consisting of a single absorption. With a g factor close to 2.0023 this signal most probably arises from free 3,5-di-tert-butyl-1,2-semiquinone radicals. In contrast, V2 shows a more complicated 10line EPR spectrum with a g factor of 2.0036 and a ⁵¹V hyperfine coupling constant of ca. 2.05 G. This spectrum is almost identical to a 10-line EPR spectrum reported for [V(3,5-DTBC)₂(3,5-DTBSQ*)] with a A(⁵¹V) = 2.1 G and g factor = 2.004.[2] Given that V2 is based on a tridentate dianionic ligand (L2, see Figure S 1), instead of tetradentate dianionic ligands as is the case with V1 and V3–V6 it is reasonable thus to conclude that V2 has more rapidly undergone transformation compared to V1 and V3–6 due to comparatively more facile dissociation of L2, and the more susceptible nature of V2 towards leaching.

6 hours (Figure S 31a-f): EPR spectra recorded 6 hours after treatment of **V1–V6** with 100 eq. 3,5-DTBC show little change in the case of **V2** (Figure S 31b), which still shows the characteristic signal for [V(3,5-DTBC)₂(3,5-DTBSQ[•])]. In the case of **V1**, **V3** and **V6** the EPR spectra show at least two signals, namely those from free 3,5-DTBSQ[•] and [V(3,5-DTBC)₂(3,5-DTBSQ[•])] (Figure S 31a c and f). These findings further support the notion that **V1**, **V3–V6**, bearing tetradentate ligands, degrade more slowly than **V2** to [V(3,5-DTBC)₂(3,5-DTBSQ[•])], from which the active catalyst is formed by oxidation. Complexes **V4** and **V5** still show a characteristic signal from a S = ½ radical, 3,5-DTBSQ[•] (Figure S 31d and e).

278 24 hours (Figure S 32a-f): EPR spectra recorded 24 hours after treatment of V1–V6 with 100 eq. 3,5-DTBC 279 begin to show significant changes when compared to the 6 h and 30 min spectra, respectively. For 280 example, V1 shows an 11-line EPR spectrum (Figure S 32a) with g factor ~ 2.0034 and A(⁵¹V) ~ 2.95 G, very close to the values reported for Pierpont's complex (g ~ 2.004–2.006, $A(^{51}V) = 3.05$ G).[2] The 11-line 281 282 spectrum may suggest that $[V(3,5-DTBC)_2(3,5-DTBSQ^{\bullet})]$, which gives a 10-line spectrum, might also be 283 present in some proportion. Complexes V3 and V5 both afford a 10-line EPR spectrum (Figure S 32c and e) with g factors 2.0036 and 2.0037, and ⁵¹V hyperfine coupling constants of 2.09 and 2.07 G, respectively. 284 Both agree well with the 10-line EPR spectrum reported for $[V(3,5-DTBC)_2(3,5-DTBSQ^{\bullet})]$ with a $A(^{51}V) = 2.1$ 285 G and g factor = 2.004.[2] The EPR spectrum of V6, on the other hand, is poorly resolved, but is beginning 286 287 to show changes towards the formation of [V(3,5-DTBC)₂(3,5-DTBSQ*)] (Figure S 32f). V2 affords the most 288 interesting EPR spectrum, clearly showing at least two distinct EPR signals (Figure S 32b). Namely, a 10-289 line spectrum having a g ~ 2.0035 and $A(^{51}V) = 2.05$ G consistent with $[V(3,5-DTBC)_2(3,5-DTBSQ^*)]$ is 290 observed at the center field. Additionally, an 8-line EPR signal with $g \sim 2.0021$ and $A(^{51}V) = 8.91$ G is visible 291 in the background. While the 8-line spectrum is typical for S = 7/2 vanadium containing complexes, the g 292 factor strongly suggests an organic radical.

293**72 hours (Figure S 33a-f):** EPR spectra recorded 72 hours after treatment of **V1–V6** with 100 eq. 3,5-DTBC294start to show signs of considerable deterioration. This is expected, since Pierpont's complex is known to295be oxygen sensitive, slowly deteriorating to V_2O_5 and free 3,5-DTBQ.[2,3] The 72-hour measurements296signifytheendoftheEPRreactionmonitoringexperiments.

Figure S 30. Ambient atmosphere center field EPR spectra of V1–V6 in toluene recorded at RT 30 min after treatment with 100 eq. 3,5-DTBC.

Figure S 31. Ambient atmosphere center field EPR spectra of V1–V6 in toluene recorded at RT 6 hours after treatment with 100 eq. 3,5-DTBC.

Figure S 32. Ambient atmosphere center field EPR spectra of V1–V6 in toluene recorded at RT 24 hours after treatment with 100 eq. 3,5-DTBC.

Figure S 33. Ambient atmosphere center field EPR spectra of V1–V6 in toluene recorded at RT 72 hours after treatment with 100 eq. 3,5-DTBC.

Identification of complex giving 8-line EPR spectrum

The oxidation of 3,5-DTBC in the presence of **V2** affords an 8-line EPR spectrum with a g \sim 2.0021 – 2.0023 and A(⁵¹V) \sim 8.60 – 8.91 G after 24 hours of reaction onset. At approx. 48 hours, this signal reaches its peak intensity (see figure 4b in the main text). This EPR signal is markedly different when compared to the EPR signals afforded by the other pre-catalysts at t = 48 hours, which all give a characteristic 9-line signal for the Pierpont's complex.

As such, attempts were made to identify this compound by EPR spectroscopy and ESI-MS spectrometry. For this purpose, ca. 1 mg of **V2** and about 44.5 mg 3,5-DTBC (~ 1:100 [V]:[3,5-DTBC]) were dissolved in ca. 1 mL toluene in a test tube, and left to stand at RT in a fume hood under ambient atmospheric conditions. After ca. 48 hours of reaction onset, the characteristic 8-line EPR spectrum was once again

Figure S 34. Newly recorded ambient atmosphere center field EPR spectrum of **V2** in toluene at RT 48 hours after treatment with 100 eq. 3,5-DTBC.

observed (Figure S 34).

Once the 8-line spectrum was observed, the reaction mixture was sampled for negative mode ESI-MS (mass experiments performed in MeCN). The ESI-MS spectrum from this experiment (Figure S 35) reveals that species such as $[V(3,5-DTBC)_2(3,5-DTBSQ^{\bullet})]$, with a m/z = 711.3835 (e.g. $[V(3,5-DTBC)_3]^{-}$), and half-fragment of $[VO(3,5-DTBC)(3,5-DTBSQ^{\bullet})]_2$, with m/z = 507.2321 (e.g. $[VO(3,5-DTBC)_2]^{-}$), both of which are EPR active and give 10-line and 9-line spectra, respectively, are present only in very low intensity. In fact, the most intensive signal is given by $[VO(L2)(3,5-DTBSQ^{\bullet})]$, with an exact m/z = 618.3005 (e.g. $[VO(L2)(3,5-DTBC)]^{-}$), with a found m/z = 618.2806. These EPR and ESI-MS experiments provide compelling, albeit perhaps not perfectly irrefutable, evidence that the 8-line EPR spectrum is in fact from $[VO(L2)(3,5-DTBSQ^{\bullet})]$, which is a major component of the post-reaction medium when V2 is used as the pre-catalyst. While we realize that a standalone synthesis and isolation of $[VO(L2)(3,5-DTBSQ^{\bullet})]$ and its EPR

characterization would provide a certain answer, we did not attempt these. It should be noted, that 8-line EPR spectra with similar g and $A(^{51}V)$ values have been reported for $[V(TCSQ^{\bullet})_{3}]$, where $TCSQ^{\bullet}$ = tetrachloro-1,2-semiquinone.[4]

Figure S 35. Negative mode ESI-MS spectrum of V2 at 48 hours after treatment with 100 eq. 3,5-DTBC.

Scheme S 2. Facile initial O_2 -mediated autoxidation of **1** to **2** as well as a proposed non-catalytic reaction mechanism involving H_2O_2 -mediated Baeyer-Villiger like oxidation of **2** to the anhydride **3**. The acceleration of this reaction by Lewis acids (*e.g.* V⁵⁺) may be reasonably expected (see text below).

The substrate $\mathbf{1}$ is oxidized, albeit slowly, to the corresponding quinone $\mathbf{2}$ by O_2 , even without catalysis. This reaction is greatly accelerated by the introduction of an organic base, such as Et₃N. The deprotonation of **1** may facilitate the oxidative formation of 3,5-di-*tert*-butylsemiquinone, which then undergoes further oxidation to **2**. In this work, the oxidation of **1** to **2** was revealed to be effected by H_2O_2 , in addition to O_2 . This reaction was found to be rather slow, but it may be greatly accelerated by the introduction of 1 mol-% V1 (full conv. in 48 h), although moderate conversion (ca. 55 %) was observed without added V1 in 48 h. The anhydride product **3** formed as a minor (yield 1-6 %) by-product in H₂O₂-mediated oxidation of **1** under *anaerobic* conditions, the higher yield obtained in the presence of **V1** and lower without a catalyst. This suggests that 3 may be formed in multiple separate ways: Firstly, 3 is the major product with yields ranging between 30–39 % in the *aerobic* V1–V6 catalyzed pathway. This pathway corresponds to the true dioxygenase reaction, whose mechanism, as proposed by Finke, [1] is shown in ESI Scheme S1. [5,6] It is important to emphasize that in this reaction 1 is directly converted to 3. However, 3 is also obtained in the absence of O₂ with a yield of 1 % in the presence of two eq. H_2O_2 relative to 1. Moreover, the yield of 3 is increased to 6 % when V1 is used as catalyst in the presence of H_2O_2 . This reactivity is reminiscent of a peracid-mediated Baeyer-Villiger -like oxidation of 2, which has been reported earlier. [7,8] It should be noted, that peracids such as m-CPBA are significantly more suitable oxidants for this reaction, since 2 is oxidized to 3 practically quantitatively in 5 minutes at 0 °C, [8] versus 1-6 % yield in 48 hours at 65 °C, as observed by us. These correspond to the second and third pathways for the formation of **3**. Namely, **3** may be obtained from 2 by direct H_2O_2 -mediated oxidation without catalysts (*i.e.* Scheme S2) or via a Lewis acid (vanadium(v)) catalyzed pathway, the latter of which affords **3** in a greater yield. These reactions are separate to the true dioxygenase pathway, and most likely do not play a large role in the actual O_2 dioxygenase pathway, since H_2O_2 is formed *in-situ* – *i.e.* concomitant to the formation of **2** –, and in low amounts.

References

- C.X. Yin, R.G. Finke, Kinetic and mechanistic studies of vanadium-based, extended catalytic lifetime catechol dioxygenases, J. Am. Chem. Soc. 127 (2005) 13988–13996. doi:10.1021/ja052998+.
- [2] M.E. Cass, D.L. Green, R.M. Buchanan, C.G. Pierpont, Orthoquinone complexes of vanadium and their reactions with molecular oxygen, J. Am. Chem. Soc. 105 (1983) 2680–2686. doi:10.1021/ja00347a027.
- C.-X. Yin, R.G. Finke, Vanadium-Based, Extended Catalytic Lifetime Catechol Dioxygenases: Evidence for a Common Catalyst, J. Am. Chem. Soc. 127 (2005) 9003–9013. doi:10.1021/ja051594e.
- [4] M.E. Cass, N.R. Gordon, C.G. Pierpont, Catecholate and semiquinone complexes of vanadium.
 Factors that direct charge distribution in metal-quinone complexes, Inorg. Chem. 25 (1986) 3962– 3967. doi:10.1021/ic00242a027.
- H.G. Jang, D.D. Cox, L. Que, A highly reactive functional model for the catechol dioxygenases. Structure and properties of [Fe(TPA)DBC]BPh4, J. Am. Chem. Soc. 113 (1991) 9200–9204. doi:10.1021/ja00024a028.
- [6] C.J. Winfield, Z. Al-Mahrizy, M. Gravestock, T.D.H. Bugg, Elucidation of the catalytic mechanisms of the non-haem iron-dependent catechol dioxygenases: synthesis of carba-analogues for hydroperoxide reaction intermediates, J. Chem. Soc. Perkin Trans. 1. (2000) 3277–3289. doi:10.1039/b004265j.
- [7] F.R. Hewgill, S.L. Lee, Oxidation of alkoxyphenols. Part XVIII. Further examples of epoxide formation on autoxidation of moderately hindered phenols, J. Chem. Soc. C Org. (1969) 2080. doi:10.1039/j39690002080.
- [8] T.R. Demmin, M.M. Rogic, Preparation of muconic acid anhydrides. Characterization of the 1oxacyclohepta-3,5-diene-2,7-dione structure, J. Org. Chem. 45 (1980) 1153–1156. doi:10.1021/jo01294a047.