Electronic Supplementary Information (ESI) for "Meta-studtite stability in aqueous solutions. Impact of HCO<sub>3</sub>, H<sub>2</sub>O<sub>2</sub> and ionizing radiation on the dissolution and speciation".



Junyi Li\*, Zoltán Szabó and Mats Jonsson

**Figure S1.** Plot of the uranyl fraction vs. total peroxide concentration calculated by Medusa<sup>5</sup> using the equilibrium constants reported for complexes formed in the ternary U(VI)-peroxide-carbonate system (left).<sup>1</sup> The effect of ionic strength (I=0.01 mol / kg (H<sub>2</sub>O)) was accounted for using the simplified HKF (Helgeson-Kirkham-Flowers) model.<sup>2,3,4</sup> Column diagram represents the relative ratio for species formed at  $[H_2O_2]_{tot} = 0.145$  mM (right).



**Figure S2.** Plot of the uranyl fraction vs. total peroxide concentration calculated by Medusa<sup>5</sup> using the equilibrium constants reported for complexes formed in the ternary U(VI)-peroxide-carbonate system (left).<sup>1</sup> The effect of ionic strength (I=0.01 mol / kg (H<sub>2</sub>O)) was accounted for using the simplified HKF (Helgeson-Kirkham-Flowers) model.<sup>2,3,4</sup> Column diagram represents the relative ratio for species formed at  $[H_2O_2]_{tot} = 0.5$  mM (right).



**Figure S3.** Plot of the uranyl fraction vs. total peroxide concentration for studtite dissolution in  $HCO_3^-$  in the presence of  $H_2O_2$  calculated under experimental conditions by Medusa<sup>5</sup> using the equilibrium constants reported for complexes formed in the ternary U(VI)-peroxide-carbonate system (left).<sup>1</sup> The effect of ionic strength (I=0.01 mol / kg (H<sub>2</sub>O)) was accounted for using the simplified HKF (Helgeson-Kirkham-Flowers) model.<sup>2,3,4</sup> Column diagram represents the relative ratio for species formed at  $[H_2O_2]_{tot} = 0.15$  mM (right).



**Figure S4.** Plot of the uranyl fraction vs. total peroxide concentration for meta-studtite dissolution in  $HCO_3^-$  in the presence of  $H_2O_2$  calculated under experimental conditions by Medusa<sup>5</sup> using the equilibrium constants reported for complexes formed in the ternary U(VI)-peroxide-carbonate system (left).<sup>1</sup> The effect of ionic strength (I=0.01 mol / kg (H<sub>2</sub>O)) was accounted for using the simplified HKF (Helgeson-Kirkham-Flowers) model.<sup>2,3,4</sup> Column diagram represents the relative ratio for species formed at  $[H_2O_2]_{tot} = 0.3 \text{ mM}$  (right).



**Figure S5.** Plots of the uranyl fraction vs. total peroxide concentration for solutions containing 0.3 mM  $H_2O_2$ , 10 mM  $HCO_3^-$  and 0.3 mM U(VI) (left) and 0.5 mM U(VI) (right) at pH = 8.7 calculated by Medusa<sup>5</sup> using the equilibrium constants reported for complexes formed in the ternary U(VI)-peroxide-carbonate system.<sup>1</sup> The effect of ionic strength (I=0.01 mol / kg (H<sub>2</sub>O)) was accounted for using the simplified HKF (Helgeson-Kirkham-Flowers) model.<sup>2,3,4</sup>



**Figure S6.** Plot of the uranyl fraction vs. total peroxide concentration for studtite dissolution in the presence of  $HCO_3^-$  with gamma-radiation calculated under experimental conditions by Medusa<sup>5</sup> using the equilibrium constants reported for complexes formed in the ternary U(VI)-peroxide-carbonate system.<sup>1</sup> The effect of ionic strength (I=0.01 mol / kg (H<sub>2</sub>O)) was accounted for using the simplified HKF (Helgeson-Kirkham-Flowers) model.<sup>2,3,4</sup> Column diagram represents the relative ratio for species formed at  $[H_2O_2]_{tot} = 0.2 \text{ mM}$  (right).



**Figure S7.** Plot of the uranyl fraction vs. total peroxide concentration for meta-studtite dissolution in the presence of  $HCO_3^-$  with gamma-radiation calculated under experimental conditions by Medusa<sup>5</sup> using the equilibrium constants reported for complexes formed in the ternary U(VI)-peroxide-carbonate system<sup>2</sup>. The effect of ionic strength (I=0.01 mol / kg (H<sub>2</sub>O)) was accounted for using the simplified HKF (Helgeson-Kirkham-Flowers) model.<sup>2,3,4</sup> Column diagram represents the relative ratio for species formed at  $[H_2O_2]_{tot} = 0.12$  mM (right).

## References

- 1 P. L. Zanonato, P. Di Bernardo, Z. Szabó and I. Grenthe, *Dalt. Trans.*, 2012, **41**, 11635–11641.
- H. C. Helgeson, D. H. Kirkham and G. C. Flowers, *Am. J. Sci.*, 1981, 281, 1249– 1516.
- 3 E. H. Oelkers and H. C. Helgeson, *Geochim. Cosmochim. Acta*, 1990, **54**, 727–738.
- 4 E. L. Shock, E. H. Oelkers, J. W. Johnson, D. A. Sverjensky and H. C. Helgeson, J. *Chem. Soc. Faraday Trans.*, 1992, **88**, 803–826.
- 5 Medusa computer program for calculating the composition of equilibrium mixtures by I. Puigdomenech, freely available from https://www.kth.se/che/medusa