Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

## **Supplementary Information**

Oxygen vacancy mediated room-temperature ferromagnetism and bandgap narrowing in  $DyFe_{0.5}Cr_{0.5}O_3$  nanoparticles

Rana Hossain<sup>\*a</sup>, Areef Billah<sup>b</sup>, Manabu Ishizaki<sup>c</sup>, Shigeru Kubota<sup>b</sup>, Fumihiko Hirose<sup>b</sup>, and Bashir Ahmmad<sup>\*b</sup>

<sup>a</sup>Department of Mechanical Science and Bioengineering, Osaka University, Osaka 560-8531, Japan, E-mail: <u>hossain.rana@tsme.me.es.osaka-u.ac.jp</u> <sup>b</sup>Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa shi 992-8510, Yamagata, Japan, E-mail: <u>arima@yz.yamagata-u.ac.jp</u>

<sup>c</sup>Faculty of Science, Yamagata University, 1-4-12 Kojiragawa-machi, Yamagata 992-8560, Japan



Figure S1. (left) TEM and (right) HAADF-STEM image of DyFe<sub>0.5</sub>Cr<sub>0.5</sub>O<sub>3</sub> nanoparticles.



Figure S2. The elemental mapping pattern of Dy, Fe, Cr and O in  $DyFe_{0.5}Cr_{0.5}O_3$  nanoparticles respectively.



Figure S3: (a) XRD and corresponding Rietveld refinement of bulk sized  $DyFe_{0.5}Cr_{0.5}O_3$  prepared by solid-state reaction technique. (b) FSEM image and histogram of the particle size distribution.

|                                                      | а     | b     | с     | Reference        |
|------------------------------------------------------|-------|-------|-------|------------------|
| DyFeO <sub>3</sub>                                   | 5.595 | 7.629 | 5.300 | [1]              |
|                                                      | 5.598 | 7.623 | 5.302 | [2]              |
| DyFe <sub>0.5</sub> Cr <sub>0.5</sub> O <sub>3</sub> | 5.543 | 7.586 | 5.281 | This work (nano) |
|                                                      | 5.554 | 7.584 | 5.283 | This work (bulk) |
|                                                      | 5.556 | 7.588 | 5.286 | [3]              |
| DyCrO <sub>3</sub>                                   | 5.481 | 7.549 | 5.177 | [4]              |
|                                                      | 5.508 | 7.537 | 5.254 | [5]              |

Table S1: Comparison of lattice parameters of  $DyFe_{0.5}Cr_{0.5}O_3$  with reported  $DyFeO_3$  and  $DyCrO_3$  perovskites.



Figure S4: XPS spectra of C 1s. The peaks found at 284.28 eV, 284.8 eV, 285.56 eV and 288.5 eV are the adventitious carbon peaks present in all air exposed material due to surface contamination [6,7]. The peak at 282.3 eV is associated to carbon in chromium carbide (CrC) [8]. The presence of CrC is found to be only ≥0.8% of total elemental composition of DyFe<sub>0.5</sub>Cr<sub>0.5</sub>O<sub>3</sub> nanoparticles, therefore no distinguishable peak in XRD pattern corresponding to this phase have found.



Figure S5. XPS survey spectra of synthesized nanoparticles.

Table S2: Elemental composition of synthesized nanoparticles calculated from XPS survey spectra. Parenthesis is showing the standard deviation of quantification.

| At%         | Dy          | Fe         | Cr          | Ο           |
|-------------|-------------|------------|-------------|-------------|
| Theoretical | 19.85       | 9.93       | 10.66       | 59.56       |
| XPS         | 19.79(0.22) | 9.80(0.40) | 10.86(0.32) | 59.55(0.45) |

Table S3: Surface quantification of the ratio of lattice Oxygen ( $O^{2-}$ )/Oxygen vacancy ( $O_v$ ) and Fe<sup>2+</sup> /Fe<sup>3+</sup> and Cr<sup>2+</sup>/Cr<sup>3+</sup> cations present on the surface of nanoparticles using common relative sensitivity factor (RSF) of for Al K $\alpha$ .

| Elements             | Position | Area    | RSF   | Area (%) | Oxidation state  |
|----------------------|----------|---------|-------|----------|------------------|
| O 1s                 | 529.26   | 42039.4 | 2.93  | 64.72    | O <sup>2-</sup>  |
|                      | 530.95   | 22919.7 |       | 35.28    | O <sub>v</sub>   |
| Fe 2p <sub>3/2</sub> | 709.72   | 7182.6  | 10.82 | 34.37    | Fe <sup>2+</sup> |
|                      | 711.15   | 8414.9  |       | 39.78    | Fe <sup>3+</sup> |
|                      | 713.11   | 5372.1  |       | 25.85    | Fe <sup>3+</sup> |
| Cr 2p <sub>3/2</sub> | 575.52   | 10152.9 | 7.69  | 37.77    | Cr <sup>2+</sup> |
|                      | 576.72   | 10573.2 |       | 39.34    | Cr <sup>3+</sup> |
|                      | 578.12   | 6153.3  |       | 22.89    | Cr <sup>3+</sup> |
| Dy 4d                | 152.51   | 18478.5 | 11.43 | 36.63    | Dy <sup>0</sup>  |
| Dy 4d <sub>5/2</sub> | 155.59   | 18849.1 | 6.74  | 63.37    | Dy <sup>3+</sup> |

## References

- [1] V. Streltsov and N. Ishizawa, Acta Crystallographica Section B Structural Science, 1999, 55, 1-7.
- [2] M. Marezio, J. Remeika and P. Dernier, *Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry*, 1970, 26, 2008-2022.
- [3] V. Nair, L. Pal, V. Subramanian and P. Santhosh, Journal of Applied Physics, 2014, 115, 17D728.
- [4] P. Gupta, R. Bhargava, R. Das and P. Poddar, RSC Advances, 2013, 3, 26427.

- [5] J. Prado-Gonjal, R. Schmidt, J. Romero, D. Ávila, U. Amador and E. Morán, *Inorganic Chemistry*, 2012, 52, 313-320.
- [6] J. Li, X. Zhou, Y. Pang, L. Zhu, E. Vovk, L. Cong, A. van Bavel, S. Li and Y. Yang, *Physical Chemistry Chemical Physics*, 2019, 21, 22351-22358.
- [7] D. Miller, M. Biesinger and N. McIntyre, *Surface and Interface Analysis*, 2002, 33, 299-305.

L. Yate, L. Martínez-de-Olcoz, J. Esteve and A. Lousa, Surface and Coatings Technology, 2012, 206, 2877-2883.