## **Supplementary Information**

## Narrow band red emitting phosphor with negligible concentration quenching for hybrid white LEDs and plant growth applications

Kasturi Singh, Marikumar Rajendran, Rachna Devi and Sivakumar Vaidyanathan \*

Department of Chemistry, National Institute of Technology, Rourkela, Odisha - 769008

\*To whom correspondence should be addressed. Email: <u>vsiva@nitrkl.ac.in</u> (V. Sivakumar) Tel: +91-661-2462654;

**Table ST1** Lattice parameters for  $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$  where x = 0 - 3 (in steps of 0.3).

| Concentration of $Eu^{3+}(x)$ | a (Å)  | b (Å)   | c (Å)   | β (Å)   | V (Å <sup>3</sup> ) |
|-------------------------------|--------|---------|---------|---------|---------------------|
| 0.3                           | 5.2816 | 12.8192 | 19.9946 | 92.8875 | 1291.305            |
| 0.6                           | 5.2681 | 12.8141 | 19.4057 | 92.7371 | 1283.666            |
| 0.9                           | 5.2655 | 12.7407 | 19.2631 | 92.7071 | 1280.374            |
| 1.2                           | 5.2554 | 12.7236 | 19.2176 | 92.1894 | 1279.561            |
| 1.5                           | 5.2468 | 12.7156 | 19.2170 | 92.1589 | 1277.002            |
| 1.8                           | 5.2320 | 12.7138 | 19.2080 | 91.4221 | 1272.372            |
| 2.1                           | 5.2218 | 12.7129 | 19.1818 | 91.3841 | 1270.752            |
| 2.4                           | 5.1915 | 12.7096 | 19.1419 | 91.3637 | 1269.197            |
| 2.7                           | 5.1903 | 12.6723 | 18.9812 | 90.8082 | 1265.653            |
| 3                             | 5.1766 | 12.6640 | 19.2170 | 91.2714 | 1266.653            |

**Table ST2** The band gaps of  $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$  where x = 0.3 - 3

| Composition 0.3                 | 0.6  | 0.9  | 1.2  | 1.5  | 1.8  | 2.1  | 2.4  | 2.7  | 3    |
|---------------------------------|------|------|------|------|------|------|------|------|------|
| Band gap (E- $3.75$<br>g) in eV | 3.48 | 3.41 | 3.38 | 3.37 | 3.35 | 3.34 | 3.32 | 3.29 | 3.48 |



**Fig.S1.** The plot of  $(\alpha h\nu)^2$  verses  $h\nu$ ) host Li<sub>3</sub>BaSrLa<sub>3</sub>(MoO<sub>4</sub>)<sub>8</sub>, b) 0.3Eu<sup>3+</sup>: Li<sub>3</sub>BaSrLa<sub>3</sub>(MoO<sub>4</sub>)<sub>8</sub>

and c) Li<sub>3</sub>BaSrEu<sub>3</sub>(MoO<sub>4</sub>)<sub>8</sub>



**Fig.S2.** PL excitation spectra of  $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$  where x = 0 - 3 at  $\lambda_{em} = 615$  nm.



Fig. S3. PL emission spectra of  $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$  where x = 0.3 - 3 at  $\lambda_{exc} = CT$  band.



Fig. S4. PL emission spectra of  $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$  where x = 0.3 - 3 at  $\lambda_{exc} = 394$  nm



Fig. S5. PL emission spectra of  $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$  where x = 0.3 - 3 at  $\lambda_{exc} = 465$  nm]



Fig S6. Layered structure of Li<sub>3</sub>BaSrLa<sub>3</sub>(MoO<sub>4</sub>)<sub>8</sub>



**Fig. S7.** a) Temperature dependence profile of emission intensity at  $\lambda_{exc} = 394$  nm from 25° C to 200° C, b) Plot of ln(I/I<sub>0</sub>) – 1 verses 1/KT for Li<sub>3</sub>BaSrLa<sub>2.7</sub>Eu<sub>0.3</sub>(MoO<sub>4</sub>)<sub>8</sub> phosphor.



Fig. S8. PL lifetime for  $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$  phosphors with different concentration under

CT band nm excitation



Fig. S9.PL lifetime for  $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$  phosphors with different concentration under

under 465 nm excitation

| Composition in terms     | Lifetime in ms                          |                                    |                                    |  |  |
|--------------------------|-----------------------------------------|------------------------------------|------------------------------------|--|--|
| of concentration $(x)$ – | $\lambda_{\text{exc}} = \text{CT Band}$ | $\lambda_{\rm exc} = 394 \ \rm nm$ | $\lambda_{\rm exc} = 465 \ \rm nm$ |  |  |
| 0.3                      | 0.489                                   | 0.474                              | 0.472                              |  |  |
| 0.6                      | 0.487                                   | 0.473                              | 0.469                              |  |  |
| 0.9                      | 0.485                                   | 0.472                              | 0.468                              |  |  |
| 1.2                      | 0.483                                   | 0.472                              | 0.466                              |  |  |
| 1.5                      | 0.481                                   | 0.470                              | 0.466                              |  |  |
| 1.8                      | 0.474                                   | 0.465                              | 0.458                              |  |  |
| 2.1                      | 0.463                                   | 0.460                              | 0.452                              |  |  |
| 2.4                      | 0.462                                   | 0.457                              | 0.442                              |  |  |
| 2.7                      | 0.450                                   | 0.435                              | 0.438                              |  |  |
| 3                        | 0.412                                   | 0.419                              | 0.420                              |  |  |

Table ST3 lifetime of  $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$  in different excitation CT band, 394 and 465 nm



Fig. S10. Color purity percentage of the Li<sub>3</sub>BaSrLa<sub>3-x</sub>Eu<sub>x</sub>(MoO<sub>4</sub>)<sub>8</sub> phosphors



Fig. S11. Color purity percentage of the  $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$  phosphors

| Table ST4 CIE chromaticity coordinates for $Li_3BaSrLa_{3-x}Eu_x(MoO_4)_8$ where $x = 0.3 - 3$ phosphore |
|----------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------|

| Concentration | CIE chromaticity coordinates  |        |                          |        |                                      |        |  |
|---------------|-------------------------------|--------|--------------------------|--------|--------------------------------------|--------|--|
| in x          | $\lambda_{\rm exc} = CT Band$ |        | $\lambda_{\rm exc} = 39$ | 94 nm  | $\lambda_{\rm exc} = 465 \text{ nm}$ |        |  |
|               | Х                             | у      | Х                        | у      | Х                                    | у      |  |
| 0.3           | 0.6422                        | 0.3682 | 0.6415                   | 0.3579 | 0.6415                               | 0.3579 |  |
| 0.6           | 0.6307                        | 0.3588 | 0.6426                   | 0.3568 | 0.6439                               | 0.3555 |  |
| 0.9           | 0.6403                        | 0.3542 | 0.6458                   | 0.3486 | 0.6495                               | 0.3499 |  |
| 1.2           | 0.6451                        | 0.3507 | 0.6504                   | 0.3492 | 0.6425                               | 0.3471 |  |
| 1.5           | 0.6486                        | 0.3489 | 0.6479                   | 0.3517 | 0.6530                               | 0.3468 |  |
| 1.8           | 0.6505                        | 0.3486 | 0.6504                   | 0.3493 | 0.6544                               | 0.3452 |  |
| 2.1           | 0.6508                        | 0.3466 | 0.6477                   | 0.3519 | 0.6529                               | 0.3467 |  |
| 2.4           | 0.6528                        | 0.3482 | 0.6551                   | 0.3445 | 0.6568                               | 0.3428 |  |
| 2.7           | 0.6512                        | 0.3481 | 0.6445                   | 0.3550 | 0.6504                               | 0.3493 |  |
| 3             | 0.6513                        | 0.3494 | 0.6492                   | 0.3504 | 0.6534                               | 0.3462 |  |



Fig. S12. The absolute quantum yield measurement (screen shot) for the Li<sub>3</sub>BaSrLa<sub>0.3</sub>Eu<sub>2.7</sub>

## (MoO<sub>4</sub>)<sub>8</sub> phosphor

## Experimental section of yellow organic dye:

Aldehyde (1.831 mmol, 1 eq.) and NaOH (1.831 mmol, 1 eq.) were added into a mixture of 30 mL of water and 25 mL of ethanol, then 1-phenylethanone (3.663 mmol, 2 eq.) was added. The mixture was heated and stirred at 90 °C for 4 h. After cooling, the mixture was filtered and washed with plenty of water and then dried at RT to produce a yellow powder with a yield of 80% and the synthetic scheme for the preparation of the yellow dye is shown below.



Scheme S1. Synthesis of TPA substituted yellow organic dye.



Fig. S13 EL spectrum of white LED by using blue LED with yellow organic dye.