Supporting Information

Nanocavity-enriched Co₃O₄@ZnCo₂O₄@NC porous nanowires derived from 1D metal coordination polymers for super Li⁺ storage

Haibin Wang^a, Yongjun Zheng^a, Zilin Peng^b, Xinlong Liu^b, Chen Qu^a, Zhiyin Huang^b, Zelin Cai^b, Haosen

Fanb* and Yufei Zhangc*

^aCollege of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan,

China

^bSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China ^cSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou

510006, China

E-mail: hsfan@gzhu.edu.cn; yfzhang@gdut.edu.cn

Fig. S1 (a and b) SEM images of ZnCo₂O₄.

Fig. S2 C 1s the ZnCo₂O₄@NC nanowire.

Fig. S3 (a) CV curves of $ZnCo_2O_4$ nanowires at the scan rate of 0.1 mV s⁻¹. (b) Charge/discharge curves of $ZnCo_2O_4$ nanowires at the current density of 0.1 A g⁻¹. (c)Charge/Discharge profile of $ZnCo_2O_4$ at various current densities. (d) Charge/Discharge profile of $ZnCo_2O_4/NC$ at various current densities.

Figure. S4 the rate performance of Co₃O₄@NCand ZnO@NC electrode.