Supporting Information

for

Hepta-coordinated Ni(II) assemblies - structure and magnetic studies

Mateusz Reczyński^a, Mitsuru Akaki^b, Takamitsu Fukuda^c, Yuya Sawada^b, Kengo Nishii^b, Masayuki Hagiwara^{b*}, Wojciech Nitek^a, Barbara Sieklucka^a, Beata Nowicka^{a,*}

Figure S1	PXRD pattern for 1 compared with the pattern simulated form SC data	S 2
Figure S2	IR spectra for compounds 1-3	S 2
Figure S3	PXRD pattern for 2 compared with the pattern simulated form SC data	S 3
Figure S4	PXRD patterns for 3 and 3s compared with the pattern for 3 simulated from SC data	S 3
Figure S5	Thermogravimetric analysis for 1-3	S 3
Figure S6	The asymmetric unit of 1	S 4
Figure S7	The π - π stacking in the structure 1	S 4
Figure S8	Hydrogen bonds in the structure of 1	S 5
Table S1	Hydrogen-bond geometry in 1	S 5
Figure S9	The asymmetric unit of 2	S 6
Figure S10	Hydrogen bonds in the structure of 2	S 6
Table S2	Hydrogen-bond geometry in 2	S 6
Figure S11	The asymmetric unit of 3	S 7
Figure S12	Hydrogen bonds in the structure of 3	S 7
Table S3	Hydrogen-bond geometry in 3	S 8
Figure S13	Channels filled with disordered crystallisation water in the structure of 3	S 9
Figure S14	Close contacts between terminal CN ligands and pyridine rings of dapsc ligands in the structure of 3	S9
Figure S15	$\chi T(T)$ plots in logarithmic scale for compounds 1-3	S 9
Figure S16	Concomitant fit of the $\chi T(T)$, $M(H)$ and $M(HT^{-1})$ curves for 1 and 2	S10
Figure S17	AC magnetic susceptibility in DC field 0 and 1 kOe for 1, 2 and 3	S 11
Figure S18	EPR spectra simulation for 2	S11

Table S4	ZFC parameters for 1-3 and related heptacoordinated Ni(II) complexes	S12
Figure S19	Coordination geometry of 3^*	S13
Table S5	Spin Hamiltonian parameters obtained at the CASSCF and NEVPT2 level <i>ab initio</i> calculations	S13
Table S6	Wave functions for the ground and first excited states obtained at the QDPT with CASSCF level	S14
Table S7	Wave functions for the ground and first excited states obtained at the QDPT with NEVPT2 level	S14

Figure S1. The PXRD pattern for **1** compared with the pattern simulated form SC data. A strong texture is observed with preferred (010) orientation for **1**, which was also taken into account for the simulated pattern (March-Dollase parameter = 0.6). The measurement temperatures are denoted in superscript.

Figure S2. IR spectra for compounds 1-3.

Figure S3. The PXRD pattern for 2 compared with the pattern simulated form SC data.

Figure S4. The experimental PXRD patterns for 3 and 3s compared with the pattern for 3 simulated from SC data.

Figure S5. Thermogravimetric analysis for 1-3.

Figure S6. The asymmetric unit of 1; ellipsoids at 50% probability.

Figure S7. The π - π stacking in the structure of **1**.

Figure S8. Hydrogen bonds in the structure of 1: (a) direct interactions between the complexes (blue lines show the O-accepted H-bonds of the dapsc ligand); (b) H-bonds mediated by the NO_3^- anions; (c) H-bonds mediated by the Cl⁻ anions and water molecules.

D — \mathbf{H} ··· A	D —H / Å	H …A / Å	<i>D</i> …A / Å	<i>D</i> —H···· <i>A</i> / °				
N3—H3…O6 ⁱⁱ	0.81(2)	2.13(2)	2.9330(15)	174.5(18)				
O3—H3A…O1 ^v	0.79(2)	2.05(2)	2.8192(13)	164(2)				
O3—H3 <i>B</i> ⋯Cl1	0.82(2)	2.29(2)	3.1034(10)	170(2)				
N4— $H4$ ···O5 ^{vi}	0.815(19)	2.038(19)	2.8006(16)	155.6(17)				
O4—H4A…O8	0.82(2)	1.99(2)	2.7995(14)	173(2)				
O4—H4 B ···O2 ^{vii}	0.81(2)	1.97(2)	2.7761(14)	169(2)				
N5—H5A⋯O7 ⁱⁱ	0.83(2)	2.18(2)	3.0038(16)	175.2(18)				
N5—H5 B ····Cl1 ^v	0.87(2)	2.40(2)	3.2519(12)	169.7(17)				
N6—H6A····O6 ^{vii}	0.84(2)	2.521(19)	3.1025(16)	127.2(15)				
N6—H6A····O8 ^{vii}	0.84(2)	2.30(2)	3.1358(16)	174.8(17)				
N6—H6 <i>B</i> ⋯O5 ^{vi}	0.83(2)	2.30(2)	3.0109(16)	144.3(18)				
O5—H1WA…Cl1	0.86(2)	2.27(2)	3.1132(11)	168(2)				
O5—H1 WB ···Cl1 ^{viii} 0.80(3) 2.37(3) 3.1514(12) 167(2)								
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$; (ii) $-x+1$, $-y+2$, $-z+1$; (iii) $-x$, $-y+1$, $-z$; (iv) $x-1$, y , z ; (v)								
-x+1, -y+1, -z+1; (vi	-x+1, -y+1, -z+1; (vi) $-x, -y, -z;$ (vii) $-x, -y+1, -z+1;$ (viii) $-x+1, -y, -z.$							

Table S1. Hydrogen-bond geometry in 1

Figure S9. The asymmetric unit of 2; ellipsoids at 50% probability.

Figure S10. Hydrogen bonds in the structure of 2.

D — \mathbf{H} ···A	D —H / Å	H ··· A / Å	<i>D</i> …A / Å	D—H···A / °			
N4— $H4$ ···S01 ⁱⁱ	0.87	2.5	3.343(3)	164			
N3—H3···S02 ⁱⁱⁱ	0.87	2.53	3.370(3)	163			
N6—H6A…N02 ^{iv}	0.87	2.65	3.483(5)	160			
N6—H6 <i>B</i> ····S01 ⁱⁱ	0.87	2.85	3.629(4)	150			
N5—H5 A ···O1 ^v	0.87	2.13	2.966(4)	159			
N5—H5A⋯O2 ^v	0.87	2.52	3.013(4)	116			
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$; (ii) $x+1$, y , z ; (iii) $x-1$, y , z ; (iv) $-x+2$, $-y+1$, $-z+2$; (v) $-x+1$,							

Table S2. Hydrogen-bond geometry in 2

Figure S11. The asymmetric unit of **3**; H atoms and disordered water molecules omitted for clarity; ellipsoids at 50% probability.

Figure S12. Direct hydrogen bonds linking trinuclear molecules in the (0 2 2) planes in the structure of **3**.

D — \mathbf{H} ···· A	D —H / Å	H …A / Å	<i>D</i> … <i>A</i> / Å	<i>D</i> —H…A / °
N15—H15A…O7W	0.66	2.52	3.110 (8)	149
N15—H15 <i>B</i> …N7 ⁱⁱⁱ	0.86	2.39	3.154 (8)	149
N16—H16 A ···O1 W^{i}	0.73	2.31	3.004 (6)	159
N16—H16 <i>B</i> ····N5 ⁱ	0.87	2.11	2.921 (6)	155
N25—H25 A ···N6 ^{iv}	0.77	2.49	3.162 (7)	146
N25—H25 <i>B</i> ⋯O1 <i>W</i> ^v	0.93	2.43	3.329 (6)	163
N25—H25 B ····O2 W ^v	0.93	2.59	3.271 (6)	131
N26—H26A····O6W	0.86	2.40	3.200 (13)	156
O13—H13A⋯O5W ^{vi}	0.75	1.99	2.735 (6)	178
O13—H13 <i>B</i> ⋯O9 <i>W</i> ^{vi}	0.74	1.93	2.672 (5)	173
O23—H23A…N22	0.85	2.64	3.049 (6)	111
O23—H23A····O1 W^{vii}	0.85	1.88	2.667 (5)	152
O23—H23 <i>B</i> ⋯O21 ^{viii}	0.73	2.08	2.770 (5)	157
O1 <i>W</i> —H1 <i>W</i> A⋯O4 <i>W</i>	0.85	1.93	2.761 (6)	167
O1 <i>W</i> —H1 <i>WB</i> ⋯O2 <i>W</i>	0.86	1.95	2.718 (6)	149
O2W— $H2WA$ ···O11 ⁱ	0.78	2.06	2.802 (5)	159
$O2W$ — $H2WA$ ···O 12^{i}	0.78	2.49	3.002 (5)	125
$O2W$ — $H2WB$ ···· $N7^{ix}$	0.87	1.97	2.836 (7)	173
N13—H13…O7W	0.69 (7)	2.14 (8)	2.792 (7)	161 (8)
$N14 - H14 \cdots N5^i$	0.92 (6)	2.22 (6)	3.025 (6)	145 (5)
$N23 - H23 \cdots N6^{iv}$	0.85 (7)	2.04 (7)	2.845 (7)	159 (6)
$N24$ — $H24$ ··· $N7^{ii}$	0.81 (11)	2.63 (11)	3.318 (10)	144 (10)
N24—H24…O11 <i>W</i> ⁱⁱ	0.81 (11)	2.41 (11)	3.106 (10)	145 (10)
Symmetry codes: (i) $-x$, $-$	-y+1, -z; (ii) $-x, -y$, -z+1; (iii) -x, -y	y, -z; (iv) $x-1, y, z;$	(v) $x = 1, y = 1, z;$
(vi) -x+1, -y+1, -z; (vii)	-x, -y+1, -z+1; (vi	ii) $-x-1, -y, -z+1$; (ix) <i>x</i> , <i>y</i> +1, <i>z</i> .	

 Table S3. Hydrogen-bond geometry in 3

Figure S13. Channels filled with disordered crystallisation water in the structure of 3.

Figure S14. Close contacts between terminal CN ligands and pyridine rings of dapsc ligands in the structure of **3**.

Figure S15. $\chi T(T)$ plots in logarithmic scale for compounds 1-3.

Figure S16. Concomitant fit of the $\chi T(T)$ (top), M(H) (centre) and $M(HT^{-1})$ (bottom) curves for **1** (left) and **2** (right).

Figure S17. AC magnetic susceptibility in DC field 0 (top) and 1 kOe (bottom) for 1 (left), 2 (centre) and 3 (right); χ' - filled circles, χ'' - empty circles.

Figure S18. Simulation patterns of the EPR spectra at 4.2 K for the frequencies of 1622.56 GHz (left) and 729.93 GHz (right) corresponding to the spectra of **2**. The absorption width of 500 mT is used in each simulation. The upper and lower simulation patterns represent those for powder and single crystal with the deviation angle of the external magnetic field from the *z*-axis, θ =5°. The lowest line is the experimentally observed EPR spectra.

Reference	Compound	D / cm^{-1}	/E/D/	8
this work	[Ni(dapsc)(H ₂ O) ₂]Cl(NO ₃)·H ₂ O (1)	-11.5	0.14	2.275
		-10.5	0.27	
	$[Ni(dapsc)(NCS)_2]$ (2)	-15.5	0.05	2.193
		-21.2	0.10	2.14
	$[Ni(dapsc)(H_2O)]_2[W^{IV}(CN)_8] \cdot 11H_2O(3)$	-15.4	0.09	2.290
		-15.0	0.13	2.29
19	$[Ni(dapsc)(H_2O)_2](NO_3)_2 \cdot H_2O$	-12.5	0.14	2.26
		-15.6	0.12	2.23
44	[Ni(dapsc)(NCS) ₂]·2H ₂ O	-11.5	0.14	
44	[Ni(dapsc)(imidazole) ₂](NO ₃) ₂ ·H ₂ O	-28.2	0.06	
20	$[Ni(L^1)(H_2O)_2](NO_3)_2 \cdot H_2O$	-13.9^{*}	0.11	2.26
44	$[Ni(L^1)(NCS)_2]\cdot 3H_2O$	-12.4	0.12	
19	$\{[Ni(L^1)][Ni(CN)_4]\}_{\infty}$	-17.7	0.06	2.18
40	${[Ni(L^1)]_3[W^V(CN)_8](H_2O)_2} \cdot 2MeCN \cdot 12H_2O$	-15		2.16
40	$[Ni(L^2)(MeOH)(NO_3)](NO_3)$	-12.5	0.09	2.22
40	${[Ni(L^2)]_3[W^V(CN)_8](H_2O)_2} \cdot 2MeCN \cdot 9H_2O$	-5.0		2.17
41	$[Ni(L^3)](ClO_4)_2 \cdot 1.5CH_3NO_2$	-17.2	0.076	2.165
42	$[Ni(L^4)]$ ·H2O	-8.5	0.19	2.20
43	$[Ni(L^5)](ClO_4)_2$	-12.8	0.136	2.181

Table S4. ZFC parameters for 1, 2 and 3 in comparison with literature data for related heptacoordinate Ni(II) complexes. Values obtained from magnetometric studies (M(H) fit or concomitant M(H) and $\chi T(T)$ fit) and/or HF-EPR (marked in blue bold print)

 L^1 and L^2 are dapsc derivatives with -NH₂ groups substituted by phenyl (L^1) or 4-biphenyl (L^2)

 $\label{eq:L3} L^3 = 3,12 \text{-bis}((1H\text{-benzimidazol-}2\text{-yl})\text{methyl})\text{-}6,9\text{-}dioxa\text{-}3,12,18\text{-}triazabicyclo[12.3.1]octadeca-1(18),14,16\text{-}triene)$

 $L^4 = 3,12,18$ -triaza-6,9-dioxabicyclo[12.3.1]octadeca-1,14,16-triene-3,12-diacetic acid

 $L^5 = 3,12 \text{-bis}(2\text{-methylpyridine}) - 3,12,18 \text{-triaza} - 6,9 \text{-dioxabicyclo}[12.3.1] \text{octadeca} - 1,14,16 \text{-triene}$

* - values found consistent with HF-EPR results

Figure S19. Coordination geometry used for the calculations of 3^* .

Table	S5.	Spin	Hamiltonian	parameters	at	the	CASSCF	and	NEVPT2	level	ab	initio
calcula	tions	5										

comp-		QDPT wi	th CASSCF	QDPT with	NEVPT2
ound		2 nd order SOC	Effective	2 nd order SOC	Effective
		contribution	Hamiltonian	contribution	Hamiltonian
	$D /{ m cm}^{-1}$	-21.6	-19.4	-19.5	-17.8
	E/D	0.21	0.20	0.21	0.20
1	g_x ,	2.	.277	2.2	57
1	<i>8</i> y	2.	.327	2.3	01
	gz	2.	.419	2.385	
	$g_{ m iso}$	2.	.341	2.315	

	D / cm^{-1}	-41.5	-35.4	-37.9	-32.8	
2	E/D	0.04	0.03	0.04	0.03	
	g_x ,	2	.279	2.261		
	gу	2	.296	2.276		
	gz	2	.514	2.477		
	giso	2	.363	2.338		

	D / cm^{-1}	-25.0	-21.7	-22.4	-19.8	
3*	E/D	0.09	0.09	0.09	0.08	
	g_x ,	2	.273	2.254		
	<i>g</i> y	2	.297	2.275		
	gz	2	.424	2.391		
	$g_{\rm iso}$	2	.331	2.3	06	

compound	state #	energy / cm ⁻¹	weight	spin	M_S
	0	0.00	0.49	1	+1
			0.49	1	-1
1	1	7.88	0.49	1	+1
			0.49	1	-1
	2	23.35	0.99	1	0
	0	0.00	0.49	1	+1
			0.49	1	-1
2	1	2.39	0.49	1	+1
			0.49	1	-1
	2	36.60	0.99	1	0
	0	0.00	0.49	1	+1
			0.49	1	-1
3*	1	3.75	0.49	1	+1

Table S6. Wave functions for the ground and first excited states obtained at the QDPT with CASSCF level

Table S7. Wave functions for the ground and first excited states obtained at the QDPT with NEVPT2 level

0.49

0.99

1

1

-1

0

compound	state #	energy / cm ⁻¹	weight	spin	Ms
	0	0.00	0.49	1	+1
			0.49	1	-1
1	1	7.14	0.49	1	+1
			0.49	1	-1
	2	21.33	0.99	1	0

23.60

2

2	0	0.00	0.49	1	+1
			0.49	1	-1
	1	2.15	0.49	1	+1
			0.49	1	-1
	2	33.90	0.99	1	0

3*	0	0.00	0.49	1	+1
			0.49	1	-1
	1	3.28	0.49	1	+1
			0.49	1	-1
	2	21.42	0.99	1	0