Supporting Information

Luminescent Cyclometalated Platinum(II) Complexes with Acyclic Diaminocarbene Ligands: Structural, Photophysical and Biological Properties

Mónica Martínez-Junquera,^a Elena Lalinde,^a M. Teresa Moreno^{*,a} Elvira Alfaro-Arnedo,^b Icíar P. López, ^b Ignacio M. Larráyoz^c and José G. Pichel^{*,b,d}

^{*a*} Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain. E-mail: <u>teresa.moreno@unirioja.es</u>

^b Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain. E-mail: jgpichel@riojasalud.es

^c Biomarkers and Molecular Signaling Unit (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain.

^{*d*} Biomedical Research Networking Center in Respiratory Diseases (CIBERES), ISCIII, Spain.

Contents:

Page

1 Characterization of Complexes	S2
1.1 Mass Spectra	S2
1.2 NMR Spectra	S3
1.3 Crystal Structures	S9
2 Photophysical Properties and Theoretical Calculations	S13
3 Biological Studies	S25

1.- Characterization of complexes

1.1- Mass spectra

Figure S1.- ESI⁺-MS spectra of **3a** (a) and **3b** (b).

1.2- NMR Spectra

Figure S2. NMR spectra of 3a in CDCl₃ at 298 K, (a) ¹H, (b) ¹³C{¹H} at 0.1 M.

Figure S3. a) Selected region of the ¹H NMR spectra of $[Pt(dfppy)Cl\{C(NHXyl)(NHCH_2Ph)\}]$ (**3b**) in CDCl₃ at 298 K with increasing complex concentration (*For a better visualization, the intensity of the 2.4 ppm section in relation to the rest of the spectrum is not real). b) ¹³C{¹H} NMR spectra of **3b** in CDCl₃ at 298 K.

Figure S4. NMR spectra of 4a in CDCl₃ at 298 K, (a) ¹H at two different concentrations, (b) ${}^{13}C{}^{1}H$.

Figure S5. NMR spectra of 4b in CDCl₃ at 298 K, (a) ¹H at two different concentrations, (b) ${}^{13}C{}^{1}H$.

Figure S6. (a) Section of ¹H PGSE-NMR spectra for **3a** in CDCl₃ 0.1 M at 298 K. The resonance intensity of the H² signal decrease upon increasing the pulsed-field gradient (g). (b) ¹H DOSY NMR spectrum for **3a** in CDCl₃ 0.1 M.

Figure S7. (a) Section of ¹H PGSE-NMR spectra for **3a** in CDCl₃ 3 x 10⁻³ M at 298 K. The resonance intensity of the H² signal decrease upon increasing the pulsed-field gradient (g). (b) ¹H DOSY NMR spectrum for **3a** in CDCl₃ 3 x 10⁻³ M.

1.3 Crystal Structures

Figure S8. Crystal packing of complex **3a** showing head-to-head pairs of molecules (**A** and **B**) stacking in a columnar way with a sequence **AABBAA**..., viewed along the *c*-axis. The organization of **AA** molecules is supported by weak $\pi \cdots \pi$ interactions (3.407 Å), between **AB** molecules there are $\pi \cdots \pi$ interactions (3.45 – 3.42 Å) and secondary weak NH_(Xyl)…Cl (2.47, 2.36 Å), NH_(Pr)…F (2.77 Å) and CH_{3(Xyl)}…Cl (3.00 – 2.96 Å) contacts and between **BB** molecules there are NH_(Pr)… $\pi_{(dfppy)}$ interactions (2.98–2.91 Å).

Figure S9. Crystal packing of **3b**·C₃H₆O showing head-to-tail pairs of molecules supported by intermolecular $\pi \cdots \pi$ interactions (3.42-3.33 Å) and by secondary weak NH_(Xyl)···Cl (2.427 Å) (purples lines) contacts, that connect with other dimers through weak Cl···H_(dfppy) (2.921 Å). The crystal packing shows additional H(C₃H₆O)···F (2.567 Å), H(C₃H₆O)···C_(dfppy) (2.77-2.41 Å) and O(C₃H₆O)···NH_(Benzyl) (2.206 Å) intermolecular contacts.

Figure S10. 2D fingerprint plots resolved into the H····Cl contacts: d_{norm} = normalized interaction distance, d_e = distance from the surface to the nearest nucleus external to the surface, d_i = distance from the surface to the nearest nucleus internal to the surface.

	3a	3b ·C ₃ H ₆ O
Empirical formula	C23 H24 Cl F2 N3 Pt	C ₃₀ H ₃₀ Cl F ₂ N ₃ O Pt
$\mathbf{F}_{\mathbf{w}}$	610.99	717.11
T (K)	145(2)	100(2)
Wavelength (Å)	0.71076	0.71076
Crystal system	Triclinic	Monoclinic
Space group	P -1	P 21/c
Crystal size (mm ³)	0.20 x 0.14 x 0.12	0.28 x 0.21 x 0.18
a (Å)	12.0987(16)	14.062(3)
b (Å)	12.5647(17)	10.476(2)
c (Å)	16.133(2)	19.364(4)
α (°)	103.864(4)	90
β (°)	97.365(4)	104.750(7)
γ (°)	108.330(4)	90
V (Å ³)	2204.4(5)	2758.7(10)
Ζ	4	4
D _{calcd} (Mg/m3)	1.841	1.727
Absorption coefficient (mm ⁻¹)	6.518	5.225
F(000)	1184	1408
θ range for data collection (deg)	2.877 to 26.732°	2.939 to 27.903°
	-15<=h<=15,	-18<=h<=18,
Index ranges	-15<=k<=15,	-13<=k<=13,
	-20<=l<=20	-25<=l<=25
Reflections collected	124249	138786
Independent reflections	9358 [R(int) = 0.0415]	6580 [R(int) = 0.0204]
Data / restraints/	9358 / 0 / 581	6580 / 0 / 351
parameters Coodness-of-fit on F ^{2 a}	1 077	1 063
Final D indox	$R_1 = 0.0156$	$R_1 = 0.0137$
$[I > 2\pi (I)]^{a}$	$WR_2 = 0.0336$	$R_1 = 0.0137$ $WR_2 = 0.0350$
[1 > 20(1)] R indexes (all data) ^a	$R_1 = 0.0193 \text{ w}R_2 = 0.0245$	$R_1 = 0.0138 \text{ wR}_2 = 0.0360$
Largest diff neak and	$\mathbf{x}_1 = 0.0175, \mathbf{w}\mathbf{x}_2 = 0.0343$	$\mathbf{x}_1 = 0.0150, \ \mathbf{w}_1\mathbf{x}_2 = 0.0500$
hole (e. Å ⁻³)	0.785 and -1.063	0.653 and -0.931

Table S1. X-ray Crystallographic Data for 3a and $3b \cdot C_3H_6O$.

^a $R_1 = \sum (|F_o| - |F_c|) / \sum |F_o|; wR_2 = [\sum w(F_o{}^2 - F_c{}^2)^2 / \sum wF_o{}^2]^{1/2}; \text{ goodness of fit} = \{\sum [w(F_o{}^2 - F_c{}^2)^2 / (N_{obs} - N_{param})\}^{1/2}; w=[\sigma^2(F_o) + (g_1P)^2 + g_2P]^{-1}; P = [max(F_o{}^2; 0 + 2F_c{}^2)/3]$

3a (molecule A)						
Distanc	es (Å)	Angles (°)				
Cl(1)-Pt(1)	2.3939(6)	N(1)-Pt(1)-Cl(1)	94.48(6)			
N(1)-Pt(1)	2.0786(19)	C(11)-Pt(1)-N(1)	81.03(9)			
C(11)-Pt(1)	1.983(2)	C(12)-Pt(1)-C(11)	95.70(9)			
C(12)-Pt(1)	1.983(2)	C(12)-Pt(1)-Cl(1)	88.86(6)			
C(5)-C(6)	1.470(4)	N(3)-C(12)-N(2)	116.3(2)			
C(12)-N(2)	1.338(3)					
C(12)-N(3)	1.333(3)					
	3a (me	olecule B)				
Distanc	es (Å)	Angles	(°)			
Cl(2)-Pt(2)	2.3896(6)	N(4)-Pt(2)-Cl(2)	95.97(6)			
N(4)-Pt(2)	2.072(2)	C(34)-Pt(2)-N(4)	80.72(9)			
C(34)-Pt(2)	1.979(2)	C(35)-Pt(2)-C(34)	94.95(10)			
C(35)-Pt(2)	1.977(2)	C(35)-Pt(2)-Cl(2)	88.30(7)			
C(28)-C(29)	1.473(3)	N(6)-C(35)-N(5)	115.9(2)			
C(35)-N(5)	1.337(3)					
C(35)-N(6)	1.332(3)					
	3b [.]	C ₃ H ₆ O				
Distanc	es (Å)	Angles (°)				
Cl(1)-Pt(1)	2.3781(5)	N(1)-Pt(1)-Cl(1)	94.90(5)			
N(1)-Pt(1)	2.0733(16)	C(11)-Pt(1)-N(1)	80.82(7)			
C(11)-Pt(1)	1.9819(18)	C(12)-Pt(1)-C(11)	95.24(7)			
C(12)-Pt(1)	1.9816(18)	C(12)-Pt(1)-Cl(1)	88.99(5)			
$C(5)-C(\overline{6})$	1.471(3)	N(3)-C(12)-N(2)	116.72(16)			
C(12)-N(2)	1.338(2)					
C(12)-N(3)	1.331(2)					

Table S2. Selected distances (Å) and angles (°) for 3a and $3b \cdot C_3H_6O$

2.- Photophysical Properties and Theoretical Calculations

Table S3. A	bsorption c	lata for compounds 3a , 3b , 4a and 4b (5×10^{-5} M Solutions)
Compound	Media	$\lambda_{abs}/nm (\epsilon \ x \ 10^{-3} \ M^{-1} \ cm^{-1})$
	CH ₂ Cl ₂	249 (41.8), 307 (9.4), 320 (10.8), 335 (5.1), 365 _{sh} (3.8), 385
	0112012	(3.3)
3 a	THF	258 (59.1), 263 _h (58.4), 308 _{sh} (15.7), 320 (14.8), 342 (6.4),
		398 (2.5)
	DMSO	$262 (30.8), 267 (27.2), 272_{h} (23.5), 308_{sh} (9.0), 320 (8.5),$
		342 (4.8), 392 (2.9)
	CH ₂ Cl ₂	$248 (31.1), 30/(7.4), 320 (8.6), 335_{sh} (4.2), 366 (3.1), 385$
		(2.8)
3 b	THF	252 (37.0), 306sh (8.9), 320 (8.7), 341 (4.9), 397 (2.8)
	DMSO	262 (27.4), 267 (24.3), 272h (20.4), 307sh (8.3), 320 (8.2),
		341 (4.6), 390 (2.7)
	CIT CI	263 (59.6), 284 _{sh} (40.7), 305 _{sh} (18.2), 335 (15.0), 350
	CH ₂ Cl ₂	(17.2), 431 (6.3)
4 -	THF	260 (71.7), 287 _{sh} (38.4), 311 _{sh} (19.2), 335 _{sh} (13.0), 351
4a		(13.8), 444 (4.4)
	DMSO	265 (37.9), 286 _{sh} (31.6), 313 _{sh} (14.0), 336 (12.7), 351
		(14.2), 437 (4.9)
	CULCI	264 (42.7), 284 _{sh} (33.4), 306 _{sh} (15.8), 335 (11.7), 349
	CH2Cl2	(13.1), 429 (4.5)
4	THE	264 (55.8), 286 _{sh} (39.4), 311 (18.1), 336 (13.3), 351 (14.7),
40	ІПГ	442 (4.6)
	DMSO	266 (48.4), 286 _{sh} (35.1), 315 _{sh} (15.6), 337 (12.8), 350
	DM20	(13.6), 437 (4.3)

b) Figure S11. Normalized absorption spectra of complexes 3a, 3b, 4a and 4b in a) CH_2Cl_2 , b) DMSO (5 × 10⁻⁵ M).

	3 a		
	X-ray (Molecule A)	S_0	T_1
Cl(1)-Pt(1)	2.3939(6)	2.503	2.498
N(1)-Pt(1)	2.0786(19)	2.124	2.093
C(11)-Pt(1)	1.983(2)	2.004	1.975
C(12)-Pt(1)	1.983(2)	2.006	2.020
C(5)-C(6)	1.470(4)	1.468	1.397
C(12)-N(2)	1.338(3)	1.353	1.351
C(12)-N(3)	1.333(3)	1.333	1.332
N(1)-Pt(1)-Cl(1)	94.48(6)	94.53	93.93
C(11)-Pt(1)-N(1)	81.03(9)	80.16	81.49
C(12)-Pt(1)-C(11)	95.70(9)	96.64	96.37
C(12)-Pt(1)-Cl(1)	88.86(6)	88.65	88.19
N(3)-C(12)-N(2)	116.3(2)	116.61	116.61

Table S4. DFT optimized geometries for ground state and tripletstate of **3a** and **4b** in THF.

4b

	X-ray	S_0	T_1
Pt(63)-Cl(64)	-	2.562	2.541
Pt(63)-N(42)	-	2.209	2.101
Pt(63)-C(60)	-	1.998	1.986
Pt(63)-C(10)	-	1.996	2.019
C(5)-C(59)	-	1.467	1.420
C(10)- N(43)	-	1.354	1.352
C(10)- N(44)	-	1.332	1.331
Cl(64)-Pt(63)-N(42)	-	103.01	98.81
N(42)-Pt(63)-C(60)	-	79.42	80.92
C(60)-Pt(63)-C(10)	-	95.63	96.33
C(10)-Pt(63)-Cl(64)	-	81.93	84.21
N(43)-C(10)-N(44)	-	116.69	116.81

Figure S12. Selected frontier Molecular Orbitals for 3a in the ground state.

Figure S13. Selected frontier Molecular Orbitals for 4b in the ground state.

ind metals in the ground state for ea and ib in fin.							
			3 a				
MO	eV	Pt	dfppy	CNXyl	Propyl	Cl	
LUMO+5	-0.12	36	24	30	5	6	
LUMO+4	-0.20	6	28	65	1	0	
LUMO+3	-0.22	9	50	40	1	0	
LUMO+2	-0.54	5	4	87	3	1	
LUMO+1	-0.92	1	99	0	0	0	
LUMO	-1.68	6	92	1	0	0	
HOMO	-5.83	40	45	0	0	15	
HOMO-1	-6.20	90	4	3	2	0	
HOMO-2	-6.39	7	88	0	0	5	
HOMO-3	-6.60	25	4	10	2	59	
HOMO-4	-6.72	3	1	92	0	5	
HOMO-5	-6.80	15	4	68	13	1	

Table S5. Composition (%) of Frontier MOs in terms of ligands and metals in the ground state for **3a** and **4b** in THF.

4b MO eV Pt CNXyl Benzyl Cl pq LUMO+5 -0.17 -0.24 LUMO+4 LUMO+3 -0.40 -0.54 LUMO+2 LUMO+1 -1.00 -2.02 LUMO HOMO -5.67 HOMO-1 -6.07 HOMO-2 -6.22 HOMO-3 -6.45 HOMO-4 -6.56 HOMO-5 -6.69

Table S6. Selected vertical excitation energies singlets (S_0) and the first triplet computed by TDDFT/SCRF (THF) with the orbitals involved for **3a** and **4b**.

[G4 4	2 /	6					
	State	λ/nm	İ	I ransition (% Contribution)				
3 a	T1	435.49	-	H-2→LUMO (22%), HOMO→LUMO (65%)				
	T ₂	365.35	-	H-2->LUMO (50%), HOMO->LUMO (29%), H-2->L+1 (7%)				
	T3	354.46	-	H-1→LUMO (96%)				
	S_1	365.52	0.050	HOMO→LUMO (97%)				
	S_2	339.96	0.0082	H-1→LUMO (99%)				
	S ₃	302.13	0.0907	H-2→LUMO (73%), HOMO→L+1 (18%)				
	S 4	298.00	0.0001	H-3→LUMO (91%)				
	S 5	294.74	0.0223	H-6→LUMO (19%), H-2→LUMO (11%), HOMO→L+1 (62%)				
	S 6	282.03	0.2082	H-6→LUMO (48%), H-5→LUMO (13%), HOMO→L+1 (16%)				
	S ₇	281.23	0.0118	HOMO→L+2 (30%), HOMO→L+5 (55%)				
	S ₈	274.70	0.0024	H-1→L+1 (93%)				
	S 9	273.39	0.0216	H-1→L+1 (23%), H-1→L+5 (59%)				
	S10	266.24	0.0019	$H-5 \rightarrow LUMO (36\%), H-4 \rightarrow LUMO (60\%)$				
	S11	264.89	0.0016	H-5→LUMO (42%), H-4→LUMO (44%)				
	S12	260.61	0.0290	H-7→LUMO (74%)				
	State	λ/nm	f	Transition (% Contribution)				
4b	T_1	506.14	-	H-2→LUMO (28%), HOMO→LUMO (55%)				
	T_2	442.36	-	H-2→LUMO (36%), HOMO→LUMO (34%)				
	T3	393.91	-	H-1→LUMO (83%)				
	S_1	418.75	0.0662	HOMO→LUMO (98%)				
	S ₂	382.12	0.0046	H-1→LUMO (95%)				
	S ₃	343.55	0.0575	H-2→LUMO (83%), H-3→LUMO (8%)				
	S4	325.70	0.1121	H-3→LUMO (77%), H-2→LUMO (8%)				
	S 5	321.05	0.0565	H-4→LUMO (76%), HOMO→L+1 (14%)				
	S ₆	303.70	0.2101	HOMO→L+1 (79%), H-4→LUMO (10%)				
	~	006.01	0.000 7	H-10→LUMO (17%), H-9→LUMO (21%), H-6→LUMO (29%),				
	S ₇	296.81	0.0087	H-5→LUMO (18%)				
	S ₈	290.25	0.0022	H-9→LUMO (36%), H-5→LUMO (49%)				
	S 9	288.14	0.0076	HOMO→L+2 (32%), HOMO→L+7 (41%)				
	S ₁₀	285.59	0.0012	H-6→LUMO (59%), H-5→LUMO (19%)				
	S 11	283.54	0.0037	H-10→LUMO (33%), H-7→LUMO (15%), H-1→L+1 (32%)				
	S12	283.34	0.0064	H-10→LUMO (11%), H-7→LUMO (13%), H-1→L+1 (47%)				

Figure S14. Calculated stick absorption spectra of **3a** and **4b** in THF compared with the experimental data.

Figure S15. Normalized emission spectra of all compounds in solid a) at 298 K, b) 77 K ($\lambda_{ex} =$ 385 nm for **3a** and **3b**, $\lambda_{ex} =$ 420 nm for **4a** and **4b**).

Figure S16. Normalized emission spectra of all complexes in THF at 77 K ($\lambda_{ex} = 400$ nm for **3a** and **3b**, $\lambda_{ex} = 440$ nm for **4a** and **4b**).

a)

Figure S17. Normalized emission spectra in DMSO (5 x 10⁻⁴ M) of a) 3a, b) 4a

Figure S18. Emission spectra of 3a in CH_2Cl_2 at different concentrations at a) 298 K and b) 77 K (λ_{ex} 400 nm).

Table S7. Composition	(%) of Frontier MOs in	terms of ligands and
metals in the first triplet	t state for 3a and 4b in T	ΉF.

			3a			
MO	eV	Pt	dfppy	CNXyl	Propyl	Cl
SOMO	-3.33	6	93	0	0	1
SOMO-1	-4.40	14	84	0	0	2

4b							
MO	eV	Pt	pq	CNXyl	Benzyl	Cl	
SOMO	-3.68	4	95	0	0	1	
SOMO-1	-4.34	14	84	0	0	1	

Figure S19. Frontier orbitals plots obtained by DFT for the first triplet state of 3a and 4b.

3.- Biological Studies

Figure S20. ¹H NMR spectra of **3a** in DMSO at 298 K at 1.6 $\times 10^{-2}$ M (t = 0), (t = 96 h), and at 1.6 $\times 10^{-4}$ M

Figure S21. UV-vis absorption spectra of **3-4** (5 x 10^{-5} M) recorded in DMSO (<1%)-cellular medium after been kept at room temperature since 0 h to 72 h (intervals in legends).

Figure S22. Emission spectra of all complexes in DMSO (dotted lines) and in 1:99 DMSO:celular medium used for MTT measurements (solid lines) (λ_{exc} 400 nm for **3** and 430 nm for **4**)

HeLa

Figure S23. Dose-response curves for determination of the IC_{50} cytotoxicity values of **3a**,**b** and **4a**,**b** in A549 and HeLa cell lines. The IC_{50} values correspond to the dose required to inhibit 50% cellular growth, determined from the dose-dependence of surviving cells after cellular exposure to compounds for 72 h.