# Supporting Information Boosting the lithium storage performance of $Na_2Li_2Ti_6O_{14}$ anode by g-C<sub>3</sub>N<sub>4</sub> modification

Ying Li<sup>*a,b*</sup>, Fanfan Wang<sup>*a,b*</sup>, Xue-Zhong Li<sup>*a,b*</sup>, Xuan Gui<sup>*c*</sup>,

Yan-Rong Zhu<sup>b</sup>, Ping Cui<sup>c,\*</sup>, Ting-Feng Yi<sup>a,b,c,d,\*</sup>

<sup>a</sup> School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China <sup>b</sup> School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

<sup>c</sup> School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China

<sup>d</sup> Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, China

## 1. Preparation of Na<sub>2</sub>Li<sub>2</sub>Ti<sub>6</sub>O<sub>14</sub> and g-C<sub>3</sub>N<sub>4</sub> coated Na<sub>2</sub>Li<sub>2</sub>Ti<sub>6</sub>O<sub>14</sub>

 $Na_2Li_2Ti_6O_{14}$  was synthesized by a solid-state reaction. Primarily, 0.4076 g  $Li_2CO_3$ , 2.5176 g TiO<sub>2</sub> and 0.8619 g CH<sub>3</sub>COONa were mixed. Then, the mixture was ground with ethanol in a planetary ball mill for 24 h and then dried at 70 °C for about 10 h. After that, the precursor was pre-treated at 400 °C for 4 h and then calcined at 800 °C for another 10 h in the air. After cooling down to room temperature naturally, the resulting product was ground in an agate mortar to form pristine  $Na_2Li_2Ti_6O_{14}$ .

The g-C<sub>3</sub>N<sub>4</sub> (2.5, 5 and 8 wt%) coated Na<sub>2</sub>Li<sub>2</sub>Ti<sub>6</sub>O<sub>14</sub> was also prepared by a facile solution method. The g-C<sub>3</sub>N<sub>4</sub> was obtained by loading 6 g of melamine into a porcelain

boat and heated at 550 °C for 3 h. After natural cooling to room temperature, the yellow solid products were collected and grounded into fine  $g-C_3N_4$  powder. A certain amount of Na<sub>2</sub>Li<sub>2</sub>Ti<sub>6</sub>O<sub>14</sub> and  $g-C_3N_4$  were mixed in absolute ethyl alcohol, and then ground 15 h. The obtained slurry was dried at 80 °C for 24 h in a vacuum oven, and then the  $g-C_3N_4$  (2.5, 5 and 8 wt%) coated Na<sub>2</sub>Li<sub>2</sub>Ti<sub>6</sub>O<sub>14</sub> powders were obtained.

#### 2. Material characterization

The crystalline structure of all samples was measured by X-ray diffraction (XRD). The morphology and lattice structure of the samples were tested by a JSM-7800F Prime field emission scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM, JEOL, JEM-2010). Fourier transform infrared (FT-IR) spectroscopy of the samples was performed using a Nicolet Nexus 360 FT-IR spectrophotometer with a resolution of 4 cm–1. X-ray photoelectron spectroscopy (XPS, Escalab 250Xi, Thermo Fisher Scientific) with a Al Ka radiation was employed to observe the chemical states of GNLTO-2. The energy-dispersive spectroscopic spectrum (EDS) element mapping was performed using a Bruker-QUANTAX instrument.

#### 3. Electrochemical characterization

The homogeneous slurry containing active material, acetylene black, polyvinylidene fluoride (PVDF) (80:10:10 in weight) and N-methyl-pyrrolidone (NMP) were painted on a copper foil and desiccated at 110 °C for 13 h under vacuum to form the working electrode. CR2025 coin-type cells were employed to investigate the electrochemical performance of all samples. The half-cell consists of working electrode and lithium foil,

which separated by a porous polypropylene film, and 1 mol L<sup>-1</sup> LiPF<sub>6</sub> in EC: DMC (1:1 in volume) as the electrolyte. The loading mass of active material is about 2.5 mg cm<sup>-2</sup>. The cyclic voltammetry (CV) test was performed on a CHI 1000C (Shanghai, China) electrochemical workstation at a scanning rate of 0.2 mV s<sup>-1</sup> between 0.01 and 3 V. Electrochemical impedance spectroscopy (EIS) studies were carried out on a Princeton P4000 (American) electrochemical workstation with a frequency of 100 kHz to 0.01 Hz. The galvanostatic charge-discharge performance were conducted between 0.01 and 3 V (*vs.* Li<sup>+</sup>/Li) on LANHE CT2001A (Wuhan, China).

### 4. Nomenclature for equations (1) and (2)

- *A* the surface area of the electrode
- *T* the absolute temperature
- *R* the gas constant
- *F* the Faraday constant
- *n* the number of electrons per molecule during oxidation
- $C_{\text{Li}}$  the concentration of lithium ion



Fig. S1 XRD refinement plots of pristine Na<sub>2</sub>Li<sub>2</sub>Ti<sub>6</sub>O<sub>14</sub> and Na<sub>2</sub>Li<sub>2</sub>Ti<sub>6</sub>O<sub>14</sub>@g-C<sub>3</sub>N<sub>4</sub> composite materials (a)NLTO, (b) GNLTO-1, (c) GNLTO-2 and (d) GNLTO-3



Fig. S2 (a) SEM, (b-f) EDS mapping images of GNLTO-2 composite material