Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

# Keggin-type polyoxometalate 1:1 complexes of Pb(II) and Bi(III): experimental, theoretical and luminescence studies

Anna A. Mukhacheva,<sup>a</sup> Tatiana Asanova,<sup>a</sup> Maxim R. Ryzhikov,<sup>a</sup> Taisiya S. Sukhikh,<sup>a</sup> Nikolay B. Kompankov,<sup>a</sup> Vadim V. Yanshole,<sup>b,c</sup> Alexey S. Berezin,<sup>a</sup> Artem L. Gushchin,<sup>a</sup> Pavel A. Abramov,<sup>\*a,d</sup> Maxim N. Sokolov <sup>a</sup>

a Nikolayev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave. 630090, Russia;

b International Tomography Center, Institutskaya str. 3a, 630090, Novosibirsk, Russia;

c Novosibirsk State University, Pirogova str. 1, 630090, Novosibirsk, Russia;

d South Ural State University, Prospekt Lenina, 76, 454080, Chelyabinsk, Russia;

# **Supporting information**

# Table of contents

| Experimental part4                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Table S1</b> . <sup>31</sup> P and <sup>183</sup> W NMR data for [PW <sub>11</sub> O <sub>39</sub> Bi] <sup>4–</sup> , [(PW <sub>11</sub> O <sub>39</sub> ) <sub>2</sub> Bi] <sup>11–</sup> and [PW <sub>11</sub> O <sub>39</sub> Pb] <sup>5–</sup> polyanions8                                                                                                                                           |
| Fig. S1. XRPD data for 3                                                                                                                                                                                                                                                                                                                                                                                     |
| Fig. S2. IR spectrum of 3                                                                                                                                                                                                                                                                                                                                                                                    |
| HR-ESI-MS data                                                                                                                                                                                                                                                                                                                                                                                               |
| Fig. S3. Full HR-ESI-MS(-) spectrum of 1 in CH₃CN solution10                                                                                                                                                                                                                                                                                                                                                 |
| <b>Table S2</b> . Peak assignment for the spectrum of <b>1</b> presented in Fig. S111                                                                                                                                                                                                                                                                                                                        |
| Fig. S4. The comparison of observed and calculated isotopic patterns for the spectrum of 1 presented in Fig. S111                                                                                                                                                                                                                                                                                            |
| Fig. S5. Full HR-ESI-MS(-) spectrum for 2 in CH₃CN12                                                                                                                                                                                                                                                                                                                                                         |
| Table S3. Peak assignment for the spectrum of 2 presented in Fig. S3                                                                                                                                                                                                                                                                                                                                         |
| Fig. S6. The comparison of observed and calculated isotopic patterns for the spectrum of 2 presented in Fig. S313                                                                                                                                                                                                                                                                                            |
| CV data15                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fig. S7. CV of 1 in CH <sub>3</sub> CN in the range from -2 to 2 V (black line) and from 0 to 2 V (blue line) at potential scan rate of 100 mV/s                                                                                                                                                                                                                                                             |
| Fig. S8. CV of 2 in CH <sub>3</sub> CN in the range from -2 to 2 V at potential scan rate of 100 mV/s                                                                                                                                                                                                                                                                                                        |
| Table S4. Redox potentials <sup>[a]</sup> for 1 and 2 in CH <sub>3</sub> CN17                                                                                                                                                                                                                                                                                                                                |
| <b>Fig. S9.</b> CVs of <b>PW11039</b> (red line) and <b>PW11039/Y</b> (blue line) in H <sub>2</sub> O with 1 M KCl as supporting electrolyte in the range from -1.7 to 1 V at potential scan rate of 100 mV/s. CV of <b>3</b> (green line) in H <sub>2</sub> O with 1 M Li <sub>2</sub> SO <sub>4</sub> as supporting electrolyte at pH = 4 in the range from -1.5 to 1 V at potential scan rate of 100 mV/s |
| Quantum-chemical calculations                                                                                                                                                                                                                                                                                                                                                                                |
| Table S5. The average distances in [PW <sub>11</sub> O <sub>39</sub> X] <sup>n-</sup> (X=Bi, BiO, n=4; X=Pb, PbO, n=5) complexes19                                                                                                                                                                                                                                                                           |
| Table S6. The average charges in [PW <sub>11</sub> O <sub>39</sub> X] <sup>n-</sup> (X=Bi, BiO, n=4; X=Pb, PbO, n=5 ) complexes                                                                                                                                                                                                                                                                              |
| <b>Table S7</b> . The average parameters of <i>bcp</i> points in $[PW_{11}O_{39}X]^{n-}$ (X=Bi, BiO, n=4; X=Pb, PbO, n=5) complexes.<br>Electron density ( $\rho$ ), laplacian of electron density ( $\nabla^2 \rho$ ) and total energy density (H=V+G) values are in a.u. The<br>ratio of absolute value of potential energy density to kinetic energy density ( $ V /G$ ) is dimensionless value19         |
| <b>Table S8</b> . The calculated shielding constants ( $\sigma_{calc}$ ), shielding constants averaged between symmetry equivalent atoms ( $\sigma_{avg}$ ), chemical shifts calculated from fitted equation ( $\delta_{calc}$ ) and experimental chemical shift values ( $\delta_{exp}$ ) for [PW <sub>11</sub> O <sub>39</sub> Bi] <sup>4–</sup>                                                           |

|   | <b>Table S9</b> . The calculated shielding constants ( $\sigma_{calc}$ ), shielding constants averaged between symmetry equivalent positions ( $\sigma_{avg}$ ), chemical shifts calculated from fitted equation ( $\delta_{calc}$ ) and experimental chemical shift values ( $\delta_{calc}$ ) for [PW <sub>11</sub> O <sub>39</sub> Pb] <sup>5–</sup> | t<br><sub>exp</sub> )<br>21 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|   | <b>Fig. S10</b> . Relation between average shielding constants ( $\sigma_{avg}$ ) and experimental chemical shift ( $\delta_{exp}$ ) values for $[PW_{11}O_{39}Bi]^{4-}$ (left) and $[PW_{11}O_{39}Pb]^{5-}$ (right)                                                                                                                                    | 22                          |
|   | <b>Table S10.</b> Local atomic structure parameters: N – coordination number, R – interatomic distance, $\sigma^2$ – Debye–Waller factor, and F – quality of the fitting.                                                                                                                                                                               | 23                          |
| P | L data                                                                                                                                                                                                                                                                                                                                                  | 24                          |
|   | <b>Fig. S11</b> . Temperature dependence of the PL ( $\lambda_{Ex}$ = 500 nm) (left) and the Gaussian fits of PL spectrum (right) recorded at 77 K.                                                                                                                                                                                                     | 24                          |
|   | <b>Fig. S12</b> . Temperature dependence of the PL ( $\lambda_{Ex}$ = 350 nm) spectra of <b>1</b> and excitation dependence of the PL spectra at 77 K.                                                                                                                                                                                                  | 24                          |
|   | Fig. S13. Excitation dependence of the PL spectra of 2(wet) at 77 K.                                                                                                                                                                                                                                                                                    | 25                          |
|   | Fig. S14. The time-dependence of the PL ( $\lambda_{Ex}$ = 440 nm) spectrum of 2(wet) at 50°C                                                                                                                                                                                                                                                           | 25                          |
|   | Fig. S15. PL ( $\lambda_{Ex}$ = 420 nm) spectra of dry (black) and wet (red) complex 3.                                                                                                                                                                                                                                                                 | 26                          |
| Х | RD data                                                                                                                                                                                                                                                                                                                                                 | 27                          |
|   | Table S11. Crystal data and structure refinement for 3.                                                                                                                                                                                                                                                                                                 | 28                          |
|   | Table S12.       Selected bond lengths for 3.                                                                                                                                                                                                                                                                                                           | 29                          |
|   | Fig. S16. The structure of polyoxometalate $[{P_2W_{18}O_{39}}_2Bi]^{11-}$ anion in 3.                                                                                                                                                                                                                                                                  | 32                          |
|   | <b>Fig. S17</b> . Coordination polyhedron of two crystallographically independent Bi atoms in <b>3</b> , depicting Bi–O bond lengths.                                                                                                                                                                                                                   | 33                          |
|   | <b>Fig. S18</b> . Crystal packing of polyoxometalate $[{P_2W_{18}O_{39}}_2Bi]^{11-}$ anions in <b>3</b> along <i>b</i> axis. The cations and water molecules are not shown.                                                                                                                                                                             | 33                          |

# **Experimental part**

## General information

K<sub>7</sub>[PW<sub>11</sub>O<sub>39</sub>]·14H<sub>2</sub>O was synthesized according to the literature.<sup>1</sup> Other reagents were of commercial quality and were used as purchased. Elemental analysis was carried out on a Eurovector EA 3000 CHN analyzer. Energy-dispersive X-ray spectroscopy (EDS) was performed on a Hitachi TM3000 TableTop SEM with Bruker QUANTAX 70 EDS equipment.

## <u>NMR</u>

<sup>183</sup>W and <sup>31</sup>P NMR spectra were recorded on a Bruker Avance III 500 spectrometer using internal standards.

## <u>HR-ESI-MS</u>

The high-resolution electrospray ionization mass spectrometric (HR-ESI-MS) measurements were performed at the Center of Collective Use «Mass spectrometric investigations» SB RAS. Spectra were obtained with a direct injection of liquid samples on an ESI quadrupole time-of-flight (ESI-q-TOF) high-resolution mass spectrometer Maxis 4G (Bruker Daltonics, Germany). The spectra were recorded in the 300-3000 m/z range in negative mode.

## **Calculations**

Quantum-chemical calculations was performed in ADF2013 program suite with VWN+BP86 density functional and TZP (core double-ζ, valence triple-ζ, polarized) basis set (ADF2013, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com).<sup>2–5</sup> Full geometry optimization was performed with quasi Newton approach.<sup>6</sup> The ZORA<sup>12</sup> approximation was used to take into account scalar relativistic effects. The spin restricted approximation was used for all calculations. The absences of imaginary frequencies confirming that the all calculated complexes are in local energy minima. The similar theoretical level was used earlier for the calculations of the tungsten POMs.<sup>7,8</sup> The ELF (Electron Localization Function) distribution and QTAIM (Quantum Theory of Atoms In Molecules) critical points location was calculated in dgrid-4.6 program (M. Kohout, DGrid, version 4.6, Radebeul, 2011).<sup>9,10</sup> The QTAIM atomic charges calculated in ADF2013 program suite.

In order to identify experimental NMR chemical shifts for <sup>183</sup>W, the shielding constants were calculated by DFT method in ADF2019 program suit. The geometry optimization of [PW<sub>11</sub>O<sub>39</sub>Bi]<sup>4-</sup> and [PW<sub>11</sub>O<sub>39</sub>Pb]<sup>5-</sup> complexes was performed with PBE0 <sup>11,12</sup> density functional, Grimme D4(EEQ) dispersion corrections <sup>13</sup>, all-electron TZP basis set, scalar relativistic approximation ZORA<sup>14</sup> and COSMO<sup>15</sup> method to simulate DMF environment. Since the inclusion of the spin-orbit coupling improve the calculated NMR data<sup>7,8</sup>, the tungsten shielding constants were calculated for optimized structures within spin-orbit relativistic ZORA<sup>16</sup>

approximation by GIAO<sup>17</sup> method while the rest of the theoretical level was the same as for geometry optimization.

#### **Electrochemistry**

The cyclic voltammograms (CV) were recorded with a 797 VA Computrace system (Metrohm, Switzerland). All measurements were performed with a conventional three-electrode configuration consisting of glassy carbon working and platinum auxiliary electrodes and an Ag/AgCl/KCl reference electrode. The solvent used in all experiments was CH<sub>3</sub>CN which was deoxygenated before use. Tetra-nbutylammonium hexafluorophosphate (0.1 M solution) was used as a supporting electrolyte. The concentration of the complexes was approximately 10<sup>-3</sup> M. Redox potential values (E<sub>1/2</sub>) were determined as (E<sub>a</sub> + E<sub>c</sub>)/2, where E<sub>a</sub> and E<sub>c</sub> are anodic and cathodic peak potentials, respectively. Ferrocene was used as an internal standard, the Fc/Fc+ potential was 0.43 V.

## <u>EXAFS</u>

EXAFS spectra of 1, 2, 2-ox and reference compounds PbO,  $PbO_2$  were measured at 10C beamline of PLSII (Pohang Accelerator Laboratory, South Korea). The ring current was 400 mA at 3.0 GeV. A Si(111) double crystal monochromator was used.

The IFEFFIT software package<sup>18</sup> was employed for EXAFS spectra interpretation. Quantitative EXAFSparameters were determined using a fitting procedure with the following parameters: wave number (k) and interatomic distance (r) ranges were 2.7-10.0Å<sup>-1</sup> and 1.1-4.0Å, respectively, EXAFS-function was k<sup>2</sup>weighted. As an initial structural model was used PbO with tetragonal space grope *P*4/nmm. In the fitting procedure, the spectroscopic factor  $S_0^2$  was determined to be 0.81(3) for PbO, and then the value was fixed for the studied samples.

## Synthesis of (Bu<sub>4</sub>N)<sub>4</sub>[PW<sub>11</sub>O<sub>39</sub>Bi] (1):

3.3 g (1 mmol)  $K_7[PW_{11}O_{39}]$ ·14H<sub>2</sub>O was dissolved upon heating in 15 mL of 4M acetate buffer (pH=5.0) (a). Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O (0.5 g, 1 mmol) was dissolved upon heating in concentrated nitric acid (1.5 mL) (b). After cooling to room temperature solution (b) was added dropwise to (a) avoiding precipitation. The solutions were stirred during 0.5 h and then (Bu<sub>4</sub>N)Br was added to full precipitation. The solution was filtered on a glass filter and precipitate was washed with a large amount of distilled water. Yield 3.5 g (87% based on K<sub>7</sub>PW<sub>11</sub>O<sub>39</sub>·14H<sub>2</sub>O). IR (ATR, cm<sup>-1</sup>): 1482 (m), 1380 (w), 1084 (m), 1052 (m), 951 (s), 880 (m), 789 (vs), 594 (m). EDX found: 50% W, 5.4% Bi, 0.7% P; calc for 1: 51.8% W, 5.4% Bi, 0.8% P. C, H, N found (%): 20.5; 3.8; 1.5; calculated for 1 C, H, N (%): 20.0; 3.8; 1.4. <sup>31</sup>P NMR (CD<sub>3</sub>CN, r.t.,  $\delta$ ): -11.3 ppm; <sup>183</sup>W NMR (DMF/CD<sub>3</sub>CN, r.t.,  $\delta$ ): -53.4, -91.2, -94.9, -97.6, -118.7, -122.3 ppm. HR-ESI-MS(-): m/z 721.550  $[BiPW_{11}O_{39}]^{4-}$ ; m/z 962.398  $\{HBiPW_{11}O_{39}\}^{3-}$ ; m/z 1042.883  $\{(Bu_4N)BiPW_{11}O_{39}\}^{3-}$ ; m/z 1564.830  $\{(Bu_4N)HBiPW_{11}O_{39}\}^{2-}$ ; m/z 1685.558  $\{(Bu_4N)_2BiPW_{11}O_{39}\}^{2-}$ .

#### Synthesis of (Bu<sub>4</sub>N)<sub>5</sub>[PW<sub>11</sub>O<sub>39</sub>Pb] (2):

3.5 g (1.6 mmol) of K<sub>7</sub>PW<sub>11</sub>O<sub>39</sub>·14H<sub>2</sub>O was dissolved upon heating in 20 mL of 4M acetate buffer (pH=5.0). Solution of Pb(NO<sub>3</sub>)<sub>2</sub> (1.6 mmol, 0.517 g in 2 mL H<sub>2</sub>O) was added dropwise to cooled solution of the lacunary POM. After 0.5 h of stirring (Bu<sub>4</sub>N)Br was added to full precipitation. The solution was filtered on a glass filter and precipitate was washed with large amount of water. Resulted product was dissolved in a minimal amount of DMF, precipitated by addition of the diethyl ether and cooled in a refrigerator for aggregation. Then organic layer was removed and the precipitate was dried in a desiccator during several days. Yield 4.3 g (65% based on K<sub>7</sub>PW<sub>11</sub>O<sub>39</sub>·14H<sub>2</sub>O). IR (ATR, cm<sup>-1</sup>) 1664 (w), 1482 (m), 1381 (w), 1083 (m), 1040 (m), 941 (s), 875 (s), 790 (vs), 672 (s), 590 (m). EDX found: 47% W, 5.1% Pb, 0.7% P; calculated for **2**: 48% W, 4.9% Pb, 0.7% P. C, H, N found (%): 22.4, 4.2, 1.8; calculated for **2** C, H, N (%): 22.7, 4.6, 1.7. <sup>31</sup>P NMR (CD<sub>3</sub>CN, r.t.,  $\delta$ ): -10.6 ppm; <sup>183</sup>W NMR (DMF/CD<sub>3</sub>CN, r.t.,  $\delta$ ): -51.9, -78.4, -96.4, -101.6, -118.8, -133.6 ppm. HR-ESI-MS(-): m/z 1042.630 {(Bu<sub>4</sub>N)HPbPW<sub>11</sub>O<sub>39</sub>}<sup>3-</sup>; m/z 1123.118 {(Bu<sub>4</sub>N)<sub>2</sub>PbPW<sub>11</sub>O<sub>39</sub>}<sup>3-</sup>; m/z 1685.179 {(Bu<sub>4</sub>N)<sub>2</sub>HPbPW<sub>11</sub>O<sub>39</sub>}<sup>2-</sup>; m/z 1805.911 {(Bu<sub>4</sub>N)<sub>3</sub>PbPW<sub>11</sub>O<sub>39</sub>}<sup>2-</sup>.

#### Synthesis of ((CH<sub>3</sub>)<sub>4</sub>N)<sub>4</sub>K<sub>3</sub>[H<sub>4</sub>(PW<sub>11</sub>O<sub>39</sub>)<sub>2</sub>Bi]·25H<sub>2</sub>O (3):

K<sub>7</sub>[PW<sub>11</sub>O<sub>39</sub>]·14H<sub>2</sub>O (2.170 g, 0.68 mmol) and BiBr<sub>3</sub> (0.152 g, 0.34 mmol) were dissolved in bi-distilled water (15 mL) and stirred at room temperature for 24 h. The precipitated white solid was removed by filtration and (CH<sub>3</sub>)<sub>4</sub>NBr (0.1 g) was added according to the Sadakane's procedure.<sup>19</sup> While the initial pH was 5.65 and then it was adjusted to 3.95 by 3M HNO<sub>3</sub>. After 1 week in a refrigerator crystals did not form, so we added more (CH<sub>3</sub>)<sub>4</sub>NBr (0.7 g) and placed the crystallization dish into a refrigerator (5 °C) for 24 h. This leads to crop of colorless block crystals of 3 instead of а  $(CH_3)_4N_8(NH_4)_3[(PW_{11}O_{39})_2Bi] \cdot 55H_2O \cdot 0.3KCl \cdot 1(CH_3)_4NCl$ . Yield of **3**: 1.4 g (64% by POM). EA: found C, H, N (%): 3.1, 1.5, 0.8; calc C,H,N (%): 3.0, 1.6, 0.9. ICP-AES: found K, P, Bi, W (%): 1.7, 0.7, 3.3, 63.0; calc K, P, Bi, W (%): 1.8, 0.9, 3.2, 62.9. IR (ATR, cm<sup>-1</sup>): 1619(m), 1482(m), 1449(w), 1416(w), 1091(m), 1040(m), 941(s), 881(m), 858(m), 800(s), 753(vs), 661(vs), 583(vs).

## **References:**

- Contant, R.; Thouvenot, R. Hétéropolyanions de Type Dawson. 2. Synthèses de Polyoxotungstoarsénates Lacunaires Dérivant de l'octadécatungstodiarsénate. Étude Structurale Par RMN Du Tungstène-183 Des Octadéca(Molybdotungstovanado)Diarsénates Apparentés. *Can. J. Chem.* 1991, *69* (10), 1498–1506.
- (2) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. *Can. J. Phys.* **1980**, *58* (8), 1200–1211.
- (3) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A* **1988**, *38* (6), 3098–3100.
- (4) Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. *Phys. Rev. B* **1986**, *33* (12), 8822–8824.
- (5) Van Lenthe, E.; Baerends, E. J. Optimized Slater-Type Basis Sets for the Elements 1-118. *J. Comput. Chem.* **2003**, *24* (9), 1142–1156.
- (6) Versluis, L.; Ziegler, T. The Determination of Molecular Structures by Density Functional Theory. The Evaluation of Analytical Energy Gradients by Numerical Integration. *J. Chem. Phys.* **1988**, *88* (1), 322–328.
- (7) Vankova, N.; Heine, T.; Kortz, U. NMR Chemical Shifts of Metal Centres in Polyoxometalates: Relativistic DFT Predictions. *Eur. J. Inorg. Chem.* **2009**, *2009* (34), 5102–5108.
- (8) Rodriguez-Fortea, A.; Alemany, P.; Ziegler, T. Density Functional Calculations of NMR Chemical Shifts with the Inclusion of Spin–Orbit Coupling in Tungsten and Lead Compounds. J. Phys. Chem. A 1999, 103 (41), 8288–8294.
- (9) Bader, R. F. W. *Atoms in Molecules : A Quantum Theory*; Clarendon Press, 1990.
- (10) Silvi, B.; Savin, A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions. *Nature* **1994**, *371* (6499), 683–686.
- (11) Grimme, S. Accurate Description of van Der Waals Complexes by Density Functional Theory Including Empirical Corrections. J. Comput. Chem. **2004**, 25 (12), 1463–1473.
- (12) Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof Exchange-Correlation Functional. J. Chem. Phys. **1999**, 110 (11), 5029–5036.
- (13) Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A Generally Applicable Atomic-Charge Dependent London Dispersion Correction. *J. Chem. Phys.* 2019, *150* (15), 154122.
- (14) van Lenthe, E.; Ehlers, A.; Baerends, E.-J. Geometry Optimizations in the Zero Order Regular Approximation for Relativistic Effects. *J. Chem. Phys.* **1999**, *110* (18), 8943–8953.
- (15) Pye, C. C.; Ziegler, T. An Implementation of the Conductor-like Screening Model of Solvation within the Amsterdam Density Functional Package. *Theor. Chem. Accounts Theory, Comput. Model.* (*Theoretica Chim. Acta*) 1999, 101 (6), 396–408.
- (16) van Lenthe, E.; Snijders, J. G.; Baerends, E. J. The Zero-order Regular Approximation for Relativistic Effects: The Effect of Spin–Orbit Coupling in Closed Shell Molecules. J. Chem. Phys. 1996, 105 (15), 6505–6516.
- (17) Wolff, S. K.; Ziegler, T. Calculation of DFT-GIAO NMR Shifts with the Inclusion of Spin-Orbit Coupling. J. Chem. Phys. **1998**, 109 (3), 895–905.
- (18) Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Radiat. 2005, 12 (4), 537–541.

| Anion                                                                | <sup>31</sup> P | <sup>183</sup> W ppm (conditions)                | Ref                    |
|----------------------------------------------------------------------|-----------------|--------------------------------------------------|------------------------|
|                                                                      | (ppm)           |                                                  |                        |
| [PW <sub>11</sub> O <sub>39</sub> Bi] <sup>4-</sup>                  | -               | -53.4, -91.2, -94.9, -97.6, -                    | This work              |
|                                                                      | 11.3            | 118.7, -122.3; (DMF/CD <sub>3</sub> CN           |                        |
|                                                                      |                 | mixture (80:20) at room                          |                        |
|                                                                      |                 | temperature)                                     |                        |
|                                                                      | -               | -77.54, -98.37, -108.18, -                       | Sadakane <sup>19</sup> |
|                                                                      | 11.5            | 108.33, $-129.01$ , $-140.04$ (D <sub>2</sub> O, |                        |
|                                                                      |                 | room temperature)                                |                        |
|                                                                      | -               | -40.61, -60.35, -92.49, -102.31,                 | Izuage <sup>20</sup>   |
|                                                                      | 12.5            | -115.70, -121.22 (CD <sub>3</sub> CN, room       |                        |
|                                                                      |                 | temperature)                                     |                        |
|                                                                      |                 | -78.8, -100.2, -109.5, -130.1, -                 | Maksimov <sup>21</sup> |
|                                                                      |                 | 140.9 ( $D_2O$ , room temperature)               |                        |
| [(PW <sub>11</sub> O <sub>39</sub> ) <sub>2</sub> Bi] <sup>11–</sup> |                 | -94.5 (wide), -106.3, -114.5, -                  | Maksimov <sup>21</sup> |
|                                                                      |                 | 130.2, $-150.7$ (D <sub>2</sub> O, room          |                        |
|                                                                      |                 | temperature)                                     |                        |
|                                                                      | -               | -104.49, -110.83, -147.98, -                     | Sadakane <sup>19</sup> |
|                                                                      | 11.4            | 85.68, -93.86, -125.66 (D <sub>2</sub> O,        |                        |
| -                                                                    |                 | room temperature)                                |                        |
| [PW <sub>11</sub> O <sub>39</sub> Pb] <sup>5–</sup>                  | -               | -51.9, -78.4, -96.4, -101.6, -                   | This work              |
|                                                                      | 10.6            | 118.8, $-133.6$ (DMF/CD <sub>3</sub> CN)         |                        |
|                                                                      |                 | mixture (80:20) at room                          |                        |
|                                                                      |                 | temperature)                                     |                        |
|                                                                      | -               | -48.92, -77.53, -92.57, -97.77, -                | Izuage <sup>20</sup>   |
|                                                                      | 11.9            | 116.18, -129.90 (CD <sub>3</sub> CN, room        |                        |
|                                                                      |                 | temperature)                                     |                        |
|                                                                      |                 | -78.7, -85.8, -106.0, -113.6, -                  | Maksimov <sup>22</sup> |
|                                                                      |                 | 129.8, -150.1 (D <sub>2</sub> O, pH 2)           |                        |

**Table S1**. <sup>31</sup>P and <sup>183</sup>W NMR data for [PW<sub>11</sub>O<sub>39</sub>Bi]<sup>4-</sup>, [(PW<sub>11</sub>O<sub>39</sub>)<sub>2</sub>Bi]<sup>11-</sup> and [PW<sub>11</sub>O<sub>39</sub>Pb]<sup>5-</sup> polyanions.

- Wihadi, M. N. K.; Hayashi, A.; Ichihashi, K.; Ota, H.; Nishihara, S.; Inoue, K.; Tsunoji, N.; Sano, T.; Sadakane, M. A Sandwich Complex of Bismuth Cation and Mono-Lacunary α-Keggin-Type Phosphotungstate: Preparation and Structural Characterisation. *Eur. J. Inorg. Chem.* 2019, 2019 (3–4), 357–362.
- (20) Izuagie, T. Synthesis of Polyoxometalates ForDetailed Solution Reactivity Studies, Newcastle University, 2017.
- (21) Maksimov, G. M. Maksimovskaya, R. I. Kozhevnikov, I. V. Heteropoly Acids Derived from the Complexes of the PW11O397–anion with Metal Cations. *Russ. J. Inorg. Chem.* **1992**, *37*, 2279–2286.

(22) Fedotov, M. A.; Maksimovskaya, R. I.; Maksimov, G. M.; Matveev, K. I. No Title. *Zh. Neorg. Khimii* **1987**, *32*, 647–651.



Fig. S1. XRPD data for 3.



Fig. S2. IR spectrum of 3.

# HR-ESI-MS data





Table S2. Peak assignment for the spectrum of 1 presented in Fig. S1.

| peak | anion                                               | m/z exp  | m/z calc |
|------|-----------------------------------------------------|----------|----------|
| a    | [BiPW <sub>11</sub> O <sub>39</sub> ] <sup>4–</sup> | 721.550  | 721.548  |
| b    | ${\rm {HBiPW}_{11}O_{39}}^{3-}$                     | 962.398  | 962.400  |
| c    | ${\rm HBiPW_{11}O_{39}(H_2O)_3}^{3-}$               | 980.400  | 980.415  |
| d    | ${(Bu_4N)BiPW_{11}O_{39}}^{3-}$                     | 1042.883 | 1042.885 |
| e    | ${(Bu_4N)HBiPW_{11}O_{39}}^{2-}$                    | 1564.830 | 1564.832 |
| f    | ${(Bu_4N)_2BiPW_{11}O_{39}}^{2-}$                   | 1685.558 | 1685.560 |

**Fig. S4**. The comparison of observed and calculated isotopic patterns for the spectrum of **1** presented in Fig. S1.





Fig. S5. Full HR-ESI-MS(-) spectrum for 2 in CH<sub>3</sub>CN.

Table S3. Peak assignment for the spectrum of 2 presented in Fig. S3.

| peak | anion                                      | m/z exp  | m/z calc |
|------|--------------------------------------------|----------|----------|
| a    | ${(Bu_4N)HPbPW_{11}O_{39}}^{3-}$           | 1042.630 | 1042.634 |
| b    | $\{(Bu_4N)HPbPW_{11}O_{39}(H_2O)_3\}^{3-}$ | 1060.659 | 1060.649 |
| c    | ${(Bu_4N)_2PbPW_{11}O_{39}}^{3-}$          | 1123.118 | 1123.119 |
| d    | ${(Bu_4N)_2HPbPW_{11}O_{39}}^{2-}$         | 1685.179 | 1685.182 |
| e    | ${(Bu_4N)_3PbPW_{11}O_{39}}^{2-}$          | 1805.911 | 1805.910 |

**Fig. S6**. The comparison of observed and calculated isotopic patterns for the spectrum of **2** presented in Fig. S3.





# CV data



Fig. S7. CV of 1 in CH<sub>3</sub>CN in the range from -2 to 2 V (black line) and from 0 to 2 V (blue line) at potential scan rate of 100 mV/s.



Fig. S8. CV of 2 in CH<sub>3</sub>CN in the range from -2 to 2 V at potential scan rate of 100 mV/s.

Table S4. Redox potentials<sup>[a]</sup> for 1 and 2 in  $CH_3CN$ .

| Cathodic potential | 1         | 2                |
|--------------------|-----------|------------------|
| E <sub>c</sub> (1) | -         | -                |
| E <sub>c</sub> (2) | -0.82     | -1.16 (shoulder) |
| E <sub>c</sub> (3) | -1.27     | -1.51            |
| E <sub>c</sub> (4) | weak peak | -1.76            |

[a] *E*, V versus Ag/AgCl; the potentials were measured at 100 mVs<sup>-1</sup>; ferrocene was used as an internal standard, the Fc/Fc+ potential was 0.43 V



**Fig. S9.** CVs of **PW11O39** (red line) and **PW11O39/Y** (blue line) in H<sub>2</sub>O with 1 M KCl as supporting electrolyte in the range from -1.7 to 1 V at potential scan rate of 100 mV/s. CV of **3** (green line) in H<sub>2</sub>O with 1 M Li<sub>2</sub>SO<sub>4</sub> as supporting electrolyte at pH = 4 in the range from -1.5 to 1 V at potential scan rate of 100 mV/s.

# Quantum-chemical calculations

|                                                      | P-O  | W-O  | M-O  | W- <sub>μ2</sub> Ο | M- <sub>µ2</sub> O | M-O <sub>P</sub> |
|------------------------------------------------------|------|------|------|--------------------|--------------------|------------------|
| [PW <sub>11</sub> O <sub>39</sub> Bi] <sup>4-</sup>  | 1.56 | 1.73 | n/a  | 1.93               | 2.24               | 2.54             |
| [PW <sub>11</sub> O <sub>39</sub> BiO] <sup>4-</sup> | 1.56 | 1.73 | 1.98 | 1.93               | 2.19               | 2.70             |
| [PW <sub>11</sub> O <sub>39</sub> Bi] <sup>6-</sup>  | 1.56 | 1.75 | n/a  | 1.94               | 2.42               | 3.00             |
| [PW <sub>11</sub> O <sub>39</sub> Pb] <sup>5-</sup>  | 1.56 | 1.74 | n/a  | 1.93               | 2.36               | 2.84             |
| [PW <sub>11</sub> O <sub>39</sub> PbO] <sup>5-</sup> | 1.56 | 1.74 | 2.01 | 1.93               | 2.28               | 2.93             |

**Table S5**. The average distances in  $[PW_{11}O_{39}X]^{n-}$  (X=Bi, BiO, n=4; X=Pb, PbO, n=5) complexes.

Table S6. The average charges in  $[PW_{11}O_{39}X]^{n-}$  (X=Bi, BiO, n=4; X=Pb, PbO, n=5) complexes.

|                                                      | Р    | O <sub>(-P)</sub> | W    | М    | O <sub>(-W)</sub> | O <sub>(-M)</sub> | <sub>mu2</sub> O |
|------------------------------------------------------|------|-------------------|------|------|-------------------|-------------------|------------------|
| [PW <sub>11</sub> O <sub>39</sub> Bi] <sup>4-</sup>  | 3.54 | -1.45             | 2.92 | 1.83 | -0.88             | n/a               | -1.08            |
| [PW <sub>11</sub> O <sub>39</sub> BiO] <sup>4-</sup> | 3.56 | -1.45             | 2.92 | 2.35 | -0.87             | -0.92             | -1.07            |
| [PW <sub>11</sub> O <sub>39</sub> Bi] <sup>6-</sup>  | 3.54 | -1.45             | 2.91 | 0.75 | -0.96             | n/a               | -1.08            |
| [PW <sub>11</sub> O <sub>39</sub> Pb] <sup>5-</sup>  | 3.55 | -1.45             | 2.92 | 1.30 | -0.93             | n/a               | -1.08            |
| [PW <sub>11</sub> O <sub>39</sub> PbO] <sup>5-</sup> | 3.54 | -1.45             | 2.92 | 1.93 | -0.91             | -0.97             | -1.07            |

**Table S7**. The average parameters of *bcp* points in  $[PW_{11}O_{39}X]^{n-}$  (X=Bi, BiO, n=4; X=Pb, PbO, n=5) complexes. Electron density ( $\rho$ ), laplacian of electron density ( $\nabla^2 \rho$ ) and total energy density (H=V+G) values are in a.u. The ratio of absolute value of potential energy density to kinetic energy density (|V|/G) is dimensionless value.

| [PW <sub>11</sub> O <sub>39</sub> Bi] <sup>4-</sup> |       |                 |       |        |  |  |  |
|-----------------------------------------------------|-------|-----------------|-------|--------|--|--|--|
| bond                                                | ρ     | $\nabla^2 \rho$ | V /G  | Н      |  |  |  |
| W-O <sub>term</sub>                                 | 0.245 | 0.897           | 1.389 | -0.143 |  |  |  |
| W- <sub>μ2</sub> Ο                                  | 0.144 | 0.582           | 1.239 | -0.046 |  |  |  |
| W-O(P)                                              | 0.037 | 0.140           | 1.020 | -0.001 |  |  |  |
| Bi- <sub>µ2</sub> O                                 | 0.075 | 0.258           | 1.170 | -0.013 |  |  |  |
| Bi-O(P)                                             | 0.038 | 0.121           | 1.036 | -0.001 |  |  |  |
| P-O                                                 | 0.203 | 0.674           | 1.501 | -0.169 |  |  |  |

| [PW <sub>11</sub> O <sub>39</sub> BiO] <sup>4-</sup> |       |               |       |        |  |  |  |
|------------------------------------------------------|-------|---------------|-------|--------|--|--|--|
| bond                                                 | ρ     | $ abla^2  ho$ | V /G  | Н      |  |  |  |
| W-O <sub>term</sub>                                  | 0.246 | 0.904         | 1.390 | -0.145 |  |  |  |
| W- <sub>μ2</sub> Ο                                   | 0.143 | 0.581         | 1.239 | -0.046 |  |  |  |
| W-O(P)                                               | 0.038 | 0.148         | 1.026 | -0.001 |  |  |  |
| Bi-O <sub>term</sub>                                 | 0.131 | 0.423         | 1.306 | -0.047 |  |  |  |

| Bi- <sub>µ2</sub> O | 0.083 | 0.272 | 1.198 | -0.017 |
|---------------------|-------|-------|-------|--------|
| Bi-O(P)             | 0.028 | 0.088 | 0.966 | 0.001  |
| P-O                 | 0.203 | 0.685 | 1.497 | -0.169 |

| [PW]          | $_{1}O_{20}Ph$ | 75- |
|---------------|----------------|-----|
| <b>I VV</b> 1 | 10391 0        | · · |

| bond                | ρ     | $\nabla^2 \rho$ | V /G  | Н      |
|---------------------|-------|-----------------|-------|--------|
| W-O <sub>term</sub> | 0.238 | 0.878           | 1.381 | -0.135 |
| W- <sub>µ2</sub> O  | 0.144 | 0.581           | 1.241 | -0.047 |
| W-O(P)              | 0.037 | 0.141           | 1.023 | -0.001 |
| Pb- <sub>µ2</sub> O | 0.056 | 0.205           | 1.086 | -0.005 |
| Pb-O(P)             | 0.019 | 0.067           | 0.887 | 0.002  |
| P-O                 | 0.202 | 0.660           | 1.505 | -0.168 |

| [PW <sub>11</sub> O <sub>39</sub> PbO] <sup>5–</sup> |       |                 |       |        |  |  |
|------------------------------------------------------|-------|-----------------|-------|--------|--|--|
| bond                                                 | ρ     | $\nabla^2 \rho$ | V /G  | Н      |  |  |
| W-O <sub>term</sub>                                  | 0.240 | 0.885           | 1.383 | -0.137 |  |  |
| W- <sub>µ2</sub> O                                   | 0.144 | 0.581           | 1.240 | -0.047 |  |  |
| W-O(P)                                               | 0.039 | 0.148           | 1.027 | -0.001 |  |  |
| Pb-O <sub>term</sub>                                 | 0.120 | 0.405           | 1.266 | -0.037 |  |  |
| Pb- <sub>µ2</sub> O                                  | 0.067 | 0.243           | 1.121 | -0.008 |  |  |
| Pb-O(P)                                              | 0.016 | 0.056           | 0.859 | 0.002  |  |  |
| P-O                                                  | 0.203 | 0.673           | 1.501 | -0.169 |  |  |

# 015-

**Table S8**. The calculated shielding constants ( $\sigma_{calc}$ ), shielding constants averaged between symmetry equivalent atoms ( $\sigma_{avg}$ ), chemical shifts calculated from fitted equation ( $\delta_{calc}$ ) and experimental chemical shift values ( $\delta_{exp}$ ) for [PW<sub>11</sub>O<sub>39</sub>Bi]<sup>4–</sup>.

| $\delta_{calc}$ , ppm $\delta_{exp}$ , ppm                    | $\sigma_{avg}$ , ppm                     | $\sigma_{calc}$ , ppm                                                        |                      |
|---------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|----------------------|
|                                                               |                                          | 3308.50;                                                                     |                      |
| -119.01 -122.27                                               | 3308.00                                  | 3307.49                                                                      | W1                   |
|                                                               |                                          | 3305.05;                                                                     |                      |
| -116.31 -118.73                                               | 3304.84                                  | 3304.63                                                                      | W2                   |
|                                                               |                                          | 3288.87;                                                                     |                      |
| -102.09 -97.63                                                | 3288.25                                  | 3287.63                                                                      | W3                   |
| -96.78 -94.86                                                 | 3282.06                                  | 3282.06                                                                      | W4                   |
|                                                               |                                          | 3279.83;                                                                     |                      |
| -94.56 -91.16                                                 | 3279.46                                  | 3279.09                                                                      | W5                   |
|                                                               |                                          | 3228.96;                                                                     |                      |
| -51.16 -53.44                                                 | 3228.83                                  | 3228.69                                                                      | W6                   |
| -102.09 -97.6<br>-96.78 -94.8<br>-94.56 -91.1<br>-51.16 -53.4 | 3288.25<br>3282.06<br>3279.46<br>3228.83 | 3288.87;<br>3287.63<br>3282.06<br>3279.83;<br>3279.09<br>3228.96;<br>3228.69 | W3<br>W4<br>W5<br>W6 |

**Table S9**. The calculated shielding constants ( $\sigma_{calc}$ ), shielding constants averaged between symmetry equivalent positions ( $\sigma_{avg}$ ), chemical shifts calculated from fitted equation ( $\delta_{calc}$ ) and experimental chemical shift values ( $\delta_{exp}$ ) for [PW<sub>11</sub>O<sub>39</sub>Pb]<sup>5–</sup>.

|    | $\sigma_{calc}$ | σ <sub>avg</sub> | $\delta_{calc}$ | δ <sub>exp</sub> |
|----|-----------------|------------------|-----------------|------------------|
|    | 3325.10;        |                  |                 |                  |
| W1 | 3323.87         | 3324.49          | -136.54         | -133.63          |
|    | 3301.20;        |                  |                 |                  |
| W2 | 3300.42         | 3300.81          | -113.93         | -118.80          |
| W4 | 3286.85         | 3286.85          | -100.60         | -101.61          |
|    | 3277.19;        |                  |                 |                  |
| W5 | 3276.41         | 3276.80          | -91.00          | -96.39           |
|    | 3271.21;        |                  |                 |                  |
| W3 | 3269.99         | 3270.60          | -85.08          | -78.36           |
|    | 3235.43;        |                  |                 |                  |
| W6 | 3235.39         | 3235.41          | -51.47          | -51.90           |



**Fig. S10**. Relation between average shielding constants ( $\sigma_{avg}$ ) and experimental chemical shift ( $\delta_{exp}$ ) values for  $[PW_{11}O_{39}Bi]^{4-}$  (left) and  $[PW_{11}O_{39}Pb]^{5-}$  (right).

**Table S10.** Local atomic structure parameters: N – coordination number, R – interatomic distance,  $\sigma^2$  – Debye–Waller factor, and F – quality of the fitting.

|       | R, Å    | $\sigma^2$ , Å <sup>2</sup> | N | F-factor, % |
|-------|---------|-----------------------------|---|-------------|
| 2     |         |                             |   |             |
| Pb-O  | 2.28(2) | 0.0076(7)                   | 4 |             |
| Pb-W  | 3.66(9) | 0.009(2)                    | 3 | 1.1         |
| PbO   |         |                             |   |             |
| Pb-O  | 2.29(2) | 0.0084(8)                   | 4 |             |
| Pb-Pb | 3.68(5) | 0.006(1)                    | 4 |             |
| Pb-Pb | 3.83(6) | 0.011(4)                    | 4 | 2.7         |
| Pb-Pb | 3.96(6) | 0.011(4)                    | 4 |             |

# PL data

## Luminescence

Corrected luminescence spectra were recorded on a Fluorolog 3 spectrometers (Horiba Jobin Yvon) with a R928 (FL-1073) photomultiplier and two Czerny–Turner double monochromators. Temperature dependences of luminescence were studied out using Optistat DN optical cryostat (Oxford Instruments).



Fig. S11. Temperature dependence of the PL ( $\lambda_{Ex} = 500 \text{ nm}$ ) (left) and the Gaussian fits of PL spectrum (right) recorded at 77 K.



Fig. S12. Temperature dependence of the PL ( $\lambda_{Ex} = 350 \text{ nm}$ ) spectra of 1 and excitation dependence of the PL spectra at 77 K.



Fig. S13. Excitation dependence of the PL spectra of 2(wet) at 77 K.



Fig. S14. The time-dependence of the PL ( $\lambda_{Ex}$  = 440 nm) spectrum of 2(wet) at 50°C



Fig. S15. PL ( $\lambda_{Ex}$  = 420 nm) spectra of dry (black) and wet (red) complex 3.

# XRD data

# X-ray crystallography.

The crystal data and refinement details for the crystal structure of **3** are summarized in Table S11. The diffraction data were collected on a Bruker D8 Venture diffractometer with a CMOS PHOTON III detector and I $\mu$ S 3.0 source (Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å) at 150 K. The  $\varphi$ - and  $\omega$ -scan techniques were employed. Absorption correction was applied by SADABS (Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, version 2018.7-2; Bruker AXS Inc.: Madison, WI, 2017.). The structure was solved by SHELXT<sup>23</sup> and refined by full-matrix least-squares treatment against  $|F|^2$  in anisotropic approximation with SHELX 2014/7<sup>24</sup> in ShelXle program.<sup>25</sup> H-atoms of TMA cations were refined in the geometrically calculated positions. The protons of water molecules of crystallization were not refined. The structural refinement of the current gives 6.17 K+ per formula, while ICP-AES of the isolated crystalline phase gives only 3 K+ per formula. This means presence of several types solid solutions with different K+/TMA+/H+ ratio. The main geometric parameters are summarized in Table S12.

The main structural building block is a sandwich-type  $[(PW_{11}O_{39})_2Bi]^{11-}$  anion (Fig. S16), when Bi<sup>3+</sup> has CN 8 with square-antiprismatic coordination arrangement. There are two independent  $[(PW_{11}O_{39})_2Bi]^{11-}$  anions in the unit cell (in general and in special positions respectively). The Bi<sup>3+</sup> arrangement in both type anions is shown in Fig. S17. Polyoxoanions form layered type packing with ABAB... motive (Fig. S18) in the crystal structure.

The crystallographic data have been deposed in the Cambridge Crystallographic Data Centre under the deposition codes CCDC 2055126.

## XRPD

XRPD analysis of polycrystals was performed on Shimadzu XRD-7000 diffractometer (CoK-alpha radiation, Fe – filter, linear One Sight detector,  $5 - 70^{\circ} 2\theta$  range,  $0.0143^{\circ} 2\theta$  step, 2s per step).

# **References**:

- (23) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. Sect. A Found. Adv.* **2015**, *71* (1), 3–8.
- (24) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. *Acta Crystallogr. Sect. C Struct. Chem.* **2015**, *71* (1), 3–8.
- (25) Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShelXle : A Qt Graphical User Interface for SHELXL. *J. Appl. Crystallogr.* **2011**, *44* (6), 1281–1284.

| Identification code                         | 3                                                      |
|---------------------------------------------|--------------------------------------------------------|
| Empirical formula                           | $C_{16}H_{61.5}BiK_{6.17}N_4O_{96.67}P_2W_{22}$        |
| Formula weight                              | 6413.49                                                |
| Temperature/K                               | 150(2)                                                 |
| Crystal system                              | monoclinic                                             |
| Space group                                 | C2/c                                                   |
| a/Å                                         | 48.525(3)                                              |
| b/Å                                         | 12.6920(8)                                             |
| c/Å                                         | 56.670(3)                                              |
| <u>α/°</u>                                  | 90                                                     |
| β/°                                         | 109.593(2)                                             |
| γ/°                                         | 90                                                     |
| Volume/Å <sup>3</sup>                       | 32881(3)                                               |
| Ζ                                           | 12                                                     |
| $\rho_{calc}g/cm^3$                         | 3.879                                                  |
| µ/mm <sup>-1</sup>                          | 24.953                                                 |
| F(000)                                      | 33642.0                                                |
| Crystal size/mm <sup>3</sup>                | 0.12 	imes 0.1 	imes 0.1                               |
| Radiation                                   | MoK $\alpha$ ( $\lambda = 0.71073$ )                   |
| 20 range for data collection/°              | 3.33 to 50.266                                         |
| Index ranges                                | $-57 \le h \le 57, -15 \le k \le 15, -67 \le l \le 67$ |
| Reflections collected                       | 90876                                                  |
| Independent reflections                     | 28621 [ $R_{int} = 0.0743$ , $R_{sigma} = 0.0869$ ]    |
| Data/restraints/parameters                  | 28621/390/1867                                         |
| Goodness-of-fit on F <sup>2</sup>           | 1.130                                                  |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.0722, wR_2 = 0.1298$                          |
| Final R indexes [all data]                  | $R_1 = 0.0994, wR_2 = 0.1391$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 2.23/-2.12                                             |

 Table S11. Crystal data and structure refinement for 3.

 Table S12. Selected bond lengths for 3.

| Atom | Atom             | Length/Å  | Atom | Atom | Length/Å  |
|------|------------------|-----------|------|------|-----------|
| Bi1  | O32              | 2.447(17) | W16  | 059  | 1.88(2)   |
| Bi1  | O33              | 2.566(18) | W16  | O60  | 1.68(2)   |
| Bi1  | O34              | 2.455(16) | W16  | 061  | 1.90(2)   |
| Bi1  | O35              | 2.402(18) | W16  | O73  | 2.42(2)   |
| Bi1  | O40              | 2.49(2)   | W16  | O76  | 1.90(2)   |
| Bi1  | O41              | 2.469(17) | W17  | O40  | 1.78(2)   |
| Bi1  | O42              | 2.374(18) | W17  | O43  | 1.66(3)   |
| Bi1  | O79              | 2.35(2)   | W17  | O45  | 2.03(2)   |
| Bi2  | O84              | 2.313(18) | W17  | O46  | 2.358(19) |
| Bi2  | O84 <sup>1</sup> | 2.313(18) | W17  | O47  | 1.924(18) |
| Bi2  | 085              | 2.388(17) | W17  | 059  | 1.96(2)   |
| Bi2  | O85 <sup>1</sup> | 2.388(17) | W18  | O41  | 1.791(15) |
| Bi2  | O86 <sup>1</sup> | 2.614(17) | W18  | O46  | 2.341(17) |
| Bi2  | 086              | 2.614(18) | W18  | O47  | 1.90(2)   |
| Bi2  | O87 <sup>1</sup> | 2.511(17) | W18  | O48  | 1.707(19) |
| Bi2  | 087              | 2.511(17) | W18  | O49  | 1.929(18) |
| W1   | 01               | 1.725(17) | W18  | O54  | 2.065(19) |
| W1   | O2               | 1.877(16) | W19  | O57  | 1.877(19) |
| W1   | O3               | 1.898(16) | W19  | O58  | 1.92(2)   |
| W1   | O4               | 1.899(16) | W19  | O73  | 2.451(18) |
| W1   | O5               | 1.918(15) | W19  | O77  | 2.00(2)   |
| W1   | O18              | 2.406(17) | W19  | O78  | 1.740(19) |
| W2   | O4               | 1.950(15) | W19  | O79  | 1.76(2)   |
| W2   | 06               | 1.702(19) | W20  | O49  | 1.888(19) |
| W2   | O7               | 1.917(17) | W20  | O50  | 1.894(16) |
| W2   | 012              | 1.908(16) | W20  | 051  | 1.716(18) |
| W2   | O18              | 2.447(17) | W20  | O52  | 1.87(2)   |
| W2   | 0155             | 1.788(15) | W20  | O53  | 2.403(16) |
| W3   | O2               | 1.963(17) | W20  | O64  | 1.927(17) |
| W3   | O7               | 1.927(18) | W21  | O42  | 1.749(18) |
| W3   | 08               | 1.698(15) | W21  | O50  | 1.940(16) |
| W3   | O18              | 2.420(16) | W21  | O53  | 2.446(17) |
| W3   | O21              | 1.795(18) | W21  | O55  | 2.028(17) |
| W3   | O25              | 1.928(18) | W21  | 056  | 1.65(2)   |
| W4   | 05               | 1.898(15) | W21  | O57  | 1.942(18) |
| W4   | 09               | 1.725(16) | W22  | O67  | 1.917(19) |
| W4   | 013              | 1.892(17) | W22  | 069  | 1.69(2)   |
| W4   | O17              | 2.498(18) | W22  | O71  | 1.87(3)   |
| W4   | O36              | 1.921(17) | W22  | 072  | 1.91(2)   |
| W4   | O37              | 1.876(17) | W22  | O74  | 2.40(2)   |
| W5   | 03               | 1.933(16) | W22  | 075  | 1.95(2)   |
| W5   | O20              | 2.528(17) | W23  | O101 | 1.92(2)   |
| W5   | O22              | 1.932(18) | W23  | O102 | 1.69(2)   |

| W5  | O24  | 1.683(18) | W23 | O103 | 1.876(19) |
|-----|------|-----------|-----|------|-----------|
| W5  | O28  | 1.873(16) | W23 | O105 | 1.909(19) |
| W5  | O36  | 1.908(17) | W23 | O106 | 1.910(17) |
| W6  | 011  | 1.683(18) | W23 | 0114 | 2.407(16) |
| W6  | 012  | 1.935(15) | W24 | O98  | 1.896(18) |
| W6  | 013  | 1.942(16) | W24 | O103 | 1.97(2)   |
| W6  | 014  | 1.893(17) | W24 | 0114 | 2.429(15) |
| W6  | 017  | 2.406(18) | W24 | 0143 | 1.689(17) |
| W6  | O38  | 1.927(16) | W24 | 0144 | 1.845(19) |
| W7  | O20  | 2.413(15) | W24 | 0145 | 1.891(19) |
| W7  | O22  | 1.900(19) | W25 | 096  | 1.846(16) |
| W7  | O23  | 1.716(16) | W25 | O97  | 2.515(17) |
| W7  | O25  | 1.885(18) | W25 | 099  | 1.930(16) |
| W7  | O29  | 1.891(17) | W25 | O100 | 1.941(18) |
| W7  | 0153 | 1.909(18) | W25 | O101 | 1.93(2)   |
| W8  | O20  | 2.486(16) | W25 | 0120 | 1.681(19) |
| W8  | O28  | 2.017(18) | W26 | O100 | 1.891(18) |
| W8  | O29  | 1.927(16) | W26 | 0106 | 1.914(17) |
| W8  | 031  | 1.709(18) | W26 | O107 | 1.703(18) |
| W8  | 035  | 1.713(18) | W26 | 0109 | 1.971(17) |
| W8  | 0156 | 1.943(16) | W26 | 0113 | 2.497(16) |
| W9  | O17  | 2.448(15) | W26 | 0118 | 1.853(16) |
| W9  | O32  | 1.760(17) | W27 | O90  | 1.826(17) |
| W9  | O37  | 2.049(17) | W27 | O105 | 1.976(18) |
| W9  | O38  | 1.968(17) | W27 | O108 | 1.894(18) |
| W9  | O39  | 1.730(16) | W27 | O110 | 1.673(19) |
| W9  | 0156 | 1.899(17) | W27 | 0114 | 2.457(16) |
| W10 | 019  | 2.365(16) | W27 | 0145 | 1.957(19) |
| W10 | O21  | 2.072(18) | W28 | 089  | 1.925(16) |
| W10 | O26  | 1.940(17) | W28 | 091  | 1.877(16) |
| W10 | O27  | 1.724(16) | W28 | O108 | 1.924(18) |
| W10 | O34  | 1.766(16) | W28 | O109 | 1.896(16) |
| W10 | 0153 | 1.916(19) | W28 | 0111 | 1.726(18) |
| W11 | 014  | 1.918(16) | W28 | 0113 | 2.409(15) |
| W11 | 015  | 1.668(16) | W29 | 093  | 1.853(16) |
| W11 | 019  | 2.361(17) | W29 | O94  | 1.929(17) |
| W11 | O26  | 1.932(16) | W29 | O97  | 2.421(16) |
| W11 | 033  | 1.752(18) | W29 | O98  | 1.913(18) |
| W11 | 0155 | 2.119(15) | W29 | O99  | 1.915(18) |
| W12 | O52  | 1.952(19) | W29 | O117 | 1.733(17) |
| W12 | O53  | 2.52(2)   | W30 | O84  | 1.748(18) |
| W12 | 055  | 1.871(19) | W30 | O92  | 1.922(15) |
| W12 | 063  | 1.92(2)   | W30 | O94  | 1.936(17) |
| W12 | 065  | 1.69(2)   | W30 | O96  | 2.039(15) |
| W12 | 075  | 1.85(2)   | W30 | 097  | 2.434(18) |

| W13O621.68(3)W30O1251.692(18)W13O631.89(3)W31O871.755(18)W13O721.91(2)W31O881.945(16)W13O732.50(2)W31O931.952(16)W13O761.94(2)W31O1122.372(16)W13O771.88(2)W31O1151.702(17)W14O541.82(2)W31O1442.060(18)W14O641.897(18)W32O851.786(17)W14O661.711(18)W32O851.786(17)W14O661.711(18)W32O921.919(15)W14O671.95(2)W32O1132.418(17)W14O742.43(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1221.721(16)W16O581.92(2)W33O1291.721(16) |     |     |           |     |      |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|-----|------|-----------|
| W13O631.89(3)W31O871.755(18)W13O721.91(2)W31O881.945(16)W13O732.50(2)W31O931.952(16)W13O761.94(2)W31O1122.372(16)W13O761.94(2)W31O1151.702(17)W14O541.82(2)W31O1442.060(18)W14O641.897(18)W32O851.786(17)W14O661.711(18)W32O891.946(15)W14O661.711(18)W32O921.919(15)W14O671.95(2)W32O1132.418(17)W14O681.92(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W16O581.92(2)W33O1291.721(16)                              | W13 | 062 | 1.68(3)   | W30 | 0125 | 1.692(18) |
| W13O721.91(2)W31O881.945(16)W13O732.50(2)W31O931.952(16)W13O761.94(2)W31O1122.372(16)W13O771.88(2)W31O1151.702(17)W14O541.82(2)W31O1442.060(18)W14O641.897(18)W32O851.786(17)W14O661.711(18)W32O891.946(15)W14O661.711(18)W32O921.919(15)W14O671.95(2)W32O1132.418(17)W14O681.92(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1291.721(16)                                                          | W13 | 063 | 1.89(3)   | W31 | 087  | 1.755(18) |
| W13O732.50(2)W31O931.952(16)W13O761.94(2)W31O1122.372(16)W13O771.88(2)W31O1151.702(17)W14O541.82(2)W31O1442.060(18)W14O641.897(18)W32O851.786(17)W14O661.711(18)W32O891.946(15)W14O661.711(18)W32O921.919(15)W14O671.95(2)W32O1132.418(17)W14O681.92(2)W32O1161.707(18)W14O681.92(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1291.721(16)W16O581.92(2)W33O1291.721(16)                            | W13 | 072 | 1.91(2)   | W31 | 088  | 1.945(16) |
| W13O761.94(2)W31O1122.372(16)W13O771.88(2)W31O1151.702(17)W14O541.82(2)W31O1442.060(18)W14O641.897(18)W32O851.786(17)W14O661.711(18)W32O891.946(15)W14O671.95(2)W32O921.919(15)W14O681.92(2)W32O1132.418(17)W14O742.43(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1221.721(16)W16O581.92(2)W33O1291.721(16)                                                                                       | W13 | O73 | 2.50(2)   | W31 | 093  | 1.952(16) |
| W13O771.88(2)W31O1151.702(17)W14O541.82(2)W31O1442.060(18)W14O641.897(18)W32O851.786(17)W14O661.711(18)W32O891.946(15)W14O661.711(18)W32O921.919(15)W14O671.95(2)W32O921.919(15)W14O681.92(2)W32O1132.418(17)W14O742.43(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1221.721(16)W16O581.92(2)W33O1291.721(16)                                                                                      | W13 | O76 | 1.94(2)   | W31 | 0112 | 2.372(16) |
| W14O541.82(2)W31O1442.060(18)W14O641.897(18)W32O851.786(17)W14O661.711(18)W32O891.946(15)W14O671.95(2)W32O921.919(15)W14O681.92(2)W32O1132.418(17)W14O742.43(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1221.721(16)W16O581.92(2)W33O1291.721(16)                                                                                                                                                 | W13 | O77 | 1.88(2)   | W31 | 0115 | 1.702(17) |
| W14O641.897(18)W32O851.786(17)W14O661.711(18)W32O891.946(15)W14O671.95(2)W32O921.919(15)W14O681.92(2)W32O1132.418(17)W14O742.43(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O681.91(2)W33O881.925(16)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                               | W14 | O54 | 1.82(2)   | W31 | 0144 | 2.060(18) |
| W14O661.711(18)W32O891.946(15)W14O671.95(2)W32O921.919(15)W14O681.92(2)W32O1132.418(17)W14O742.43(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O681.91(2)W33O881.925(16)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1221.721(16)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                                | W14 | 064 | 1.897(18) | W32 | 085  | 1.786(17) |
| W14O671.95(2)W32O921.919(15)W14O681.92(2)W32O1132.418(17)W14O742.43(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O681.91(2)W33O881.925(16)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1221.721(16)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                                                              | W14 | 066 | 1.711(18) | W32 | 089  | 1.946(15) |
| W14O681.92(2)W32O1132.418(17)W14O742.43(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O681.91(2)W33O881.925(16)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1221.721(16)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                                                                                          | W14 | O67 | 1.95(2)   | W32 | 092  | 1.919(15) |
| W14O742.43(2)W32O1161.707(18)W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O681.91(2)W33O881.925(16)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1122.340(17)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                                                                                                                       | W14 | 068 | 1.92(2)   | W32 | 0113 | 2.418(17) |
| W15O451.83(2)W32O1182.056(17)W15O611.91(2)W33O861.740(18)W15O681.91(2)W33O881.925(16)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1122.340(17)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                                                                                                                                                    | W14 | O74 | 2.43(2)   | W32 | 0116 | 1.707(18) |
| W15O611.91(2)W33O861.740(18)W15O681.91(2)W33O881.925(16)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1122.340(17)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                                                                                                                                                                                 | W15 | O45 | 1.83(2)   | W32 | 0118 | 2.056(17) |
| W15O681.91(2)W33O881.925(16)W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1122.340(17)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                                                                                                                                                                                                             | W15 | 061 | 1.91(2)   | W33 | 086  | 1.740(18) |
| W15O701.67(2)W33O902.070(18)W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1122.340(17)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                                                                                                                                                                                                                                         | W15 | O68 | 1.91(2)   | W33 | O88  | 1.925(16) |
| W15O711.97(3)W33O911.927(16)W15O742.41(2)W33O1122.340(17)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                                                                                                                                                                                                                                                                     | W15 | O70 | 1.67(2)   | W33 | O90  | 2.070(18) |
| W15O742.41(2)W33O1122.340(17)W16O581.92(2)W33O1291.721(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W15 | O71 | 1.97(3)   | W33 | O91  | 1.927(16) |
| W16 O58 1.92(2) W33 O129 1.721(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W15 | O74 | 2.41(2)   | W33 | 0112 | 2.340(17) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W16 | O58 | 1.92(2)   | W33 | 0129 | 1.721(16) |

<sup>1</sup>1-X,+Y,3/2-Z



**Fig. S16**. The structure of polyoxometalate  $[{P_2W_{18}O_{39}}_2Bi]^{11-}$  anion in **3**.



**Fig. S17**. Coordination polyhedron of two crystallographically independent Bi atoms in **3**, depicting Bi–O bond lengths.



**Fig. S18**. Crystal packing of polyoxometalate  $[{P_2W_{18}O_{39}}_2Bi]^{11-}$  anions in **3** along *b* axis. The cations and water molecules are not shown.