A ferrocene-based pseudopeptide chiroptical switch

Saša Opačak,^a Darko Babić,^a Berislav Perić,^a Željko Marinić,^a Vilko Smrečki,^a Barbara Pem,^b Ivana Vinković Vrček,^b Srećko I. Kirin*^a

^aRuđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia. Email: Srecko.Kirin@irb.hr

^bInstitute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia

Supplementary information

Contents

2	Sup	<pre>ipplement layout description</pre>				
3 Developm		elopment of ferrocene amides	5			
	3.1	History of this work	5			
	3.2	Systems with similar stereochemistry	6			
4	Exp	erimental	7			
	4.1	Reagent abbreviations	7			
	4.2	Synthesis	7			
	4.3	Precursors	7			
5 Basic NMR spectra (¹ H, ¹³ C)		c NMR spectra (¹ H, ¹³ C)	9			
	5.1	1t	9			
	5.2	2t1	2			
	5.3	1n1	6			
	5.4	1b2	0			
	5.5	2b2	3			
	5.6	1b*2	7			
	5.7	2b*2	8			
	5.8	2n	0			
6	Con	centration ¹ H NMR spectra3	4			
	6.1	2b DCM	4			
	6.2	1b DCM	4			
	6.3	2b DMSO	5			
	6.4	2t DCM	5			
	6.5	1t DCM	6			
7	¹ H N	IMR 2b + TFA3	7			
	7.1	2b + 2, 4, 8 eq. TFA	7			
	7.2	2b + excess TFA	8			
8	¹³ C I	NMR 2b + TFA3	9			
9	Tem	perature ¹ H NMR in Dichloroethane4	1			
	9.1	2b4	1			
	9.2	2n4	3			
	9.3	2t4	5			
10 Dosy NMR						
11	11 Nmr mass quantification experiment					

1	1.1	DCM measurements	49			
1	L1.2	MeOH measurements	51			
12	Uv/	Vis spectra in dcm	53			
1	L2.1	2t	53			
1	L2.2	1t	53			
1	L2.3	2n	54			
1	L2.4	1n	54			
1	L2.5	1b	55			
1	L2.6	2b	55			
13	Uv-	Vis spectra of 2b + TFA	56			
1	L3.1	UV spectra of 2b in DCM + TFA c =5 mM	56			
1	L3.2	UV spectra of 2b in DCM + TFA c =0.5 mM	57			
14	Con	centration UV-Vis spectra	58			
1	L4.1	2b in DCM	58			
1	L4.2	2b in MeOH	59			
15	Basi	c CD spectra in DCM	60			
1	L5.1	1t	60			
1	L5.2	2t	60			
1	L5.3	1n	61			
1	L5.4	1b	61			
1	L5.5	2n	62			
1	L5.6	2b	62			
16	Vari	able solvent cd spectra	63			
1	L6.1	2b	63			
1	L6.2	2n	64			
1	L6.3	2t	65			
17	Cd s	pectra of 2b + TFA	66			
1	L7.1	CD spectra of 2b in DCM + ≈1 equivalent TFA during 1 hour	66			
1	L7.2	CD spectra of 2b in DCM + ≈2 equivalents of TFA during 1 hour	66			
1	L7.3	CD spectra of 2b in DCM + ≈3 equivalents of TFA during 1 hour	67			
1	L7.4	CD spectra of 2b in DCM + ≈4 equivalents of TFA during 1 hour	68			
18	CD s	spectra of 2n+TFA	69			
19	19 CD spectra of 2t + TFA70					
20	20 Concentration CD spectra71					

20.1	2b in DCM	71
20.2	2b in MeOH	72
20.3	2b in DMSO	72
20.4	2b + 6 eq TFA	73
20.5	2b dilution with constant TFA concentration	74
21 Tfa	inversion reversibility	75
21.1	Reversibility at \approx 0.35 mM	75
21.2	Reversibility at 2.13 mM	76
22 Ter	nperature dependant CD spectra	77
22.1	2b	77
23 Cal	culated CD spectra	78
23.1	2b-I, 2b-II and 2b-III	78
23.2	2b-I	79
23.3	2b-II	79
23.4	2b-III	80
24 Ft-I	IR spectra	81
24.1	1t DCM	81
24.2	1t KBr	81
24.3	2t KBr	82
24.4	2t DCM	82
24.5	1n KBr	83
24.6	1n DCM	83
24.7	1b KBr	84
24.8	1b DCM	84
24.9	2b KBr	85
24.10	2b DCM	85
24.11	2n KBr	86
24.12	2n DCM	86
25 Dyr	namic light scattering (DLS)	87
26 X-ra	ay	90
26.1	1b	90
26.2	1n	90
26.3	2b and 2b*	91
26.4	2b, 2b*independent molecule positions	92

26.5	5 1b H-bonds and crystal packing	93
26.6	5 1n H-bonds and crystal packing	94
26.7	1b and 2b packing difference	95
26.8	3 Hydrogen bonding in 2b – single molecule	96
26.9	9 Hydrogen bonding in 2b – motif	97
26.1	10 2b crystal packing	98
26.1	Experimental data for the X-ray diffraction studies.	99
26.1	Selected bond lengths and angles for 1b, 1n and 2b [2b*].	100
26.1	L3 Selected torsion angles (°) for 1b, 1n and 2b [2b*].	101
26.1	14 Hydrogen bond parameters for 1b and 1n.	102
26.1	L5 Hydrogen bond parameters for 2b and 2b*	103
27 P	ossible H-bond patterns in ferrocene bis-amides	104
28 Fi	igures, additional information	105
28.1	I Figure 1 concentrations	105
28.2	2 Figure 4 a)	105
28.3	3 Figure 4 b)	106
29 H	igh resolution mass spectra	106
29.1	L 1b	106
29.2	2 2b	107
29.3	3 1n	107
29.4	1 2n	
29.5	5 1t	
29.6	5 2t	
30 R	eferences	110

2 Supplement layout description

The supplement is divided in numerated chapters which correspond to one or more figures, tables, or other types of data. In the manuscript the relevant chapters are referenced by their respective numbers. Ctrl+click on a title or subtitle in the contents table enables fast access to the relevant chapter.

3 Development of ferrocene amides

3.1 History of this work

a) Ferrocene amino acids¹; b) amino acid phosphine catalysts;² c) cyclohexane amide catalysts;³ d) ferrocene amides (**1**, **2**), this work.

3.2 Systems with similar stereochemistry

a)

Examples of our work containing systems in which *L* amino acids/amides induce *P* helical chirality on ferrocene or on stacked *m*-disubstituted phenyls:

f)

b)

- a) Ferrocene amino acid compounds¹
- b) Ferrocene amide compounds (this work)
- c) Triphenylphosphine Rh amino acid catalysts⁴
- d) Triphenylphosphine Rh amide catalysts³
- e) Triphenylphosphine amino acid Ru complexes⁵
- f) Triphenylphosphine amino acid pyridine zinc complexes⁶

4 Experimental

4.1 Reagent abbreviations

TBTU: 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate

HOBT: 1-Hydroxybenzotriazole hydrate

DIPEA: N,N-Diisopropylethylamine

4.2 Synthesis

(a) TBTU/HOBt, DCM, 24-48 h, r.t. (b) TFA/DCM 1/1, 2 h, r.t. (c) TBTU/HOBt, 1/1,1' ferrocenecarboxylic acid, DCM, 24-48 h, r.t.

4.3 Precursors

Synthesis of all precursors except P_a and P_b^* is described in the literature.³

Ph-cyh-boc (**P**_b). Benzoic acid (125 mg 1.00 mmol), TBTU (325 mg, 1.00 mmol), HOBt (135 mg, 1.000 mmol), DIPEA (0.300 mL, 2.04 mmol), (15,25)-*trans-N*-Boc-1,2-cyclohexanediamine (215 mg, 1.00 mmol) and CH₂Cl₂ (50 ml). Yield: 282 mg (89%). ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 7.89 – 7.76 (m, 2H), 7.50 – 7.33 (m, 3H), 7.07 (d, J = 6.7 Hz, 1H), 4.68 (d, J = 8.6 Hz, 1H), 3.85 – 3.68 (m, 1H), 3.63 – 3.42 (m, 1H), 2.27 (d, J = 13.3 Hz, 1H), 2.02 (d, J = 10.0 Hz, 1H), 1.87 – 1.70 (m, 2H), 1.44 – 1.17 (m, 4H) 1.32 (s, 9H).

Ph-cyh*-boc (P_b*) Benzoic acid (125 mg 1.00 mmol), TBTU (325 mg, 1.00 mmol), HOBt (135 mg, 1.000 mmol), DIPEA (0.300 mL, 2.04 mmol), (1*R*,2*R*)-*trans*-*N*-Boc-1,2-cyclohexanediamine (215 mg, 1.00 mmol) and CH₂Cl₂ (50 ml). Yield: 309 mg (97%). ¹H NMR (600 MHz, CDCl₃) δ = 7.87 – 7.83 (m, 2H), 7.48 (t, *J*=7.3, 1H), 7.41 (t, *J*=7.6, 2H), 7.10 (d, *J*=7.4, 1H), 4.69 (d, *J*=8.7, 1H), 3.82 – 3.72 (m, 1H), 3.59 – 3.51 (m, 1H), 2.29 (d, *J*=13.4, 1H), 2.04 (d, *J*=13.2, 1H), 1.86 – 1.74 (m, 2H), 1.43 – 1.22 (m, 13H).

Ph_N-cyh-Boc (P_n). 4-Dimethylaminobenzoic acid (132 mg, 0,80 mmol), TBTU (258 mg, 0,80 mmol), HOBt (101 mg, 0,80 mmol), DIPEA (0,240 mL, 1,63 mmol), (1*S*,2*S*)-*trans*-*N*-Boc-1,2-cikloheksadiamin (171 mg, 0,80 mmol), CH₂Cl₂ (50 ml). Iskorištenje: 230 mg (80%). ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 1H NMR (300 MHz, CDCl3) δ 7,71 (d, J = 8,9 Hz, 2H), 6,77 (d, J = 7,5 Hz, 1H), 6,64 (d, J = 9,0 Hz, 2H), 4,72 (d, J = 8,8 Hz, 1H), 3,83 – 3,66 (m, 1H), 3,58 – 3,38 (m, 1H), 3,00 (s, 6H), 2,23 (d, J = 12,9 Hz, 1H), 2,03 (d, J = 11,1 Hz, 1H), 1,84 – 1,71 (m, 2H), 1,32 – 1,09 (m, 4H), 1,33 (s, 9H).

Tph-cyh-boc (P_t). Triphenylacetic acid (242 mg, 0.84 mmol), TBTU (271mg, 0.84 mmol), HOBt (112 mg, 0.84 mmol), DIPEA (0.250 mL, 1.68 mmol), (1*S*,2*S*)-*trans-N*-Boc-1,2-cyclohexanediamine (180 mg, 0.84 mmol) and CH₂Cl₂ (50 ml). Yield: 261 mg (65 %). ¹H NMR (CDCl₃, 300 MHz) δ /ppm: 7.38 – 7.22 (m, 15H), 6.07 (d, *J* = 7.9 Hz, 1H), 5.06 (d, *J* = 8.1 Hz, 1H), 3.90 – 3.70 (m, 1H), 3.32 – 3.12 (m, 1H), 2.13 – 2.05 (m, 1H), 1.98 (d, *J* = 13.0 Hz, 1H), 1.71 (d, *J* = 9.1 Hz, 2H), 1.39 (s, 9H), 1.33 – 1.01 (m, 4H).

5 Basic NMR spectra (¹H, ¹³C)

5.1 1t

¹H NMR (300 MHz, CDCl₃)

10

¹³C NMR (151 MHz, CDCl₃)

5.2 2t ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃)

5.3 1n ¹H NMR (300 MHz, CDCl₃)

¹H NMR (300 MHz, CD₂Cl₂)

¹³C NMR (151 MHz, CDCl₃)

5.4 1b ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃)

5.5 2b ¹H NMR (300 MHz, CDCl₃)

¹H NMR (300 MHz, CD₂Cl₂)

¹³C NMR (151 MHz, CDCl₃)

5.6 1b* ¹H NMR (300 MHz, CDCl₃)

5.8 2n ¹H NMR (300 MHz, CDCl₃)

¹³C NMR (151 MHz, CDCl₃)

6 Concentration ¹H NMR spectra

6.1 2b DCM

Concentrations from top to bottom in mM =1.52, 3.66, 8.56, 18.12, 28.13, 38.02.

6.2 1b DCM

Concentrations from top to bottom in mM = 4.99, 9.76, 13.13, 22.19, 36.14, 50.46.

6.3 2b DMSO

Concentrations from top to bottom in mM = 1.81, 4.78, 12.15, 16.13, 24.35, 31.89.

6.4 2t DCM

Concentrations from top to bottom in mM =1.51, 3.80, 7.60, 14.70, 19.88, 25.74.
6.5 1t DCM

Concentrations from top to bottom in mM =2.39, 4.57, 8.09, 17.68, 33.74.

7 ¹H NMR 2b + TFA

7.1 2b + 2, 4, 8 eq. TFA

Bottom spectra is pure 2b in DCM (c= 5.60 mM), above spectra are with 2, 4 and 8 equivalents of TFA respectively.

7.2 2b + excess TFA

Bottom spectra is **2b** (c = 4.33 mM) in DCM, upper spectra is the same sample with 5 μ concentrated TFA.

8 ¹³C NMR 2b + TFA

Lower spectra is **2b**, c(2b)=29.4 mM, upper spectra is the same sample with 5 μ L of concentrated TFA, c(2b)=29.1 mM.

9 Temperature ¹H NMR in Dichloroethane

Data fitting was done by Origin 8.5 software.

M M 11 N N 7.20 7.15 f1 (ppm) 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70

Bottom spectra is at 243 K, spectra were recorded in 10 K intervals (bottom 243 K, top 333 K).

Intercept	Slope	R ²
-----------	-------	----------------

c = 8.64 mM

Bottom spectra is at 243 K, spectra were recorded in 10 K intervals (bottom 243 K, top 333 K).

Intercept	Slope	R ²
8.0112	-0.00373	0.98405

Intercept	Slope	R ²
8.73442	-0.00511	0.98831

Bottom spectra is at 243 K, spectra were recorded in 10 K intervals (bottom 243 K, top 333 K).

Intercept	Slope	R ²
6.94213	-0.00283	0.99792

Intercept	Slope	R ²	
8.88199	-0.00553	0.99909	

10 Dosy NMR

Compound	Concentration [mM]	Solvent	D [x10 ⁻¹⁰ m ² s ⁻¹]	Radius [Å]	Volume [ų]
2b	8.45	DCM	9.27-9.49	5.57-5.70	23.33-23.87
2b	1.42	DCM	8.59-8.75	6.04-6.16	25.30-25.80
2b+8 eq. TFA	7.78	DCM	8.24-8.89	5.95-6.42	24.92-26.89
2b	7.78	MeOH	6.20-6.33	6.31-6.48	26.43-27.14
2b	1.66	MeOH	5.97-6.01	6.68-6.72	27.98-28.15
1b	10.63	DCM	11.5-11.8	4.47-4.59	18.72-19.22
1b	9.7	MeOH	8.06-8.34	4.81-4.98	20.15-20.86
2t	8.29	DCM	7.34-7.71	6.85-6.92	28.69-28.99
2t	7.87	MeOH	5.29-5.46	7.35-7.59	30.79-31.79
1t	8.26	DCM	9.52-10.1	5.23-5.55	21.91-23.25
1t	8.09	MeOH	6.91-6.97	5.76-5.81	24.13-24.34

The hydrodynamic radius was calculated from equation $D=(kBT)/\zeta$, where $\zeta=6\pi\eta r$, kB is the Boltzmann constant, η the solvent viscosity (1 cP=10–3 kg m–1 s–1=10–3 Pa s) and r the molecule's radius . η (DCM) = 0.413 mPa s, η (MeOH) = 0.5435 mPa s. Since this equation is valid for the size of colloid particles in solvent (large size difference) the calculated radius **r** should be taken only qualitatively. The values of D shown are the maximal and minimal measured values from multiple experiments, the hydrodynamic radius was calculated from these values accordingly.

11 Nmr mass quantification experiment

In order to asses if proton NMR detects all of the dissolved compound **2b** or just an unaggregated fraction we have recorded spectra containing a mixture of **2b** and 1,1'dimethylferrocene. 1,1'dimethylferrocene was chosen as a mass standard as it contains no functional groups that could interfere with hydrogen bonding and has a well resolved methyl peak at 1.94 ppm. For calculations the isolated ferrocene peak of **2b** at 4.33 ppm (corresponding to 2 protons) was used. Multiple measurements with different mass ratios of **2b** and 1,1'dimethylferrocene were performed.

Mass percentages were calculated from NMR spectra using the equation $W_x = \frac{1}{1 + \frac{l_y}{l_x} \cdot \frac{N_x}{N_y} \cdot \frac{M_y}{M_x}}$, where I

is the intensity (integral) of the signal, N is the number of protons, and M is the molar mass.

Proton NMR spectra of 1,1'dimethylferrocene (upper) and a mixture of **2b** and 1,1'dimethylferrocene (lower) in DCM.

Proton NMR spectra of 1,1'dimethylferrocene (upper) and a mixture of **2b** and 1,1'dimethylferrocene (lower) in MeOD.

11.1 DCM measurements

m (1,1'dimethylferrocene) = 4.02 mg, m (**2b**) = 1.97 mg, w (**2b**) = 33 %, w (**2b**, from NMR) = 34 %.

m (1,1'dimethylferrocene) = 1.96 mg, m (**2b**) = 1.90 mg, w (**2b**) = 49 %, w (**2b**, from NMR) = 48 %.

m (1,1'dimethylferrocene) = 1.03 mg, m (**2b**) = 5.33 mg, w (**2b**) = 84 %, w (**2b**, from NMR) = 83 %.

11.2 MeOH measurements

m (1,1'dimethylferrocene) = 1.23 mg, m (**2b**) = 1.66 mg, w (**2b**) = 57 %, w (**2b**, from NMR) = 56 %.

m (1,1'dimethylferrocene) = 1.26 mg, m (**2b**) = 3.18 mg, w (**2b**) = 72 %, w (**2b**, from NMR) = 69%.

m (1,1'dimethylferrocene) = 2.14 mg, m (**2b**) = 0.91 mg, w (**2b**) = 30 %, w (**2b**, from NMR) = 29 %.

12 Uv/Vis spectra in dcm

c= 4.241 mM

12.4 1n

c = 7.22 mM

12.6 2b

c = 6.85 mM

13 Uv-Vis spectra of 2b + TFA

13.1 UV spectra of 2b in DCM + TFA c =5 mM

c (2b) = 4.89-5.01 mM

c = 0.53-0.61 mM

14 Concentration UV-Vis spectra

14.1 2b in DCM

14.2 2b in MeOH

The elevated baseline at 8.47 mM is due to precipitation at this concentration.

15 Basic CD spectra in DCM

16 Variable solvent cd spectra

16.1 2b

c (DCM) = 0.563 mM, c (MeOH) = 0.408, c (ACN) = 0.405 mM.

16.2 2n

c (DCM) = 4.10 mM, c (MeOH) = 0.96 mM, c (DMSO) = 2.54 mM.

16.3 2t

c (DCM) = 4.01 mM, c (MeOH) = 4.11 mM, c (DMSO) = 3.97 mM, c (ACN) = 3.89 mM.

17 Cd spectra of 2b + TFA

c = 4.78 mM

17.2 CD spectra of 2b in DCM + ≈2 equivalents of TFA during 1 hour

c = 5.44 mM

17.3 CD spectra of 2b in DCM + ≈3 equivalents of TFA during 1 hour

c = 4.61 mM

17.4 CD spectra of 2b in DCM + ≈4 equivalents of TFA during 1 hour

c = 3.39 mM

18 CD spectra of 2n+TFA

c=1.28-1.30 mM. Inversion is not observed When TFA is added to a DCM solution of 2n.

c(2t) = 2.27 mM-2.25 mM

20 Concentration CD spectra

20.1 2b in DCM

20.3 2b in DMSO

c(TFA)=0.129 mM. Concentration of **2b** is shown on the graph.

21 Tfa inversion reversibility

21.1 Reversibility at ≈ 0.35 mM

The numbers on the graph represent $n(TFA)-n(DIPEA)/\mu mol$. For each inversion cycle more and more TFA is needed for the same magnitude of change.

CD spectra used to generate the image above.

The numbers on the graph represent $n(TFA)-n(DIPEA)/\mu mol$. For each inversion cycle more and more TFA is needed for the same magnitude of change.

c(2b) = 2.13 mM - Experiment was done by using TFA and DIPEA solutions of **2b** of the same concentration as the measured solution, thus keeping constant concentration of the system.

CD spectra used to generate the image above.

22 Temperature dependant CD spectra

22.1 2b

23 Calculated CD spectra

23.1 2b-I, 2b-II and 2b-III

Calculated combination of ECD spectra of **2b-I**, **2b-II** and **2b-III** (in DCM), weighted by the Boltzmann population factors from the calculated Gibbs energies. The weighted contributions from **2b-I**, **2b-II** and **2b-III** are also shown.

23.2 2b-I

Calculated ECD spectrum of **2b-I** (in DCM)

Calculated ECD spectrum of 2b-II (in DCM)

23.4 2b-III

Calculated ECD spectrum of **2b-III** (in DCM).

24 Ft-IR spectra

24.1 1t DCM

24.4 2t DCM

24.6 1n DCM

24.11 2n KBr

25 Dynamic light scattering (DLS)

Hydrodynamic size (d_{H} in nm) distribution, diffusion coefficients (D, m ² s ⁻¹) and polydispersity index
(PDI) of different concentrations of 2b in DCM or MeOH with or without the addition of TFA
obtained by using dynamic light scattering (DLS) technique.

				- 21	
Solvent	Molar	[2b],	d _H , nm (% of total	D, m ² s ²	PDI
	ratio 2b :	mg/mL	particle		
	TFA		population)		
MeOH	no TFA	1.8	88.6 ± 25.6	$1.14*10^{-12} \pm 0.45*10^{-12}$	0.51 ± 0.21
	no TFA	3.7	577.2 ± 151.0	$1.23^{*}10^{-10} \pm 0.98^{*}10^{-10}$	0.35 ± 0.15
	no TFA	6.7	101.7 ± 32.4 (84%)	$2.99*10^{-10} \pm 1.82*10^{-10}$	0.43 ± 0.06
			2512 ± 1113 (16%)		
DCM	no TFA	1.5	77.2 ± 1.5	$1.12*10^{-11} \pm 0.17*10^{-11}$	0.32 ± 0.02
	no TFA	3.7	34.4 ± 20.2	$2.06*10^{-11} \pm 0.72*10^{-11}$	0.41 ± 0.29
	no TFA	6.7	89.9 ± 16.2	$1.79^{*}10^{-11} \pm 0.86^{*}10^{-11}$	0.59 ± 0.09
	no TFA	10.5	182.6 ± 70.5	$1.79^{*}10^{-11} \pm 0.97^{*}10^{-11}$	0.82 ± 0.03
	1:50.000	1.9	46.8 ± 35.0 (64%)	$8.39^{10^{-11}} \pm 4.52^{10^{-11}}$	0.53 ± 0.26
			3745 ± 1210 (36%)		
	1:13.000	6.7	145.2 ± 112.1 (55%)	$5.10*10^{-11} \pm 2.82*10^{-11}$	0.56 ± 0.09
			1861 ± 286 (45%)		
	1:6	1.8	84.6 ± 51.1 (76%)	4.53*10 ⁻¹¹ ± 3.56*10 ⁻¹¹	0.52 ± 0.17
			4210± 966 (24%)		
	1:6	6.2	101.3 ± 114.8 (75%)	$4.49*10^{-13} \pm 2.87*10^{-13}$	0.57 ± 0.37
			4513 ± 1340 (25%)		

Size distribution of aggregates formed after dispersing **2b** in MeOH at three different concentrations and obtained by intensity using DLS technique.

Size distribution of aggregates formed after dispersing **2b** in DCM at four different concentrations and obtained by intensity using DLS technique.

Size distribution of aggregates formed after dispersing **2b** at two different concentrations in DCM in the presence of different amounts of TFA and obtained by intensity using DLS technique.

26 X-ray

26.1 1b

Molecular structure of **1b** with atom labelling scheme. Ellipsoids are drawn at 30% probability level.

26.2 1n

Molecular structure of **1n** with atom labelling scheme. Ellipsoids are drawn at 30% probability level.

Molecular structures of individual molecules in crystal structure of **2b** (left part) and **2b*** (right part) with atom labelling scheme. Ellipsoids are drawn at 30% probability level [symmetry codes: (i): 1-x, y, -z; (ii): -x, y, 1-z (*C*2)].

Mutual positions of molecules 1 (red) 2 (blue) and 3 (green) in crystal structure of 2b (left part) and 2b* (right part). Molecules 1 and 3 are positioned on 2-fold crystallographic axes and molecule 2 is positioned on general crystallographic position.

26.5 1b H-bonds and crystal packing

Hydrogen bonds (up) and crystal packing (bottom) in crystal structure of **1b**. One dimensional hydrogen bonding motif with graph set notation **C(4)** is highlighted in black with labelled atoms. Original asymmetric unit is dark green coloured [symmetry code (i): 1-x, -1/2+y, 1-z ($P2_1$)].

26.6 1n H-bonds and crystal packing

Hydrogen bonds (up) and crystal packing (bottom) in crystal structure of **1n**. One dimensional hydrogen bonding motif with graph set notation **C(4)** is highlighted in black with labelled atoms. Original asymmetric unit is dark green coloured [symmetry code (i): 2-x, -1/2+y, 1/2-z ($P2_12_12_1$)].

26.7 1b and 2b packing difference

Difference in packing of one-dimensional hydrogen bonding motifs of **C(4)** graph-set notation in **1b** (left, $P2_1$ space group) and **1n** (right, $P2_12_12_1$ space group). Views on the structures are along *b* crystallographic axes and one of hydrogen bonding motifs is highlighted by green colour.

26.8 Hydrogen bonding in 2b - single molecule

One representative molecule for structure **2b**, showing basic hydrogen bonding motif common for all symmetry independent molecules **1**, **2** and **3**. Same motif is valid for **2b*** where motif is opposite enantiomer of that shown in figure. Labels are different for particular molecules **1**, **2** and **3**: N1^a, H1N^a, O2^a, N2^a, H2N^a, O1^a, N1^b, H1N^b, O2^b, N2^b, H2N^b and O1^b labels are N11ⁱ, H11Nⁱ, O22ⁱ, N21, H21N, O11ⁱ, N11, H11N, O22, N21ⁱ, H21ⁱ and O11 for **1**, respectively, N12, H12N, O21, N23, H23N, O12, N13, H13N, O24, N22, H22N and O13 for **2**, respectively and N14, H14N, O23, N24ⁱⁱ, H24ⁱⁱ, O14, N14ⁱⁱ, H14ⁱⁱ, O23ⁱⁱ, N24, H24N and O14ⁱⁱ for **3**, respectively [symmetry codes: (i): 1-*x*, *y*, -*z*; (ii): -*x*, *y*, 1-*z* (*C*2)]. All symmetry independent hydrogen bonds and their geometry parameters are listed in **Table 22.15**. Basic hydrogen bonding motif consist of two one-dimensional amide-amide motifs of graph set notation **C(4)**, emphasized in black and light grey colour.

26.9 Hydrogen bonding in 2b - motif

Complete hydrogen bonded one-dimensional motif (chain of molecules **1**, **2** and **3**) in **2b** formed by two strands of amide-amide chain motifs of **C(4)** graph set notation emphasized in black and grey. Chain extrudes along one of the face diagonals of the unit cell, *i.e.* along direction $\{-1, 0 \ 1\}$ [symmetry codes: (i): 1-x, y, -z; (ii): -x, y, 1-z (*C*2)].

26.10 2b crystal packing

a) Crystal packing of molecules in one unit cell for **2b**. b) Packing of one-dimensional hydrogen bonded chains of molecules shown in , viewing along their direction of propagation. One chain is emphasized in green colour. Picture emphasize hexagonal surrounding of one chain in the structure.

26.11 Experimental data for the X-ray diffraction studies.

Compound	1b	1n	2b [2b*]
Formula	$C_{24}H_{26}FeN_2O_2$	$C_{26}H_{31}FeN_3O_2$	C ₃₈ H ₄₂ FeN ₄ O ₄ +solvent
F _w (g mol ⁻¹)	430.32	473.39	674.61
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	P21	P212121	C2
a (Å)	8.8082(2)	8.9319(2)	27.994(2) [27.846(2)]
b (Å)	10.9118(2)	11.0143(3)	11.178(1) [11.1554(6)]
<i>c</i> (Å)	11.1489(2)	24.0525(7)	24.045(3) [23.762(2)]
α (°)	90	90	90
β (°)	105.480(2)	90	96.91(1) [97.506(7)]
γ (°)	90	90	90
V (Å ³)	1032.69(3)	2366.25(11)	7469.1(14) [7318.0(9)]
Ζ	2	4	8
D_{calc} (g cm ⁻³)	1.384	1.329	1.200 [1.225]
F(000)	452	1000	2848
Radiation (Å)	1.54184	1.54184	1.54184
Temperature (K)	128(5)	293(2)	293(2) [114(12)]
Reflections collected	5162	6654	11617 [15097]
Independent reflections	3538	3978	8855 [6005]
Rinit	0.0346	0.0486	0.0286 [0.0944]
Reflections observed	3444	3183	5078 [3333]
Parameters	270	299	848 [836]
Flack parameter	-0.011(4)	-0.014(5)	-0.013(6) [-0.006(9)]
$R_1 [l > 2\sigma(l)]^{[a]}$	0.0353	0.0466	0.0541 [0.0698]
wR ₂ (all data) ^[b]	0.0933	0.1124	0.1325 [0.1562]
Goof, S ^[c]	1.041	1.079	0.986 [0.975]
Maximum/minimum	0.388/-0.339	0.285/-0.450	0.157/-0.193 [0.242/-0.205]
electron density (e Å ³)			

^[a] $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$. ^[b] $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2]/\Sigma [w(F_0^2)^2]\}^{1/2}$. ^[c] $S = \{\Sigma [w(F_0^2 - F_c^2)^2]/(n-p)\}^{1/2}$ where n is number of reflections and p is the total number of parameters refined.

	1b	1n	2b [2b*] ^[a]
Bond lengths (Å)			
<c-c>Ferrocene</c-c>	1.425(8)	1.41(1)	1.41(2) [1.42(2)]
<fe-c>Ferrocene</fe-c>	2.042(3)	2.04(2)	2.04(2) [2.04(2)]
C5–C6	1.481(5)	1.490(7)	1.477(12), 1.493(11), 1.482(12), 1.452(11)
			[1.478(19), 1.46(2), 1.465(19), 1.50(2)]
C6-01	1.246(5)	1.234(6)	1.226(9), 1.233(9), 1.252(8), 1.232(8)
			[1.253(15), 1.277(18), 1.220(15), 1.245(17)]
C6-N1	1.346(5)	1.351(6)	1.344(9), 1.353(8), 1.340(10), 1.348(8)
			[1.358(16), 1.362(19), 1.387(17), 1.329(17)]
N1–C7	1.461(5)	1.449(7)	1.445(10), 1.454(9), 1.456(10), 1.447(9)
			[1.455(14), 1.452(16), 1.471(15), 1.467(16)]
<c-c>Cyclohexane</c-c>	1.527(5)	1.52(1)	1.522(1) [1.52(2)]
C12–N2	1.463(4)	1.461(7)	1.444(11), 1.446(10), 1.462(11), 1.465(9)
	1 2 2 2 (5)		[1.471(15), 1.456(15), 1.448(15), 1.46(2)]
N2-C13	1.333(5)	1.340(7)	1.332(10), 1.344(10), 1.351(10), 1.333(9)
C12 02	1 2 4 1 / 4)	1.220(6)	[1.298(16), 1.349(17), 1.362(18), 1.38(2)]
013-02	1.241(4)	1.228(6)	1.235(10), 1.238(9), 1.244(9), 1.241(8)
C12 C14	1 409/5)	1 406/7)	[1.252(17), 1.202(10), 1.230(19), 1.24(2)]
013-014	1.498(5)	1.496(7)	1.500(14), 1.472(14), 1.484(13), 1.488(11)
<	1 201/5)	1 20(1)	[1.30(2), 1.30(2), 1.30(3), 1.47(3)] 1 37(2) [1 38(2)]
C17_N2	1.591(5)	1.39(1)	1,57(2)[1.30(2)]
		1.373(7)	
Bond angles (°)		1.455(0)	
	109.0/5)	108.0(0)	109(1) [109(2)]
	107.0(3)	108.0(9)	108(1) [108(2)]
C1_C5_C6	129 1(3)	129 1(5)	128 1(8) 129 7(7) 127 3(8) 130 0(7)
CI-CJ-CU	129.1(3)	129.1(5)	[129, 2(15), 125, 2(19), 127, 3(8), 130, 0(7)]
 	117 5(3)	116.8(5)	117 4(8) 115 8(8) 118 7(7) 116 6(7)
	117.3(3)	110.0(3)	[116.1(15), 119.4(18), 114.1(15), 117.8(16)]
C6-N1-C7	122.2(3)	123.0(5)	121.0(7), 121.4(6), 122.4(6), 120.5(6)
	(-)	(-)	[121.1(12), 122.4(15), 119.3(13), 121.0(13)]
N1-C7-C8	109.1(3)	109.6(4)	112.0(8), 112.6(7), 111.9(8), 112.5(7)
			[112.0(11), 111.0(12), 112.0(11), 111.9(13)]
<c-c-c>Cyclohexane</c-c-c>	111.0(2)	111.0(5)	110.8(9) [111(1)]
C11-C12-N2	110.5(3)	111.4(5)	111.8(9), 111.5(7), 109.6(9), 112.3(8)
			[113.5(12), 112.2(12), 109.9(10), 110.5(16)]
C12-N2-C13	123.7(3)	124.5(5)	120.5(7), 121.2(7), 122.6(7), 120.4(6)
			[119.0(14), 122.8(14), 122.7(14), 123.7(19)]
N2-C13-C14	117.0(3)	115.3(5)	117.0(9), 116.0(8), 117.8(8), 117.8(6)
			[117.1(17), 119.4(16), 116.8(19), 117(2)]
C13–C14–C15	118.3(3)	118.9(5)	119.7(12), 119.2(12), 117.9(10), 118.7(7)
			[120.4(18), 117.8(18), 116(2), 117(2)]
<c-c-c>Benzene</c-c-c>	120.0(8)	120(3)	120(1) [120(2)]
C16-C17-N3		121.9(5)	
C20-N3-C21		118.5(7)	

26.12Selected bond lengths and angles for 1b, 1n and 2b [2b*].

^a For averaged bond and angles represented by < > brackets, the mean value of bonds and angles in all 3 symmetry independent molecules are given, for individual bonds and angles the values of four symmetry independent bond and angles are given in the row (C51-C61, C52-C62, C53-C63, C54-C64 for C5-C6, etc.)

^b Angles are taken between carbon atoms which are eclipsed one above the other, with Fe atom in the vertex (C5–Fe1–C5F, etc.).

26.13 Selected torsion angles (°)	for 1b, 1n and 2b [2b*].
-----------------------------------	--------------------------

Torsion angle	1b	1n	2b [2b*]
C6–C5…C5F–H5F	~19	~18	
C61–C51…C51 ⁱ –C61 ⁱ			-11.39(1) [10.26(1)]
C62–C52…C53–C63			-14.27(1) [13.86(1)]
C64–C54…C54 ⁱⁱ –C64 ⁱⁱ			-11.48(1) [9.97(1)]
C1-C5-C6-01	-170.9(4)	-165.9(5)	
C11-C51-C61-O11			178.4(7) [179.4(14)]
C12-C52-C62-O12			176.8(11) [-179.4(16)]
C13-C53-C63-O13			179.0(10) [-179.0(18)]
C14–C54–C64–O14			177.1(8) [-178.1(15)]
C6-N1-C7-C12	-87.4(4)	-87.6(6)	
C61-N11-C71-C121			-147.9(7) [151.2(13)]
C62-N12-C72-C122			-149.2(8) [149.4(13)]
C63-N13-C73-C123			-151.2(8) [149.2(12)]
C64-N14-C74-C124			-151.9(6) [146.9(15)]
C7-C12-N2-C13	-160.5(3)	-163.3(5)	
C71-C121-N21-C131			-149.9(8) [149.9(12)]
C72-C122-N22-C132			- 154.4(7) [153.1(13)]
C73-C123-N23-C133			-154.7(7) [154.4(13)]
C74-C124-N24-C134			-149.9(7) [148.4(17)]
02-C13-C14-C15	-13.9(5)	-12.6(9)	
O21–C131–C141–C151			34.8(16) [-26(2)]
022-C132-C142-C152			24.1(13) [-26(2)]
023-C133-C143-C153			26.7(13) [-26(3)]
O24–C134–C144–C154			23.7(13) [-36(3)]
C16-C17-N3-C20		-6.1(12)	

26.14Hydrogen bond parameters for 1b and 1n.

	1b	1n
parameter	N1-H1N···O2 ⁱ	
N-H (Å)	0.88(6)	0.76(5)
H…O (Å)	2.12(6)	2.22(5)
N…O (Å)	2.973(4)	2.964(6)
N-H…O (°)	162(6)	167(5)
	N2-H2N…O1 (intra)	
N-H (Å)	0.78(6)	0.76(7)
H…O (Å)	2.32(6)	2.40(7)
N…O (Å)	2.898(4)	2.907(6)
N-H…O (°)	132(5)	126(7)

Symmetry code: (i): 1-*x*, -1/2+*y*, 1-*z* for **1b** (*P*2₁), 2-*x*, -1/2+*y*, 1/2-*z* for **1n** (*P*2₁2₁2₁)

	2b	2b*
parameter	N11-H11N…O22	
N-H (Å)	0.86	0.86
H…O (Å)	2.18	2.14
N…O (Å)	3.017(8)	2.980(16)
N-H…O (°)	166	167
	N21-H21N·	··O11 ⁱ (intra)
N-H (Å)	0.86	0.86
H…O (Å)	2.03	2.03
N…O (Å)	2.875 (8)	2.871(16)
N-H…O (°)	168	166
	N12-H1	2N…O21
N-H (Å)	0.86	0.86
H…O (Å)	2.18	2.14
N…O (Å)	3.025 (8)	2.981(17)
N-H…O (°)	169	168
	N22-H22N	··O13 (intra)
N-H (Å)	0.86	0.86
H…O (Å)	2.06	2.05
N…O (Å)	2.909(8)	2.896(16)
N-H…O (°)	168	166
	N13-H13N…O24	
N-H (Å)	0.86	0.86
H…O (Å)	2.17	2.14
N…O (Å)	3.014(7)	2.977(18)
N-H…O (°)	167	166
	N23-H23N…O12 (intra)	
N-H (Å)	0.86	0.86
H…O (Å)	2.07	2.06
N…O (Å)	2.907(8)	2.908(17)
N-H…O (°)	165	167
	N14-H14N…O23	
N-H (Å)	0.86	0.86
H…O (Å)	2.18	2.14
N…O (Å)	3.023(8)	2.980(18)
N-H…O (°)	167	165
	N24-H24N…O14 ⁱⁱ (intra)	
N-H (Å)	0.86	0.86
H…O (Å)	2.07	2.05
N…O (Å)	2.908(7)	2.890(18)
N-H…O (°)	165	165

26.15 Hydrogen bond parameters for 2b and 2b*.

symmetry codes: (i): 1-*x, y, -z*; (ii): -*x, y*, 1-*z* (*C*2)

27 Possible H-bond patterns in ferrocene bis-amides

The results of conformational search for **2b** were rationalized by analyzing possible ways to get as many amide H-bonds as possible. The scheme below shows all possible combinations of H-bonding between CO and NH groups in **2b**. The most stable conformers found by computational search (**2b-I**, **2b-II**, **2b-III**) exhibit exactly the H-bond patterns shown below in the top two rows. Actually, one O...H distance in **2b-II** is too big (2.95 A) to be considered as an H-bond, but there is another conformer (**2b-IV**, not shown) with the same H-bond pattern as in **2b-II** and with all O...H distances below 2 Å (yet, its energy is 3 kcal/mol higher than **2b-II**). No other conformers have any of the patterns below. The patterns in the bottom two rows are impossible to realize geometrically. This demonstrates that hydrogen bonding is a useful lead in the conformational search of small (pseudo)peptide molecules and also confirms that the present search was exhaustive.

28 Figures, additional information

28.1 Figure 1 concentrations

a) **2b** 3.67 mM 1b 10.131 mM b) **2b** 10.45 mM 1b 11.444 mM c) **2b** c = 6.85 mM **1b** c = 8.18 mM d) **2b** 4.02017 mM **1b** 4.4914 mM 28.2 Figure 4 a) c ≈ 3 mM Tfa Tfa volume fraction/% equivalents 0 0 1 0.028977108 2 0.057110223 3 0.084435688 4 0.110987791 5 0.136798906 6 0.161899622 7 0.186318871 8 0.210084034 9 0.233221042 10 0.255754476 11 0.27770765 12 0.299102692 13 0.31996062 14 0.34030141 15 0.360144058 16 0.379506641 17 0.398406375 18 0.416859657

28.3 Figure 4 b)

c≈ 0.2 mM

Tfa	Tfa volume
equivalents	fraction/%
0	0
1	0.011012003
2	0.021829295
3	0.032456994
4	0.042900043
5	0.053163211
6	0.063251107
7	0.073168182
8	0.08291874
9	0.092506938
10	0.101936799
11	0.111212213
12	0.120336943
13	0.129314632
14	0.138148806
15	0.146842878
103	0.199600798
362	0.497512438

29 High resolution mass spectra

 $C_{24}H_{26}FeN_2O_2+$

Calculated mass: 430.1343701892

Measured mass: 430.1329

Calculated mass: 674.2555479574

Measured mass: 674.2573

29.3 1n

 $C_{26}H_{31}FeN_{3}O_{2}+$

Calculated mass: 473.1765693549

Measured mass: 473.1760

$C_{42}H_{52}FeN_6O_4+$

Calculated mass: 760.3399462888

Measured mass: 760.3391

 $C_{37}H_{36}FeN_2O_2+$

Calculated mass: 596.2126205102

Measured mass: 596.2109

29.6 2t

 $C_{64}H_{62}FeN_4O_4+$

Calculated mass:1006.4120485994

Measured mass: 1006.4105

30 References

- 1 S. I. Kirin, H. B. Kraatz and N. Metzler-Nolte, *Chem. Soc. Rev.*, 2006, **35**, 348–354.
- 2 Z. Kokan, Z. Glasovac, M. Majerić Elenkov, M. Gredičak, I. Jerić and S. I. Kirin, *Organometallics*, 2014, **33**, 4005–4015.
- 3 S. Opačak, Z. Kokan, Z. Glasovac, B. Perić and S. I. Kirin, *Eur. J. Org. Chem.*, 2019, **2019**, 2115–2128.
- 4 Z. Kokan and S. I. Kirin, *RSC Adv.*, 2012, **2**, 5729–5737.
- 5 M. Pernar, Z. Kokan, J. Kralj, Z. Glasovac, L. M. Tumir, I. Piantanida, D. Eljuga, I. Turel, A. Brozovic and S. I. Kirin, *Bioorg. Chem.*, 2019, **87**, 432–446.
- 6 Z. Kokan, B. Perić, M. Vazdar, Ž. Marinić, D. Vikić-Topić, E. Meštrović and S. I. Kirin, *Chem. Commun.*, 2017, **53**, 1945–1948.