Electronic Supporting Information

Synthesis, Characterization, Magnetism and Theoretical Analysis of Hetero-metallic [Ni₂Ln₂] Partial Di-cubane Assemblies

Avik Bhanja,^a Radovan Herchel,^b Eufemio Moreno-Pineda^c, Anjan Khara^a, Wolfgang Wernsdorfer^{d,e}, Debashis Ray^{*a}

^{a.} Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India

^{b.} Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu

12, CZ-771 46 Olomouc, Czech Republic

^{c.} Depto. de Química-Física, Escuela de Química, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá

^{d.} Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.

^{e.} Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany.

*E-mail: dray@chem.iitkgp.ac.in

Contents

1.	Crystallographic data and refinement details for complexes 1-4	
2.	Observed metal ion binding modes of ligand H ₂ L	3
3.	SHAPE analysis of the metal ion centres	4
4.	FTIR spectra of complexes 1, 2, 3 and 4	4
5.	H-bonding of complex 1	5
6.	Powder XRD pattern of complexes 1, 2, 3 and 4	5
7.	Asymmetric unit of complex 1	5
8.	Detail crystallographic table for complexes 1	6-7
9.	Molecular structure of Complex 2	7
10.	Detail crystallographic table for complexes 2	7-8
11.	Molecular structure of Complex 3	9
12.	Detail crystallographic table for complexes 3	
13.	Molecular structure of Complex 4	10
14.	Detail crystallographic table for complexes 4	11-12
15.	CASSCF calculation for 1–4	12-14
16.	Fitting of experimental magnetic data calculated with POLY_ANISO.	16

Parameters	1	2	3	4
Formula	$C_{66}H_{76}Gd_2N_2Ni_2O_{22}$	C ₆₆ H ₇₆ Tb ₂ N ₂ Ni ₂ O ₂₂	C ₆₆ H ₇₆ Dy ₂ N ₂ Ni ₂ O ₂₂	C ₆₆ H ₇₆ Ho ₂ N ₂ Ni ₂ O ₂₂
F.W.(g mol ⁻¹)	1681.20	1684.54	1691.70	1696.56
crystal system	triclinic	triclinic	triclinic	triclinic
space group	рl	рl	p1	рl
Crystal color	Green	Green	Green	Green
Crystal size/mm ³	0.16×0.14×0.12	0.18×0.12×0.10	0.17×0.15×0.10	0.18×0.16×0.12
a/ Å	11.366(12)	11.272(10)	11.108(18)	11.072(9)
b/ Å	11.446(13)	11.493(12)	11.279(18)	11.326(10)
c/ Å	13.959(15)	13.955(12)	13.69(2)	13.677(11)
α/ deg	78.54(3)	78.47(2)	101.289(19)	101.34(3)
β/ deg	76.46(4)	76.06(2)	103.51(2)	103.396(12)
γ/\deg	89.78(3)	89.62(4)	90.45(2)	90.601(11)
V/ Å ³	1729(3)	1718(3)	1633(5)	1633(2)
Ζ	1	1	1	1
limiting indices	$-15 \le h \le 13$	$-13 \le h \le 14$	$-13 \le h \le 15$	$13 \le h \le 13$
	$-16 \le k \le 16$	$-14 \le k \le 12$	$-14 \le k \le 14$	$-14 \le k \le 14$
	$-16 \le l \le 19$	$-17 \le l \le 17$	$-18 \le l \le 15$	$-17 \le l \le 16$
$D_c/\text{g cm}^{-3}$	1.615	1.628	1.721	1.725
μ (mm ⁻¹)	2.504	2.648	2.910	3.043
F(000)	846	848	850	852
Т/К	296	290	296	296
Total reflections	22749	21741	22578	20893
R(int)	0.0683	0.0540	0.0378	0.0244
Unique reflections	9271	7022	7839	6480
Observed reflections	5501	5786	7051	6068
Parameters	430	430	430	430
$R_{I}; wR_{2} (I > 2\sigma(I))$	0.0597, 0.1904	0.0273, 0.0651	0.0397, 0.1040	0.0236, 0.0724
GOF (F^2)	0.978	1.067	1.045	1.155
Largest diff peak and hole	2.245, -2.513	0.611, -0.575	3.634, -1.023	1.064, -0.550
$(e Å^{-3})$				
CCDC No.	2062614	2062615	2062616	2062617

Table S1 Crystallographic data and structure refinement details of 1-4

Figure S1. Binding sites and coordination modes^{S1} of L^{2–}, PhCOO[–] and MeO[–]

	JPPY-6	TPR-6	OC-6	PPY-6	HP-6
Nil of 1	27.388	12.266	0.751	23.871	28.704
Ni1 of 2	27.511	12.193	0.725	24.039	28.930
Ni1 of 3	27.513	12.161	0.743	24.021	28.932
Nil of 4	27.705	12.203	0.719	24.200	28.964

Table S2 Results of continuous shape measures calculations^{S2–S3} using program SHAPE 2.1 for Ni^{II} atoms of complexes 1-4.^{*a*}

^aJPPY-6 = Johnson pentagonal pyramid J2, TPR-6 = Trigonal prism, OC-6 = Octahedron, PPY-6 = Pentagonal pyramid, HP-6 = Hexagon

Table S3 Results of continuous shape measures calculations S^{2-S3} using program SHAPE 2.1 for Ln^{III} atoms of 1–4.^{*a*}

[ML8]	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	IGBE-8	IETBPY-8	IBTPR-8	BTPR-8	ISD-8	TT-8
[IIIE0]	01 0			000	5/11/C 0	100 0	JODI 0	JEIDIIO	JDIIR 0	DIIRO	352 0	110
Gd1 of 1	30.475	23.223	16.315	9.940	1.684	1.193	13.581	27.712	2.829	2.460	3.502	10.430
Tb1 of 2	30.716	23.268	16.413	10.047	1.701	1.190	13.405	27.952	2.711	2.406	3.410	10.512
Dy1 of 3	30.699	23.503	16.326	9.819	1.654	1.089	13.486	28.167	2.661	2.386	3.302	10.260
Ho1 of 4	30.585	23.583	16.454	9.968	1.674	1.091	13.301	28.153	2.578	2.342	3.219	10.389

^aOP-8 = Octagon, HPY-8 = Heptagonal pyramid, HBPY-8 = Hexagonal bipyramid, CU-8 = Cube, SAPR-8 = square antiprism, TDD-8 = Triangular dodecahedron, JGBF-8 = Johnson gyrobifastigium J26, JETBPY-8 = Johnson elongated triangular bipyramid J14, JBTPR-8 = Biaugmented trigonal prism J50, BTPR-8 = Biaugmented trigonal prism, JSD-8 = Snub diphenoid J84, TT-8 = Triakis tetrahedron

Fig. S2 FTIR spectra of Complex 1, Complex 2, Complex 3 and Complex 4

Fig. S3 PXRD patterns of Complexes 1-4

Fig. S4 Asymmetric unit of complex 1 with partial atom numbering scheme.

Fig. S5 1D-chain like H-bonding present in complex 1 through solvent MeOH.

Atom 1	Atom 2	Distance [Å]	Atom 1	Atom 2	Distance [Å]
Gd1	02	2.297(5)	Gd1	01	2.646(6)
Gd1	03	2.313(5)	Ni1	02	2.009(5)
Gd1	O4	2.367(5)	Ni1	05	2.048(5)
Gd1	O6	2.376(5)	Ni1	04	2.057(5)
Gd1	07	2.383(5)	Ni1	03	2.070(5)
Gd1	09	2.445(5)	Ni1	04	2.124(5)
Gd1	O10	2.445(7)	Ni1	N1	2.064(6)

 Table S4 Selected bond distances of 1

Table S5 Selected bond angles of 1

Atom 1	Atom 2	Atom 3	Bond	Atom 1	Atom 2	Atom 3	Bond
			Angles(°)				Angles(°)
02	Gd1	03	84.06(18)	O6	Gd1	01	114.50(19)
02	Gd1	O4	72.38(17)	07	Gd1	01	77.2(2)
03	Gd1	04	69.98(16)	09	Gd1	01	70.0(2)
02	Gd1	06	77.1(2)	O10	Gd1	01	144.93(19)
03	Gd1	06	144.55(17)	O2	Ni1	05	91.7(2)
04	Gd1	06	75.78(17)	02	Ni1	04	93.3(2)
02	Gd1	07	137.55(19)	05	Ni1	04	169.9(2)
03	Gd1	07	79.60(18)	02	Ni1	N1	90.1(2)
04	Gd1	07	134.76(18)	05	Ni1	N1	89.0(2)
06	Gd1	07	133.50(19)	O4	Ni1	N1	99.8(2)
02	Gd1	09	100.6(2)	02	Ni1	03	173.4(2)
03	Gd1	09	143.01(19)	05	Ni1	03	94.4(2)
O4	Gd1	09	146.59(17)	O4	Ni1	03	81.13(18)
06	Gd1	09	70.83(19)	N1	Ni1	03	87.4(2)
07	Gd1	09	72.32(19)	02	Ni1	04	83.53(19)
O2	Gd1	O10	151.16(19)	05	Ni1	04	89.2(2)
03	Gd1	O10	107.6(2)	04	Ni1	O4	82.6(2)
O4	Gd1	O10	86.68(19)	N1	Ni1	O4	173.3(2)
06	Gd1	O10	78.7(2)	03	Ni1	04	99.18(19)

07	Gd1	O10	71.3(2)	Ni1	O4	Ni1	97.4(2)
09	Gd1	O10	85.9(2)	Ni1	O4	Gd1	103.72(19)
02	Gd1	01	61.56(18)	Ni1	O4	Gd1	98.15(19)
03	Gd1	01	80.79(19)	Ni1	02	Gd1	103.9(2)
04	Gd1	01	127.32(18)	Ni1	03	Gd1	105.2(2)

Fig. S6 Molecular structure of Complex 2 with partial atomic numbering scheme. Solvent molecules are omitted for clarity.

Atom 1	Atom 2	Distance [Å]	Atom 1	Atom 2	Distance [Å]
Tb1	02	2.281(3)	Tb1	01	2.665(3)
Tb1	03	2.293(3)	Ni1	02	2.013(3)
Tb1	05	2.344(3)	Ni1	O4	2.033(3)
Tb1	O6	2.353(3)	Ni1	O10	2.048(3)
Tb1	O10	2.356(3)	Ni1	N1	2.057(3)
Tb1	09	2.412(3)	Ni1	03	2.066(3)
Tb1	08	2.426(3)	Ni1	O10	2.130(3)

Table S6 Selected bond distances of 2

Atom 1	Atom 2	Atom 3	Bond	Atom 1	Atom 2	Atom 3	Bond
			Angles(°)				Angles(°)
O2	Tb1	03	84.34(11)	06	Tb1	01	76.47(10)
02	Tb1	05	77.06(10)	O10	Tb1	01	128.28(9)
03	Tb1	05	144.87(9)	09	Tb1	01	69.18(11)
02	Tb1	O6	136.80(9)	08	Tb1	01	144.42(9)
03	Tb1	O6	78.92(9)	02	Ni1	04	92.41(10)
05	Tb1	O6	134.01(10)	02	Ni1	O10	92.67(10)
02	Tb1	O10	73.33(9)	04	Ni1	O10	170.22(9)
03	Tb1	O10	70.41(9)	02	Ni1	N1	89.60(11)
05	Tb1	O10	75.77(10)	04	Ni1	N1	88.19(12)
O6	Tb1	O10	134.39(10)	O10	Ni1	N1	100.20(12)
02	Tb1	09	99.71(11)	02	Ni1	03	173.19(10)
03	Tb1	09	142.54(10)	04	Ni1	03	93.99(10)
05	Tb1	09	70.83(11)	O10	Ni1	03	81.34(10)
O6	Tb1	09	72.83(10)	N1	Ni1	03	88.28(11)
O10	Tb1	09	146.58(9)	02	Ni1	O10	83.86(10)
02	Tb1	08	151.59(9)	04	Ni1	O10	89.81(11)
03	Tb1	08	107.46(12)	O10	Ni1	O10	82.44(11)
05	Tb1	08	78.99(11)	N1	Ni1	O10	173.07(10)
O6	Tb1	08	71.56(10)	03	Ni1	O10	98.48(10)
O10	Tb1	08	86.17(9)	Ni1	O10	Ni1	97.56(11)
09	Tb1	08	86.54(12)	Ni1	O10	Tb1	103.32(10)
O2	Tb1	01	61.60(10)	Ni1	O10	Tb1	97.39(10)
03	Tb1	01	80.78(11)	Ni1	02	Tb1	103.38(10)
05	Tb1	01	114.50(11)	Ni1	03	Tb1	104.92(10)

 Table S7 Selected bond angles of 2

Fig. S7 Molecular structure of Complex **3** with partial atomic numbering scheme. Solvent molecules are omitted for clarity.

Atom 1	Atom 2	Distance [Å]	Atom 1	Atom 2	Distance [Å]
Dy1	02	2.256(3)	Dy1	01	2.621(4)
Dy1	03	2.261(4)	Ni1	O2	1.985(4)
Dy1	08	2.325(4)	Ni1	O4	2.022(4)
Dy1	O6	2.327(4)	Ni1	08	2.036(4)
Dy1	05	2.330(4)	Ni1	N1	2.046(4)
Dy1	09	2.377(4)	Ni1	03	2.050(4)
Dy1	O10	2.378(4)	Ni1	08	2.107(3)

 Table S8 Selected bond distances of 3

Table S9 Selected bond angles of **3**

Atom 1	Atom 2	Atom 3	Bond	Atom 1	Atom 2	Atom 3	Bond
			Angles(°)				Angles(°)
02	Dy1	03	84.27(15)	O6	Dy1	01	76.77(13)
02	Dy1	08	72.95(13)	05	Dy1	01	114.91(14)
03	Dy1	08	70.82(11)	09	Dy1	01	145.31(11)
02	Dy1	O6	137.46(11)	O10	Dy1	01	70.24(16)
03	Dy1	O6	78.46(11)	02	Ni1	04	92.24(13)

08	Dy1	06	133.94(14)	02	Nil	08	92.89(13)
02	Dy1	05	77.12(15)	O4	Ni1	08	169.96(11)
03	Dy1	05	145.56(11)	O2	Nil	N1	89.79(15)
08	Dy1	05	76.08(14)	04	Ni1	N1	88.48(16)
06	Dy1	05	133.77(12)	08	Ni1	N1	100.16(17)
02	Dy1	09	150.79(11)	O2	Nil	03	173.36(12)
03	Dy1	09	107.20(17)	O4	Ni1	03	94.08(13)
08	Dy1	09	85.35(11)	08	Nil	03	81.17(13)
06	Dy1	09	71.74(11)	N1	Nil	03	88.37(15)
05	Dy1	09	78.85(15)	02	Nil	08	83.41(14)
02	Dy1	O10	100.00(16)	04	Ni1	08	89.22(15)
03	Dy1	O10	142.76(12)	08	Nil	08	82.81(16)
08	Dy1	O10	145.97(11)	N1	Nil	08	172.73(13)
06	Dy1	O10	73.62(14)	03	Nil	08	98.68(14)
05	Dy1	O10	69.91(15)	Ni1	08	Ni1	97.19(16)
09	Dy1	O10	87.00(16)	Ni1	08	Dy1	103.11(13)
02	Dy1	01	61.97(14)	Ni1	08	Dy1	97.85(14)
03	Dy1	01	79.83(15)	Ni1	03	Dy1	104.90(13)
08	Dy1	01	127.98(12)	Ni1	02	Dy1	103.90(14)

Fig. S8 Molecular structure of Complex **4** with partial atomic numbering scheme. Solvent molecules are omitted for clarity.

Atom 1	Atom 2	Distance [Å]	Atom 1	Atom 2	Distance [Å]
Ho1	02	2.248(3)	Ho1	01	2.629(3)
Ho1	03	2.260(3)	Ni1	02	1.991(3)
Ho1	08	2.322(3)	Ni1	O4	2.028(3)
Ho1	O6	2.323(3)	Ni1	08	2.039(3)
Ho1	05	2.323(3)	Ni1	N1	2.046(3)
Ho1	09	2.363(3)	Ni1	03	2.049(3)
Ho1	O10	2.373(3)	Ni1	08	2.111(3)

 Table S10 Selected bond distances of 4

 Table S11 Selected bond angles of 4

Atom 1	Atom 2	Atom 3	Bond	Atom 1	Atom 2	Atom 3	Bond
			Angles(°)				Angles(°)
02	Ho1	03	84.44(10)	06	Ho1	01	76.06(9)
02	Ho1	08	73.41(9)	05	Ho1	01	115.53(10)
03	Ho1	08	71.11(9)	09	Ho1	01	69.95(11)
02	Ho1	06	136.87(9)	O10	Ho1	01	144.46(9)
03	Ho1	06	78.19(9)	O2	Ni1	04	92.34(10)
08	Ho1	06	134.07(9)	02	Ni1	08	92.53(10)
02	Ho1	05	77.51(10)	O4	Ni1	08	170.56(9)
03	Ho1	05	145.75(9)	O2	Ni1	N1	89.75(11)
08	Ho1	05	75.90(10)	O4	Ni1	N1	88.15(12)
06	Ho1	05	133.79(9)	08	Ni1	N1	99.95(12)
02	Ho1	09	99.73(11)	02	Ni1	03	173.18(10)
03	Ho1	09	142.29(9)	04	Ni1	03	94.15(10)
08	Ho1	09	146.16(9)	08	Ni1	03	81.35(10)
06	Ho1	09	73.39(10)	N1	Ni1	03	88.36(11)
05	Ho1	09	70.27(10)	02	Ni1	08	83.47(10)
02	Ho1	O10	151.53(9)	O4	Ni1	08	89.52(11)
03	Ho1	O10	107.23(11)	08	Ni1	08	83.00(11)
08	Ho1	O10	85.70(9)	N1	Ni1	08	172.73(10)
06	Ho1	O10	71.58(9)	03	Ni1	08	98.67(10)

05	Ho1	O10	78.80(10)	Ni1	08	Ni1	96.99(11)
09	Ho1	O10	86.83(11)	Ni1	03	Ho1	104.70(10)
02	Ho1	01	62.03(9)	Ni1	02	Ho1	103.68(10)
03	Ho1	01	79.60(10)	Ni1	08	Ho1	102.84(10)
08	Ho1	01	128.38(9)	Ni1	08	Ho1	97.53(10)

Table S12. The calculated $J_{\text{Ni-Ni}}$ parameters for compounds **1-4** by B3LYP functional

Compound	d(Ni-Ni*) (Å)	<(Ni-O-Ni*)av	$J_{ m Ni-Ni}(m cm^{-1})$
1	3.142	97.42	5.89
2	3.143	97.55	5.67
3	3.108	97.16	7.96
4	3.109	96.98	8.38

Table S13. The splitting of the lowest multiplets for Ln^{III} ions in 2-4 compounds calculated in ORCA

Compound	2	3	4
Ln	Tb	Dy	Но
	0	0	0
	1.81	0	4.4
	65.25	107.64	39.12
	76.45	107.64	53.4
	133.66	144.92	82.58
	157.73	144.92	107.92
	184.05	189.75	134.42
Enorgy loyala	246.53	189.75	161.28
(om-1)	253.54	274.53	172.52
(em -)	388.3	274.53	196.17
	389.7	332.33	214.18
	623.79	332.33	220.45
	624.02	486.11	226.26
		486.11	247.24
		615.35	249.37
		615.35	313.58
			314.12
Calculated spin-orbit interactions (cm ⁻¹)	1726.9	1925.4	2139.5

Table S14. The CASSCF calculated *D*-tensor and *g*-tensor values of Ni^{II} in **2-4** done by OpenMOLCAS/SINGLE_ANISO

Compound	D(Ni)	<i>E/D</i> (Ni)	g-factors
2	4.77	-0.103	2.310, 2.306, 2.279
3	4.64	-0.125	2.294, 2.288, 2.259
4	4.59	-0.091	2.295, 2.290, 2.261

Table S15. The splitting of	the lowest multiplets for	Ln ^{III} ion in 2-4 c	compounds calculated	l in
OpenMOLCAS/SINGLE_	ANISO			

$Tb^{III}(^{7}F_{6})$		$\mathrm{Ho}^{\mathrm{III}}({}^{5}\mathrm{I}_{8})$			
$E (\text{cm}^{-1})$	$E (\text{cm}^{-1})$	g_x	g_y	g_z	$E (\mathrm{cm}^{-1})$
0	0.0	0.061	0.134	19.361	0
2.09	108	1.270	2.581	15.439	4.14
60.7	150	2.750	3.359	14.159	39.5
72.9	190	2.328	4.082	10.555	53.2
125	272	0.286	1.445	12.381	81.2
150	327	0.554	0.891	16.505	106
174	475	0.045	0.080	16.920	133
238	602	0.015	0.030	19.083	158
244					171
375					194
376					211
603					216
603					222
					241
					244
					306
					307

Fig. S9 The molecular structure of **1** and B3LYP calculated spin isodensity surface with the cutoff values of 0.02 ea_0^{-3} . Hydrogen atoms are omitted for clarity.

Fig. S10 The molecular structure of 3 derived from the experimental X-ray geometry used for CASSCF calculations done in ORCA overlaid with principal axis of *D*-tensor (x/y/z-axes colored as red/green/blue arrows) for Ni atom (left) and overlaid with principal axis of g-tensor of the first Kramers doublet (x/y/z-axes colored as red/green/blue arrows).

Fig. S11 The best-fits of experimental magnetic data (temperature dependence of mean susceptibility measured at B = 0.1 T and the isothermal molar magnetization measured at T = 2 K) of 2-4 calculated with POLY_ANISO.

References

- S1. R. A. Coxall, S. G. Harris, D. K. Henderson, S. Parsons, P. A. Tasker and R. E. P. Winpenny, J. Chem. Soc., Dalton Trans., 2000, 2349–2356.
- S2. M. Pinsky and D. Avnir, Inorg. Chem., 1998, 37, 5575–5582.
- S3. D. Casanova, M. Llunell, P. Alemany and S. Alvarez, *Chem. Eur. J.*, 2005, 11, 1479–1494.