Supplementary Information

Strong circularly polarized luminescence of mixed lanthanide coordination polymers with control of 4f electronic structure

Md. Jahidul Islam^a, Yuichi Kitagawa^{a,b*}, Makoto Tsurui^c & Yasuchika Hasegawa^{a,b*}

^aInstitute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,

Kita-21, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.

^bFaculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.

^cGraduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.

Correspondence and requests for materials should be addressed to Y.K. (email: y-kitagawa@eng.hokudai.ac.jp) or Y.H. (email: hasegaway@eng.hokudai.ac.jp)

S1. Synthesis of 4,4-bis(diphenylphosphoryl)biphenyl (dpbp): The dpbp was synthesized according to the previously reported procedure.^{S1}

S2. Synthesis of Tris(3-trifluoroacetyl-(+)-camphorato)Ln(III) (Ln(+tfc)₃(H₂O)_n, Ln = Eu, Gd, and Sm): The Ln(+tfc)₃(H₂O)_n were synthesized according to the previously reported procedure.^{S1}

S3. $[Eu(+tfc)_3(dpbp)]_n$: The $[Eu(+tfc)_3(dpbp)]_n$ was synthesized according to the previously reported procedure.^{S1} Methanol (8 mL) containing $Eu(+tfc)_3(H_2O)_2$ (190 mg, 0.20 mmol) and dpbp (112 mg, 0.20 mmol) was refluxed at 65 °C under stirring for 14 h. The reaction mixture was filtrated to afford the white powder (Yield: 51%, 150 mg).

FTIR = 1659 (st, C=O), 1181 (st, P=O) cm⁻¹. Elemental analysis calcd. (%) of $C_{144}H_{140}Eu_2F_{18}O_{16}P_4$, C 59.71, H 4.87; found C 59.07, H 4.73. Under the same experimental procedure of $[Eu (+tfc)_3(dpbp)]_n$, all other mixed lanthanide polymers were synthesized.

S4. $[Gd_{0.5}Eu_{0.5}(+tfc)_3(dpbp)]_n$: White powder, yield: 43%. To determine the Eu/Gd ratios of $[Gd_{0.5}Eu_{0.5}(+tfc)_3(dpbp)]_n$, ICP-AES analysis was conducted (AMETEK Materials Analysis Division, SPECTRO ARCOS). Concentrations were calculated from the emission intensities of Eu and Gd (λ = 393.048 and 342.247 nm, respectively) for each sample using the appropriate calibration curves. The analysis results revealed that the Eu/Gd ratio was 0.485 : 0.515 (calcd, 1 : 1).

FTIR = 1661 (st, C=O), 1183 (st, P=O) cm⁻¹. Elemental analysis calcd. (%) of $C_{144}H_{140}GdEuF_{18}O_{16}P_4$, C 59.60, H 4.86; found C 59.07, H 4.73.

S5. $[Sm_{0.5}Eu_{0.5}(+tfc)_3(dpbp)]_n$: White powder, yield: 33 %. To determine the Eu/Gd ratios of $[Sm_{0.5}Eu_{0.5}(+tfc)_3(dpbp)]_n$, ICP-AES analysis was conducted (AMETEK Materials Analysis Division, SPECTRO ARCOS). Concentrations were calculated from the emission intensities of Eu and Sm ($\lambda = 393.048$ and 442.434 nm, respectively) for each sample using the appropriate calibration curves. The analysis results revealed that the Eu/Sm ratio was 0.499 : 0.501 (calcd, 1 : 1). FTIR = 1658 (st, C=O), 1182 (st, P=O) cm⁻¹. Elemental analysis calcd. (%) of C₁₄₄H₁₄₀SmEuF₁₈O₁₆P₄, C 59.75, H 4.87; found C 59.09, H 4.78.

S6. Instruments

Electrospray ionization mass spectrometry (ESI-MS) was performed using JEOL JMS-T100 LP. Elemental analyses were performed using a J-SCIENCE MICRO CORDER JM10 system. IR analyses were performed by JASCO FTIR-4600 spectrometer. XRD data were recorded at on a Rigaku SmartLab diffractometer with Cu-K_α radiation and D/teX Ultra detector. Emission spectra were measured at room temperature using a Horiba/Jobin-Yvon FluoroLog-3 spectrofluorometer. Excitation light source was 450 W Xe arc lamp. The emission quantum yield (Φ_{tot}) was determined using an FP-6300 spectrofluorometer attached with an integrating sphere (ILF-533). Emission lifetimes were measured using the third harmonics (355 nm) of a Q- switched Nd: YAG laser (Spectra Physics, INDI-50, fwhm = 5 ns, λ = 1064 nm) and a photomultiplier (Hamamatsu Photonics, R5108, response time ≤ 1.1 ns). The Nd:YAG laser response was monitored with a digital oscilloscope (Sony Tektronix, TDS3052, 500 MHz) synchronized the Nd: YAG laser. The temperature-dependent emission lifetime measurements were performed using Nd: YAG laser with a cryostat (Thermal Block Company, SASB245T) and a temperature controller (Oxford, Instruments, ITC502S). Diffuse reflection spectra were obtained using a JASCO V-670 spectrophotometer with an ISN-723 integrating sphere unit. CPL spectra were measured using a JASCO CPL-300 spectrofluoropolarimeter for pure Eu(III)

and Eu(III)-Ln(III) coordination polymers (0.5 mg) mixed with KBr (150 mg). Tablets (diameter: 10 mm, Eu(III) complexes/KBr) were prepared using a tablet forming machine (48.2 kN, press time: 3min).

S7. ESI-MS spectra

Fig. S1. ESI-MS spectra of (a)[Eu(+tfc)₃(dpbp)]_n, (b)[Eu_{0.5}Gd_{0.5}(+tfc)₃(dpbp)]_n, and (c) [Eu_{0.5}Sm_{0.5}(+tfc)₃(dpbp)]_n. Red bar: Calculation MS spectra of (a) $[Eu_2(+tfc)_5(dpbp)]^+$, (b) $[EuGd(+tfc)_5(dpbp)]^+$, and (c) $[EuSm(+tfc)_5(dpbp)]^+$. The ESI-MS results indicate the existence of the $[EuLn(+tfc)_5dpbp]^+$ (Ln = Gd and Sm) frameworks in Eu(III)-Ln(III) (Ln = Gd and Sm) coordination polymers.

S8. XRD spectra

Fig. S2. XRD patterns of $(a)[Eu(+tfc)_3(dpbp)]_n$, $(b)[Eu_{0.5}Gd_{0.5}(+tfc)_3(dpbp)]_n$, and (c) $[Eu_{0.5}Sm_{0.5}(+tfc)_3(dpbp)]_n$.

S9. Calculation of photophysical parameter^{S1}

The intrinsic emission quantum yields (Φ_{ff}), the radiative (k_r), and the nonradiative (k_{nr}) rate constants were estimated using equations as follows.

$$\tau_{rad} = \frac{1}{k_r} \qquad (S1)$$
$$\tau_{obs} = \frac{1}{k_r + k_{nr}} \qquad (S2)$$
$$k_r = A_{MD,0} n^3 \times \left(\frac{I_{tot}}{I_{MD}}\right) \qquad (S3)$$
$$\phi_{ff} = \frac{k_r}{k_r + k_{nr}} = \frac{\tau_{obs}}{\tau_{rad}} \qquad (S4)$$

$$k_{nr} = \frac{1}{\tau_{obs}} - \frac{1}{\tau_{rad}}$$
(S5)

$$\eta_{sens} = \frac{\Phi_{tot}}{\Phi_{ff}} \times 100 \tag{S6}$$

where $A_{MD,0}$ is the spontaneous luminescence probability for the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition in vacuo (14.65 s⁻¹), *n* is the refractive index of the medium (1.5), and (I_{tot}/I_{MD}) is the ratio of the total area of the Eu(III) luminescence spectrum to the area of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition band. τ_{obs} and τ_{rad} are emission lifetime and the inverse of the rate of radiative decay, respectively.

S10. Calculation of Activation Energy (ΔE_a) and Frequency factor (^A) of back energy transfer, based on the temperature dependent PL-LT².

Adopting an established method, we calculate activation energy (ΔE_a) and frequency factor (*A*). To estimate the effect of BEnT, the temperature-dependent emission lifetimes in the solid state were measured in the range 100–400 K (Fig. S3). To analyze the energy transfer mechanism, we estimated the back-energy transfer rate constants (k_{BEnT}). The temperature dependence of k_{BEnT} was expected to follow an Arrhenius-type equation with an activation energy ΔE_a ,^{S2} which is defined by the given equation:

$$ln\left(\frac{1}{\tau_{obs}} - \frac{1}{\tau_{100K}}\right) = lnk_{BEnT} = lnA - \frac{\Delta E_a}{R} \frac{1}{T}$$
(S7)

in which τ_{obs} , τ_{100K} , A, ΔE_a , R and T are the observed emission lifetime, emission lifetime at 100 K, frequency factor, activation energy, gas constant, and temperature, respectively. From these calculations, the E_a and A values are given in Table S1.

Fig. S3. Temperature dependent emission lifetimes of $[Eu(+tfc)_3(dpbp)]_n$ (black dot), $[Eu_{0.5}Gd_{0.5}(+tfc)_3(dpbp)]_n$ (red dot), and $[Eu_{0.5}Sm_{0.5}(+tfc)_3(dpbp)]_n$ (blue dot).

	$\Delta E_{\rm a}$ / cm ⁻¹	A / s ⁻¹
[Eu(+tfc) ₃ dpbp] _n	3600	$3.0 imes 10^9$
$[Eu_{0.5}Gd_{0.5}(+tfc)_3dpbp]_n$	4610	2.0×10^{11}
$[Eu_{0.5}Sm_{0.5}(+tfc)_3dpbp]_n$	4090	2.6×10^{10}

Table S1. ΔE_a and A of $[Eu(+tfc)_3(dpbp)]_n$, $[Eu_{0.5}Gd_{0.5}(+tfc)_3(dpbp)]_n$, and

 $[Eu_{0.5}Sm_{0.5}(+tfc)_3(dpbp)]_n$.

References

- S1. Y. Hasegawa, Y. Miura, Y. Kitagawa, S. Wada, T. Nakanishi, K. Fushimi, T. Seki, H. Ito,
- T. Iwasa, T. Taketsugu, M. Gon, K. Tanaka, Y. Chujo, S. Hattori, M. Karasawa and K. Ishii,

Chem. Commun., 2018, 54, 10695–10697.

S2. M. Yamamoto, Y. Kitagawa T. Nakanishi, K. Fushimi, Y. Hasegawa, *Chem.-Eur. J.* 2018,
24, 17719–17726.