Synthesis of pyrazole anchored three-coordinated organoboranes and their application in the detection of picric acid

Shreenibasa Sa[‡], ^a Vanga Mukundam[‡], ^a Anupa Kumari, ^b Ritwick Das^{b*} and Krishnan Venkatasubbaiah^{a*}

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar-752050, Odisha (India). ^bSchool of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar-752050, Odisha (India)Tel: 091-6742494165; Email: krishv@niser.ac.in.

Experimental Section

General Information

All reagents and starting materials were purchased from Sigma-Aldrich, Alfa-Aesar and Spectrochem chemical companies and used as received unless otherwise noted. Chlorinated solvents acetonitrile, and DMF were distilled from CaH₂. THF and toluene were distilled from Na/benzophenone prior to use. All 400 MHz ¹H, 100 MHz ¹³C, NMR spectra were recorded on a Bruker ARX 400 spectrometer operating at 400 MHz. All ¹H and ¹³C NMR spectra were referenced internally to solvent signals. All NMR spectra were recorded at ambient temperature. ESI mass spectra were recorded on Bruker, micrOTOF-QII mass spectrometer. The absorbance spectra were recorded on a JASCO V-730 UV-Visible spectrometer. The fluorescence spectra were recorded using Edinburgh FS5 spectrofluorometer. Absolute fluorescence quantum yields of compounds 2a and 2b were measured by integrating sphere method using Edinburgh FS5 spectrofluorometer. The fluorescence spectra are corrected for the instrumental response. Cyclic voltammetry measurements were performed with a conventional three electrode cell using an electrochemical workstation (CH Instrument, Model: 1100A) The three-electrode system consisted of a Glassy carbon working electrode, a Pt wire as the secondary electrode, and a Ag wire as the reference electrode. The voltammograms were recorded with ca. 1.0 x10⁻³ M solution in DMF containing Bu₄NPF₆ (0.1 M) as the supporting electrolyte. The scans were referenced after the addition of a small amount of ferrocene as the internal standard. Single-crystal X-ray diffraction data were collected on a Bruker APEX-II diffractometer using Mo-Kα radiation (0.71073 Å). SADABS absorption corrections were applied. The structures were solved and refined with SHELX suite of programs. All non-hydrogen atoms were refined with anisotropic displacement coefficients. The H atoms were placed at calculated positions and were refined as riding atoms. Crystallographic data for compounds 2a & 2b have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC- 2063185-2063186. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk). DFT calculations were performed

with the Gaussian09 program.¹ The structures were optimized using 6-31G(d,p) (B3LYP) as the basis set. Frequency calculations confirmed the optimized structures to be local minimum structures. Excitation data were determined using TD-DFT (B3LYP/631g(d,p))–calculations.

References:

 Gaussian 09 (Rev. C.02), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, _. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Scheme S1: Synthetic pathway for compound 2a and chemdraw of Triaryl pyrazole

Scheme S2: Synthetic pathway for compound 2b.

Table	e S1:	Photop	hysical	data of	compound	2a, 2b	and	triary	l pyrazol	e
-------	-------	--------	---------	---------	----------	--------	-----	--------	-----------	---

Compound	solvent	$\lambda_{abs}{}^a$	ε _{max}	$\lambda_{em}^{a,b}$ (nm)	$arPhi_{ m f}^{ m c}$
		(nm)	$(M^{-1} cm^{-1} \times 10^3)$		
2a	Toluene	334	33.19	370	0.30
	THF	333	36.55	377	0.23
	CH ₂ Cl ₂	331	30.00	383	0.14
	CH ₃ CN	328	30.88	403	0.12
2b	Toluene	368	25.00	411	0.17
	THF	366	33.74	413	0.15
	CH ₂ Cl ₂	361	27.61	413	0.14
	CH ₃ CN	358	29.61	415	0.12
Triaryl	THF	258	21.3	365	0.08
pyrazole					

^aAbsorption maximum (concentrations in solutions were 10^{-5} M). ^bExcited at absorption maximum. ^c Absolute fluorescence quantum yields were measured by integrating sphere method.

	2a	26
formula	C ₃₉ H ₃₇ BN ₂	C37H35BN2S
M _r	544.51	550.54
<i>T</i> [K]	100	296.15
wavelength, Å	0.71073 Å	0.71073 Å
crystal system	Monoclinic	Monoclinic
space group	$P2_{1}/n$	$P2_{1}/c$
a [Å]	8.2587(4)	13.5234(3)
b [Å]	30.5396(17)	11.1663(3)
c [Å]	11.9793(7)	20.6115(5)
α [°]	90	90
β [°]	91.502(3)	93.494(2)
δ [°]	90	90
V [Å ^{3]}	3020.3(3)	3106.68(13)
Ζ	4	4
$\rho_{\rm calc} [{ m g \ cm^{-3}}]$	1.197	1.177
μ (MoK α) [mm ⁻¹]	0.069	0.132
F (000)	1160.0	1168.0
Crystal size [mm]	0.22 imes 0.2 imes 0.15	0.23 imes 0.21 imes 0.2
θ range [°]	6.806 - 49.994	3.96 – 55.868
limiting indices	$-9 \le h \le 9$	$-17 \le h \le 17$
	$-35 \le k \le 36$	$-14 \le k \le 13$
	$-13 \le l \le 14$	$-27 \le l \le 27$
reflns collected	24571	26106
independent reflns	5296	7413
	[R(int) = 0.0940]	[R(int) = 0.0385]
absorption correction	Semi-empirical from	Semi-empirical from
	equivalents	equivalents
refinement method	Full-matrix least square on F^2	Full-matrix least square on F^2
data / restraints / parameters	5296/0/385	7413/0/376
Goodness-of-fit on F^2	1.038	1.029
final R indices	$R_1 = 0.0491$	$R_1 = 0.0474$
$[I > 2\sigma(I)]^{[a]}$	$wR_2 = 0.1150$	$wR_2 = 0.1215$
R indices (all data) ^[a]	$R_1 = 0.0675$	$R_1 = 0.0760$
× /	$wR_2 = 0.1252$	$wR_2 = 0.1380$
peak _{max} /hole _{min} [e Å ⁻³]	0.28 and -0.27	0.26 and -0.24

 Table S2: Details of X-ray crystal structure analyses of compound 2a and 2b.

^[a] $R_I = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; \ wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2}.$

Figure S1. UV-Vis absorption (top) & Normalized fluorescence spectra (bottom) of compound 2a in different solvents (Concentration = 10^{-5} M, excited at λ_{abs}).

Figure S2: UV-Vis absorption (top) & Normalized emission spectra (bottom) of compound **2b** in different solvents (Concentration = 10^{-5} M, excited at λ_{abs}).

Figure S3: Cyclic voltammograms of compound **2a** & **2b** (*vs.* Ferrocene/Ferrocenium) with 0.1 M n Bu₄NPF₆ in DMF as the supporting electrolyte (scan rate 100 mV/s).

Figure S4: Fluorescence quenching of Compound **2b** with the addition of different concentrations of PA (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 26, 29, 33, 37, 41, 45, 50, 55, 60, 65, 70, 75, 80, 90, and 100 equiv of PA) in THF (10^{-5} M; excited at 366 nm).

Figure S5: Stern-Volmer plot of compound **2a** $(10^{-5}M)$ with addition of different concentration of PA in THF.

Figure S6: Stern-Volmer plot of compound **2b** (10^{-5} M) with addition of different concentration of PA in THF.

Figure S7: Stern-Volmer plot of compound **2a** (10^{-5} M) with addition of different concentration of PA in THF: H2O (70:30) mixture.

Figure S8: Stern-Volmer plot of compound **2b** (10^{-5} M) with addition of different concentration of PA in THF: H₂O (70:30) mixture.

Figure S9: Fluorescence lifetime decay of compound **2a** after the addition of 0, 1, 2, 3, 4 and 5 equiv. of PA in THF (Concentration = 10^{-5} M).

Figure S10: Fluorescence lifetime decay of compound **2b** after the addition of 0, 1, 2, 3, 4 and 5 equiv. of PA in THF (Concentration = 10^{-5} M).

Figure S11: ¹H NMR titration of compound **2a** upon the addition of 0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5 and 20.0 equiv. of PA in DMSO-d6.

Triphenyl pyrazole

Figure S12: Fluorescence quenching of triphenyl pyrazole in 10^{-5} M THF with addition of 0 to 23 equiv. of PA.

Table S3: LOD	data for Con	npound 2a-2b	and Ligand 2a	1-2b
		1	0	

Probe	Detection Medium	Detection Limit
Compound 2a	THF:H ₂ O(70:30)	1.63×10 ⁻⁷ M
Compound 2b	THF:H ₂ O(70:30)	1.95×10 ⁻⁷ M
Compound 2a	THF	1.28×10 ⁻⁷ M
Compound 2b	THF	3.06×10 ⁻⁴ M
Triphenyl pyrazole	THF	8.41×10 ⁻⁷ M

The detection limits were calculated with the following equation:

Detection limit= $3\sigma/K$

Where σ is the standard deviation of blank measurement and K is the slope between the emission counts vs picric acid concentration.

References: RSC Adv., 2015, 5, 74924-74931.

Table S4: Comparison	of detection limit	s of recently	reported probe	s for PA in th	ne literature wi	ith
compound 2a and comp	pound 2b					

Probe	Detection Medium	Detection Limit(M)	References
o o o s	THF	1×10 ⁻⁶	<i>Org. Lett.</i> , 2012, 14 , 1312-1315
	CH ₃ CN:H ₂ O (9:1)	7.27×10 ⁻⁷	<i>RSC Adv.</i> , 2014, 4 , 7120– 7123
HO N NH ₂	H ₂ O:CH ₃ OH (8:2)	4.3×10 ⁻⁶	Anal. Methods, 2015, 7 , 10272
Ph Ph N Ph	CH ₃ CN	2.42×10 ⁻⁶	<i>Talanta</i> , 2017, 174 , 462– 467
Ph N N B Mes Ph	THF:H ₂ O (70:30)	1.63×10 ⁻ ⁷ M	This work
Ph Mes N S B Mes Ph	THF:H ₂ O (70:30)	1.95×10 ⁻ ⁷ M	This work

Table S5.Calculated electronic transitions for compound **2a** & **2b** from TD-DFT (B3LYP/631g(d,p))– PCM solvation (THF))) calculations

Compound	Transition	MO contributions	Energy gap eV (nm)	Oscillator strength/f
2a	$S_0 \rightarrow S_1$	HOMO-2→LUMO	3.42 (361)	0.5599
		HOMO→LUMO		
	$S_0 \rightarrow S_2$	HOMO-1→LUMO	3.47 (357)	0.1042
	$S_0 \rightarrow S_3$	HOMO-3→LUMO	3.37 (337)	0.0266
		HOMO-2→LUMO		
		HOMO→LUMO		
2b	$S_0 \rightarrow S_1$	HOMO-3→LUMO	3.24 (382)	0.7038
		HOMO→LUMO		
	$S_0 \rightarrow S_2$	HOMO-1→LUMO	3.46 (358)	0.0870
	$S_0 \rightarrow S_3$	HOMO-3→LUMO	3.59 (345)	0.0084
		HOMO-2→LUMO		
2a-PA	S0→S1	HOMO-3→LUMO	2.28 (541)	0.0027
		HOMO-1→LUMO		
		HOMO→LUMO		
	S0→S2	HOMO-1→LUMO 2.43 (508)		0.0000
		HOMO→LUMO		
	S0→S3	HOMO-3→LUMO	2.55 (484)	0.0002
		HOMO-2→LUMO		
2b-PA	S0→S1	HOMO→LUMO	2.07 (597)	0.0005
	S0→S2	HOMO-3→LUMO	2.36 (524)	0.0000

	S0→S3	HOMO-1→LUMO HOMO-2→LUMO	2.41 (513)	0.0001
Picric acid	S0→S1	HOMO→LUMO	3.62 (341)	0.1196
	S0→S2	HOMO-9→LUMO+2	3.85 (321)	0.0068
		HOMO-6→LUMO+2		
		HOMO-5→LUMO		
		HOMO-4→LUMO		
		HOMO-4→LUMO+2		
		HOMO-2→LUMO		
		HOMO-2→LUMO+1		
		HOMO-2→LUMO+2		
		HOMO→LUMO		
		HOMO→LUMO+2		
	S0→S3	HOMO-3→LUMO+1	3.93 (314)	0.0001
		HOMO-3→LUMO+2		

Compound	2a-PA	2b-PA	Picric acid
LUMO+2			-2.952 (eV)
	-2.593(eV)	-2.618 (eV)	
LUMO+1			-3.303 (eV)
	-2.928(eV)	-2.965 (eV)	

Table S7: Calculated energy for compounds 2a, 2b, 2a-PA, 2b-PA and picric acid.

Compound	HOMO (eV)	LUMO (eV)
2a	-5.794	-1.822
2b	-5.707	-1.921
2a-PA	-6.016	-3.245
2b-PA	-5.910	-3.358
Picric acid	-8.227	-3.913

Compound	Laser Parameters	$n_2 (cm^2 W^{-1})$	β (cm W ⁻¹)	TPAC (GM)	Reference
BPI* (crystal)	He-Ne Laser	-4.27x10 ⁻⁸	3.37x10 ⁻³		J. Opt., 2017, 46, 382–390
PP* (crystal)	532nm, CW Nd-Yag	-7.35x10 ⁻⁸	-0.10x10 ⁻⁴		<i>J. Mol. Struct.</i> , 2019, 1190 , 1-10.
45-1	735 nm	-	-	22	<i>Chem. Sci.</i> , 2017, 8 , 846–
N2TFABD P*	1200nm,45f s, 1kHz	-	-	9	Dyes Pigm., 2013, 99 , 979 - 985
N2TFABD P*	1200nm,45f s, 1kHz	-	-	9	Dyes Pigm., 2013, 99 , 979 - 985
3TFABDP*	1200nm,45f s, 1kHz	-	-	8	Dyes Pigm., 2013, 99 , 979 - 985
TVBVT*	800nm, 100fs, 82MHz	-9.72 x 10 ⁻¹⁰	-	-	Dyes Pigm., 2019, 162 , 776- 785
HEAP*	He-Ne	-9.2 x10 ⁻⁵	14.0		<i>Mater. Chem. Phys.</i> , 2012, 134 , 736-746

 Table S8: Comparison of optical nonlinearity coefficients of similar molecules

8.00
7.50
7.50
7.49
7.49
7.33
7.37
7.37
6:38

Figure S14: ¹³C NMR of compound 1a.

Figure S15: HRMS of compound 1a.

Figure S16: ¹H NMR of compound 2a.

Figure S17: ¹³C NMR of compound 2a.

Figure S18: HRMS of compound 2a.

Figure S19: ¹H NMR of compound Th-Pz-diPh.

Figure S20: ¹³C NMR of Th-Pz-diPh.

Figure S22: ¹H NMR of compound 1b.

Figure S23: ¹³C NMR of compound 1b.

Figure S24: HRMS of compound 1b.

Figure S26: ¹³C NMR of compound 2b.

Figure S27: HRMS of compound 2b.

Optimized x,y,z coordinates for compounds **2a**, **2b**, **2a-PA**, **2b-PA** & **picric acid** calculated on Gaussian 03 at the B3LYP//6-31g(d,p) level

Compound 2a

Center Atomic Atomic Coordinates (Angstroms)

	Туре	X Y Z	
 N	-3.747454	-0.869950	-0.467018
Ν	-3.030624	0.123968	0.119907
С	0.389760	-1.290888	0.145811
Н	0.858588	-2.260825	0.285994
С	3.574035	0.813966	-0.997415
С	3.280588	1.072607	-2.362911
С	5.003201	2.804800	-2.464355
С	3.486021	-1.486768	0.556077

С	4.328997	-2.388495	-0.149358
С	4.931391	-3.458426	0.519339
Н	5.557842	-4.144630	-0.046843
С	4.760843	-3.668041	1.889452
С	3.943464	-2.775187	2.583744
Н	3.800313	-2.911260	3.654142
С	3.298847	-1.709215	1.947002
С	4.604066	1.580441	-0.385578
С	5.280930	2.560134	-1.117152
Н	6.053225	3.145184	-0.621715
С	2.208810	0.318046	-3.128632
Н	1.227347	0.792088	-3.017694
Η	2.444188	0.298923	-4.196987
Н	2.095434	-0.715653	-2.795023
С	-8.141699	-3.024042	-1.889760
Н	-8.929533	-3.662339	-2.278855
С	-8.451160	-1.774226	-1.352101
Н	-9.482185	-1.433611	-1.322111
С	-7.439828	-0.955073	-0.852932
Η	-7.695532	0.017749	-0.444235
С	-6.100126	-1.372075	-0.880189
С	-0.995500	-1.198963	0.213935
Н	-1.613431	-2.072545	0.384699
С	4.002111	2.043393	-3.067362
Н	3.772431	2.207870	-4.118421
С	5.783685	3.833860	-3.246268
Н	6.730541	3.418254	-3.613636
Η	5.222599	4.185184	-4.117162
Н	6.032101	4.702632	-2.628503

С	2.426121	-0.815641	2.809859	
Н	1.379915	-1.140472	2.792064	
Н	2.761003	-0.844738	3.851135	
Н	2.435751	0.227696	2.486718	
С	5.463487	-4.799523	2.600386	
Н	6.449910	-4.486326	2.965389	
Н	4.891906	-5.144076	3.467514	
Н	5.621076	-5.653890	1.935226	
С	-3.632338	4.650752	1.927518	
Н	-4.078852	5.617203	1.712934	
С	-2.711142	4.519442	2.967389	
Η	-2.439321	5.382047	3.568395	
С	-2.141994	3.271994	3.232787	
Н	-1.431456	3.160104	4.046426	
С	-2.489042	2.162457	2.465400	
Η	-2.055334	1.193368	2.688863	
С	-5.799159	-2.631910	-1.424914	
Н	-4.764773	-2.956682	-1.449482	
С	-6.810583	-3.447336	-1.924329	
Н	-6.559947	-4.418558	-2.341518	
С	-5.028259	-0.512424	-0.351250	
С	-1.612162	0.048496	0.056549	
С	1.205420	-0.165203	-0.100230	
В	2.768611	-0.281104	-0.181893	
С	-5.138494	0.733063	0.318949	
Η	-6.033987	1.259797	0.611053	
С	-3.846583	1.120050	0.621009	
С	4.576545	-2.260652	-1.638807	
Н	5.276463	-3.027825	-1.981079	

Н	3.653792	-2.384345	-2.217352
Н	4.990155	-1.283569	-1.901569
С	4.980826	1.402801	1.071295
Н	5.810169	2.063100	1.339242
Н	4.146763	1.643947	1.740523
Н	5.281150	0.375321	1.292530
С	0.545474	1.068954	-0.276230
Н	1.134992	1.956181	-0.488903
С	-0.838504	1.187591	-0.196527
Н	-1.317768	2.147473	-0.347846
С	-3.409612	2.285406	1.410803
С	-3.978101	3.543541	1.153925
Н	-4.684060	3.648395	0.335752

Compound 2b

Center	Center Atomic Atomic Coordinates (Angstroms)					
	Type X	Y	Z			
С	-3.089443	4.323054	1.568153			
С	-2.576032	3.301536	2.361282			
Н	-2.285535	3.520327	3.387356			
С	-2.422503	1.992148	1.882473			
С	-2.803260	1.666807	0.556443			
В	-2.601543	0.210361	-0.039040			
С	-1.176532	-0.386126	-0.106095			
S	0.268448	0.601297	0.104685			
С	1.303965	-0.773171	-0.127675			

Ν	2.693986	-0.603182	-0.089331
Ν	3.198485	0.599071	-0.478593
С	4.524429	0.470486	-0.428113
С	5.403696	1.596834	-0.780102
С	6.798102	1.441985	-0.810236
Н	7.241685	0.478849	-0.577062
С	7.625618	2.513249	-1.142478
Н	8.702754	2.374545	-1.160648
С	7.073972	3.756994	-1.451896
Н	7.718782	4.591632	-1.710848
С	4.881459	-0.837978	-0.004484
Н	5.867469	-1.237827	0.175623
С	3.696187	-1.507520	0.221017
С	0.592764	-1.934398	-0.354132
Н	1.053664	-2.895699	-0.535025
С	-0.800258	-1.701774	-0.338973
Н	-1.535398	-2.481016	-0.506028
С	-3.796063	-0.687384	-0.576374
С	-4.856137	-1.074668	0.293838
С	-5.875360	-1.908585	-0.164834
Н	-6.663962	-2.201297	0.525699
С	-5.914632	-2.379280	-1.482705
С	-7.040025	-3.268824	-1.953660
Н	-8.001427	-2.741992	-1.928158
Н	-7.144193	-4.153290	-1.315012
Н	-6.876207	-3.612010	-2.978894
С	-4.888886	-1.987077	-2.337063
Н	-4.900208	-2.327188	-3.371215
С	-3.838115	-1.159997	-1.912100

С	-2.825880	-0.762215	-2.970601
Н	-2.411837	-1.645957	-3.469130
Η	-1.990035	-0.189797	-2.570969
Н	-3.305934	-0.155438	-3.747930
С	-4.898997	-0.636316	1.742995
Η	-5.809755	-0.996465	2.229432
Η	-4.872124	0.452667	1.837953
Η	-4.048626	-1.028885	2.312038
С	-3.471257	3.999814	0.260566
Η	-3.876996	4.780319	-0.380213
С	-3.348323	2.707907	-0.249271
С	-3.774002	2.465698	-1.682320
Η	-2.927309	2.172531	-2.313335
Η	-4.204226	3.372272	-2.116692
Н	-4.519453	1.668884	-1.754817
С	-1.909519	0.965348	2.875103
Н	-0.975966	1.302203	3.338602
Η	-1.721064	-0.008413	2.422944
Н	-2.635517	0.820234	3.684488
С	3.503489	-2.865957	0.761628
С	2.686122	-3.104741	1.879251
Η	2.147956	-2.280627	2.335923
С	2.572862	-4.388205	2.408430
Н	1.939626	-4.557546	3.274205
С	3.276995	-5.450894	1.837179
Η	3.187328	-6.450041	2.252900
С	4.097835	-5.222265	0.732401
Η	4.648214	-6.043089	0.282238
С	4 210152	-3 939330	0 196952

Н	4.839548	-3.761750	-0.669677
С	4.857784	2.853128	-1.093849
Н	3.780536	2.975927	-1.071763
С	5.686528	3.920553	-1.426547
Н	5.248448	4.885252	-1.666010
С	-3.224737	5.734508	2.086606
Н	-2.503522	6.405324	1.603967
Н	-3.051021	5.783456	3.165154
Н	-4.222431	6.140059	1.885763

Compound 2a-PA

Center Atomic Atomic Coordinates (Angstroms)

	Type 2	X Y Z	
N	2.339500	-2.097182	-0.029198
С	-0.979114	-0.939842	1.152030
Н	-1.429362	-0.594144	2.078027
С	-3.954224	-0.071663	-1.320143
С	-3.405798	1.058241	-1.986882
С	-5.111367	0.925071	-3.733650
С	-4.106949	-0.826135	1.354404
С	-4.802433	0.253067	1.966610
С	-5.494183	0.052665	3.164599
Н	-6.004018	0.898011	3.622106
С	-5.555428	-1.195891	3.787183
С	-4.880489	-2.256013	3.180682
Н	-4.919600	-3.241122	3.641541
С	-4.152104	-2.092504	1.997764

С	-5.098291	-0.688281	-1.895908	
С	-5.639673	-0.193663	-3.086674	
Η	-6.505537	-0.693939	-3.515561	
С	-2.195164	1.808172	-1.461395	
Н	-1.262377	1.305151	-1.739242	
Н	-2.163005	2.817539	-1.882419	
Н	-2.193747	1.906411	-0.372844	
С	8.005714	0.097662	1.788610	
Н	8.911040	0.569735	2.158469	
С	8.076312	-0.855550	0.771511	
Н	9.036901	-1.123879	0.341656	
С	6.914672	-1.461043	0.296800	
Η	6.976794	-2.185946	-0.509166	
С	5.662110	-1.125597	0.833416	
С	0.369201	-1.284804	1.148362	
Н	0.971920	-1.197559	2.044727	
С	-3.996261	1.538448	-3.160029	
Н	-3.572023	2.418450	-3.639548	
С	-5.745671	1.473894	-4.988828	
Н	-6.525659	2.207611	-4.749171	
Η	-5.009844	1.978856	-5.621872	
Н	-6.216748	0.682038	-5.578968	
С	-3.450349	-3.319312	1.443509	
Н	-2.399379	-3.352094	1.751460	
Н	-3.928797	-4.231853	1.811384	
Н	-3.460031	-3.358348	0.351493	
С	-6.349868	-1.395376	5.055359	
Н	-7.419891	-1.507572	4.839550	
Н	-6.028837	-2.292781	5.592059	

Н	-6.246451	-0.540154	5.730750
C	2.242925	-6.146350	-2.788226
Н	2.669654	-6.600053	-3.677773
С	1.113768	-6.705607	-2.188440
Н	0.659133	-7.598575	-2.606747
С	0.572438	-6.112685	-1.045992
Н	-0.300490	-6.547592	-0.568495
С	1.152388	-4.967247	-0.504974
Η	0.735106	-4.523543	0.392644
С	5.601827	-0.167636	1.859022
Н	4.639983	0.085727	2.292500
С	6.763875	0.439542	2.328498
Н	6.701172	1.175535	3.124874
С	4.440201	-1.780178	0.339766
С	0.956101	-1.746966	-0.034308
C	-1.771973	-1.020326	-0.011397
В	-3.297750	-0.629202	0.008818
С	4.316875	-3.027728	-0.314058
Н	5.096171	-3.743056	-0.527129
C	2.962556	-3.215538	-0.533638
С	-4.772402	1.655360	1.395907
Н	-5.489267	2.298661	1.913569
Η	-3.783096	2.111801	1.517836
Н	-5.012474	1.669211	0.330302
C	-5.748697	-1.911770	-1.282659
Н	-6.642618	-2.195894	-1.844555
Н	-5.075846	-2.777403	-1.287841
Н	-6.040732	-1.740221	-0.243836
С	-1.139122	-1.469666	-1.188942

Н	-1.713219	-1.524564	-2.109576
С	0.203107	-1.839709	-1.209427
Н	0.671014	-2.182726	-2.125704
С	2.284964	-4.392527	-1.105570
С	2.823912	-4.998363	-2.252381
Н	3.693693	-4.555197	-2.727647
Ν	3.235722	-1.219172	0.501059
Н	2.798737	0.712735	0.575671
С	2.603073	3.111779	-0.500522
С	1.898790	2.464772	0.557836
С	0.787397	3.191027	1.078743
С	0.400985	4.425772	0.594083
С	1.149177	5.015186	-0.422075
С	2.242584	4.369302	-0.973417
Н	-0.472561	4.922137	0.995815
Н	2.815334	4.826341	-1.769236
Ν	-0.037062	2.620584	2.157948
Ν	3.751244	2.475685	-1.145859
Ν	0.760905	6.335836	-0.927796
0	2.155188	1.286550	1.071476
0	-1.246271	2.858451	2.105577
0	0.521023	1.983570	3.041388
0	4.380740	3.122299	-1.976021
0	4.018775	1.313468	-0.820734
0	1.432568	6.812777	-1.840403
0	-0.211624	6.876144	-0.403438

Compoun2b-PA

	Туре У	K Y Z	Z
С	-3.474960	-0.915039	4.805510
С	-2.997357	-2.087330	4.227227
Н	-2.777379	-2.942086	4.864312
С	-2.795373	-2.207805	2.845027
С	-3.085547	-1.120209	1.982133
В	-2.823010	-1.209660	0.422012
С	-1.387162	-1.496155	-0.085411
S	0.031529	-1.304109	0.940683
С	1.093423	-1.766183	-0.355670
Ν	2.484432	-1.791567	-0.165156
Ν	3.086720	-0.732604	0.450898
С	4.397943	-0.988505	0.405316
С	5.383290	-0.069812	0.998627
С	6.709593	-0.062452	0.538082
Н	6.999840	-0.721188	-0.274970
С	7.651160	0.798450	1.098353
Н	8.672084	0.793983	0.727826
С	7.281984	1.667768	2.126201
Н	8.015529	2.338765	2.563379
С	4.642262	-2.217614	-0.256765
Н	5.588815	-2.717316	-0.394017
С	3.404091	-2.722715	-0.604389
С	0.408045	-2.074576	-1.509089
Н	0.893477	-2.373935	-2.428716
С	-0.986969	-1.917844	-1.344880

Center Atomic Atomic Coordinates (Angstroms)

Η	-1.704173	-2.095917	-2.138152	
С	-3.950580	-1.019974	-0.676518	
С	-5.096393	-1.863419	-0.698449	
С	-6.059564	-1.715022	-1.697771	
Н	-6.920382	-2.380820	-1.699423	
С	-5.956899	-0.731855	-2.687336	
С	-7.015220	-0.593800	-3.755132	
Н	-8.019671	-0.553938	-3.319633	
Н	-6.998768	-1.447622	-4.443366	
Η	-6.868544	0.312502	-4.348933	
С	-4.846753	0.109648	-2.650061	
Η	-4.754372	0.897285	-3.395330	
С	-3.844575	-0.022599	-1.679890	
С	-2.692108	0.964220	-1.745861	
Н	-1.898777	0.624186	-2.420520	
Н	-2.226258	1.130495	-0.773060	
Η	-3.045503	1.931711	-2.117757	
С	-5.301152	-2.958228	0.328057	
Н	-6.232888	-3.497898	0.137686	
Н	-5.345296	-2.556322	1.344321	
Н	-4.488731	-3.692901	0.308808	
С	-3.772157	0.154473	3.952726	
Η	-4.151655	1.080936	4.379073	
С	-3.597978	0.071963	2.571610	
С	-3.928574	1.296373	1.743980	
Н	-3.024629	1.764170	1.334942	
Н	-4.432049	2.051455	2.353807	
Н	-4.576913	1.055814	0.897876	
С	-2.342535	-3.567559	2.345995	

Η	-1.445578	-3.901349	2.878994	
Н	-2.117884	-3.579829	1.279386	
Н	-3.121118	-4.318174	2.528805	
С	3.080139	-4.011501	-1.240295	
С	2.089896	-4.864746	-0.725431	
Н	1.521490	-4.564046	0.148410	
С	1.846934	-6.100738	-1.319997	
Н	1.081351	-6.751984	-0.909035	
С	2.588613	-6.506759	-2.431648	
Н	2.396269	-7.471021	-2.892377	
С	3.578875	-5.669021	-2.945911	
Η	4.158729	-5.976369	-3.811049	
С	3.823152	-4.429798	-2.355838	
Н	4.583279	-3.771232	-2.764679	
С	5.021094	0.805847	2.035627	
Η	4.002761	0.798768	2.407213	
С	5.964614	1.668068	2.590026	
Н	5.671211	2.337118	3.393830	
С	-3.662124	-0.789193	6.298104	
Н	-2.919318	-0.110480	6.734546	
Η	-3.559903	-1.756456	6.797753	
Η	-4.649484	-0.383562	6.544344	
0	1.781834	1.481878	-0.793529	
0	-1.156586	6.852111	-2.038410	
0	1.101123	3.170236	-4.245173	
0	-1.004380	7.037284	0.133055	
0	0.736725	1.261767	-3.248486	
Ν	-0.822365	6.443428	-0.927821	
Ν	0.870332	2.480211	-3.253248	

С	1.141125	2.625463	-0.753117
С	0.876003	3.398876	0.415857
С	0.234869	4.632817	0.362347
Н	0.052287	5.185018	1.274515
С	-0.152252	5.140016	-0.865704
С	0.697298	3.200567	-1.978311
С	0.085303	4.437066	-2.045560
Н	-0.206156	4.849630	-3.002644
Ν	1.280336	2.924022	1.735470
0	1.045637	3.629212	2.708381
0	1.843208	1.819912	1.799383
Н	2.061391	1.156033	0.099466

Picric acid

Center Atomic Atomic Coordinates (Angstroms)

	Type X	X Y	Z
0	-3.520040	-1.273437	0.052320
Ο	0.704891	-3.481285	0.001043
Ο	-3.625068	0.909315	0.045979
Ο	2.570235	-2.368937	-0.085900
Ν	-3.011511	-0.154953	0.040644
Ν	1.321514	-2.429284	-0.032118
С	1.273957	0.070664	-0.018850
С	0.459219	1.234293	-0.005844
С	-0.921838	1.164107	-0.004036
Н	-1.508906	2.073302	-0.022038
С	-1.543750	-0.083415	0.018990
С	0.578866	-1.175454	-0.009918

С	-0.810075	-1.256543	0.017218
Н	-1.301395	-2.220519	0.029954
Ν	1.059098	2.582335	0.011981
0	0.391741	3.483806	-0.492668
0	2.152043	2.713932	0.547713
0	2.585209	0.166781	-0.073027
Н	2.936236	-0.762782	-0.100497