Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Thermoelectric Properties of Zinc-Doped Cu₅Sn₂Se₇ and Cu₅Sn₂Te₇

Cheryl Sturm,^a Leilane R. Macario,^a Takao Mori,^b and Holger Kleinke^{*a}

SUPPLEMENTARY INFORMATION

Figure S1. Calculated and experimental X-ray powder patterns of (a) 'Cu₅Sn₂Se₇' and

'Cu₄ZnSn₂Se₇', and (b) 'Cu₅Sn₂Te₇' and 'Cu₄ZnSn₂Te₇'.

	'Cu ₅ Sn ₂ Se ₇ '	'Cu ₄ ZnSn ₂ Se ₇ '	'Cu ₅ Sn ₂ Te ₇ '	'Cu ₄ ZnSn ₂ Te ₇ '
a (Å)	12.5580(8)	12.6067(5)	13.544(1)	13.5925(2)
<i>b</i> (Å)	5.6570(2)	5.6771(1)	6.0442(2)	6.0696(2)
<i>c</i> (Å)	8.9991(5)	8.9270(6)	9.5771(3)	9.4935(2)
β (°)	98.170(5)	98.135(3)	98.063(3)	98.302(2)
$V(Å^3)$	632.81(7)	632.47(5)	776.26(5)	775.02(3)

Table S1. Refined lattice parameters of $Cu_{5-x}Zn_xSn_2Q_7$.

Figure S2. EDX maps of 'Cu₄ZnSn₂Se₇'.

Table S2. Results of EDX confirming homogeneity of 'Cu₄ZnSn₂Se₇' (STDEV = standard

Element	theor. at%	exper. at%	STDEV
Cu (K)	28.6	29.4	1.2
Zn (K)	7.1	6.8	1.1
Sn (L)	14.3	14.7	0.3
Se (L)	50.0	49.1	1.9

deviation, using eight data points).

Cu	Zn	
Sn	Те	

Figure S3. EDX maps of $Cu_4ZnSn_2Te_7$.

Table 53. Results of EDA confirming nonogeneity of sample $Cu_4ZnSn_2Te_7$ (STDE	ults of EDX confirming homogeneity of sample 'Cu ₄ ZnSn ₂ Te ₇ ' (STD	DEV =
--	--	-------

Element	theor. at%	exper. at%	STDEV
Cu (K)	28.6	28.0	1.8
Zn (K)	7.1	7.3	0.8
Sn (L)	14.3	14.7	1.1
Te (L)	50.0	50.0	1.3

standard deviation, using eight data points).

Figure S4. Temperature dependence of the electrical and lattice components of the thermal

conductivity of (a) 'Cu₄ZnSn₂Se₇' and (b) 'Cu₄ZnSn₂Te₇'.