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Experimental Methods and Procedures

Materials. Pd(dba), was purchased from commercial sources and used without further purification.

The synthesis of ligands 1a and 1b'-? has been previously reported.

General Methods. All reactions were carried out under an atmosphere of dry nitrogen using high
vacuum Schlenk-line techniques or an inert-atmosphere glove box (MBraun). Commercial-grade
solvents (toluene, hexanes) were purified by a solvent purification system from Innovative
Technologies, degassed and stored over sodium-potassium (NaK) alloy prior to use.
Dichloromethane and acetonitrile were distilled from CaH», degassed and stored under nitrogen
atmosphere. 599.7 MHz 'H NMR, 150.8 MHz C{!H} NMR, and 202.5 MHz 3'P{'H} NMR
spectra were recorded on a Bruker Avance III HD NMR spectrometer (Bruker BioSpin, Billerica,
MA) or a 600 INOVA NMR spectrometer (Varian Inc., Palo Alto, CA) equipped with a 5 mm dual
broadband gradient probe (Nalorac, Varian Inc., Martinez, CA). Chemicals shifts (J) are given in
ppm and were referenced internally to deuterated solvents (1*C) or to their residual protic signals
(*H) (CDCl3 7.26 ('H), 77.36 (*C); CsDs 7.15 ('H), 128.62 (13C)). 3'P{'H} NMR spectra were
referenced externally to H3PO4. Coupling constants (J) are reported in Hertz (Hz) and splitting
patterns are indicated as s (singlet), d (doublet), t (triplet), pt (pseudo triplet), br (broad), nr (non-
resolved), and m (multiplet), and the following abbreviations are used for signal assignments: Ph
= phenyl, Cp = cyclopentadienyl, dba = dibenzylidineacetone. High-resolution electrospray
ionization-mass spectra (ESI-MS) were obtained on an Apex Ultra 7.0 Hybrid FTMS and MALDI-
TOF (time-of-flight) MS data on a Bruker Ultraflextreme. Elemental analyses were performed by

Quantitative Technologies Inc., Whitehouse, NJ.
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Caution: Organomercury compounds are highly toxic! The use of appropriate non-permeable and

resistant gloves is essential.

X-ray diffraction analysis. Reflections for meso-2a and meso-3a were collected on a Bruker
SMART APEX II CCD Diffractometer using CuKa (1.54178 A) radiation at 100 K. Data
processing, Lorentz-polarization, and face-indexed numerical absorption corrections were
performed using SAINT, APEX, and SADABS computer programs.>-> The structures were solved
by direct methods and refined by full-matrix least squares based on F? with all reflections using
the SHELXTL V6.14 program package.®’ Non-hydrogen atoms were refined with anisotropic
displacement coefficients. All H atoms were found in electron-density difference maps and treated
as idealized contribution. A crystal of (pSpS)-2b was mounted on a MiTeGen mount with per-
fluorinated inert oil. Data were recorded on a Rigaku XtaLAB Synergy S Single Source
diffractometer equipped with a PhotonJet Cu-microfocus source and a HyPix-6000HE detector.
Data reduction was performed with CrysalisPro.® Absorption correction was based on multi-scans
and face indexing and integration on a Gaussian grid was applied. The structure was solved by
intrinsic phasing with SHELXT-2018/2¢ and refined on F? using the program SHELXL-2018/3°
in OLEX®. H atoms were placed in idealized positions and refined using a riding model. Structural
data have been deposited with the Cambridge Structure Database as supplementary publications
CCDC 2053820-2053822.

All new metal complexes have been fully characterized by 'H, C{'H}, 3'P{'H} NMR
spectroscopy, high-resolution mass spectrometry (MALDI-TOF or ESI-MS) showing ion peaks
for loss of the labile dba ligand (compounds 2) or loss of a chloride ion (compounds 3), and single

crystal X-ray diffraction. A representative elemental analysis of compound 2b is provided as well.
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Synthesis of Bis(ortho-diphenylphosphinoferrocenyl)mercury Palladium(0)
Dibenzylideneacetone Complex 2a (meso). To a solution of
bis(dibenzylideneacetone)palladium(0) (Pd(dba), 7.7 mg, 0.0134 mmol) in anhydrous toluene (2
mL) was added slowly a solution of meso-1a (14.1 mg, 0.0150 mmol) in toluene (2 mL) at room
temperature. The color of the solution turned immediately red. The mixture was stirred for 0.5h
and the solvent evaporated under reduced pressure. The 3'P NMR spectrum of the crude product
showed full conversion into a new species. The residue was washed several times with hexanes,
separated by decantation, and dried under vacuum to afford 2a as a red solid. Yield: 14.0 mg (82%).
X-ray quality crystals were obtained by slow partial evaporation of a solution of the compound in
CeHe/decane. 'H NMR (599.7 MHz, CsDs, 25 °C): 6 = 8.20 (m, 4H, o-Ph), 7.73 (d, *Juu = 16.2
Hz, 2H, dba), 7.48 (m, 4H, 0-Ph’), 7.20 (br m, 4H, dba), 7.14 (m, 4H, m-Ph), 7.09 (br m, 2H, dba),
7.02 (br m, 4H, dba), 6.85 (m, 6H, m-Ph’ + p-Ph), 6.82 (d, *Juu = 15.6 Hz, 2H, dba), 4.41 pt *Juu
=2.4 Hz, 2H, Cp), 4.38 (br m, 2H, Cp), 4.33 (br m, 2H, Cp), 4.19 (s, 10H, free Cp). 3C{'H} NMR
(150.8 MHz, C¢Ds, 25 °C): 6 = 188.1 (CO, dba), 142.7 (br s, CH-dba), 141.1 (pt, 1*Jcp = 16.4 Hz,
i-Ph), 138.6 (pt, '*Jcp = 17.9 Hz, i-Ph’), 136.9 (pt, >*Jcp = 9.7 Hz, 0-Ph), 136.1 (nr, m-Ph), 133.3
(pt, >*Jcp = 7.5 Hz, 0-Ph’), 130.7 (nr, m-Ph’), 130.7 (s, p-Ph”), 130.6 (s, p-Ph’), 129.6 (s, Ph-dba),
129.2 (s, Ph-dba), 128.9 (s, Ph-dba), 126.4 (br s, CH-dba), 125.3 (br, Ph-dba), 111.2 (pt, 2*Jcp =
25.4 Hz, i-Cp-Hg), 85.4 (pt, *Jcp = 24.1 Hz, i-Cp-P), 78.8 (pt, >*Jcp = 11.0 Hz, Cp), 75.4 (nr,
Cp), 74.4 (nr, Cp), 69.8 (s, free Cp). *'P{'H} NMR (202.5 MHz, C¢Ds, 25 °C): d = 20.9 (s). High-
resolution MALDI-TOF MS (positive mode, anthracene): m/z 1045.9719 ([M—dba]", 100%, calcd
for 2C44'H36° Fe22Hg? P, 1%Pd 1045.9741).

Synthesis of Bis(ortho-diphenylphosphinoferrocenyl)mercury Palladium(0)

Dibenzylideneacetone Complex 2b (PSpS). To a solution of
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bis(dibenzylideneacetone)palladium(0) (Pd(dba)z, 12.6 mg, 0.0219 mmol) in toluene (2 mL) was
added slowly a solution of 1b (20.5 mg, 0.0218 mmol) in toluene (3 mL) at room temperature. The
color of the solution turned immediately red. The mixture was stirred for 0.5 h and the solvent
evaporated under reduced pressure. The *'P{'H} NMR spectrum of the crude product showed full
conversion into a new species. The residue was washed several times with hexanes, separated by
decantation, and dried under vacuum to afford (pS,pS)-2b as a red solid. Yield: 24.0 mg (86%). X-
ray quality crystals were obtained by slow partial evaporation of a solution of the compound in
toluene/decane. "H NMR (599.7 MHz, C¢Ds, 25 °C): 6 = 8.03 (m, 4H, 0-Ph), 7.71 (d, *Juu = 15.0
Hz, 2H, dba), 7.69 (m, 4H, m-Ph), 7.22 (br m, 4H, dba), 7.11 (br m, 6H, o,p-Ph’), 7.05 (br m, 10H,
m-Ph’ + dba), 6.94 (t, *Juu = 7.2 Hz, 2H, p-Ph’), 6.76 (d, *Juu = 15.6 Hz, 2H, dba), 4.32 (br d, 4H
overlapping, Cp), 4.04 (nr, 2H, Cp), 4.02 (s, 10H, free Cp). *C{'H} NMR (150.8 MHz, C¢Ds,
25 °C): 6 = 188.3 (CO, dba), 140.5 (br s, CH-dba), 140.5 (pt, *Jcp = 15.1 Hz, i-Ph), 137.2 (pt,
L3Jep = 17.5 Hz, i-Ph’), 136.4 (nr, 0-Ph), 136.3 (nr, m-Ph), 133.3 (pt, >*Jcp = 7.5 Hz, 0-Ph’),
130.6 (nr, m-Ph’), 130.4 (s, p-Ph’), 129.6 (s, Ph-dba), 129.4 (nr, p-Ph’), 129.1 (s, Ph-dba), 128.9
(s, Ph-dba), 126.6 (br s, CH-dba), 124.8 (br s, Ph-dba), 110.1 (pt, >*Jcp = 22.0 Hz, i-Cp-Hg), 85.8
(pt, *Jcp = 25.0 Hz, i-Cp-P), 79.4 (pt, >*Jcp = 8.7 Hz, Cp), 74.4 (nr, Cp), 74.2 (nr, Cp), 70.3 (s,
free Cp).*'P{'H} NMR (202.5 MHz, C¢Ds, 25 °C): § = 18.1 (s). High-resolution ESI-MS (positive
mode, toluene/acetonitrile): 1046.9868 ([M—dba+H]*, 100%, caled for
2C44'H37°Fe?Hg3 1P, 1%Pd 1046.9819). Elem. Anal. for CaHseFe;HgPoPd-C17H140: Caled C
57.25,H 3.94; Found C 57.27, H 3.94.

Competition Reaction of 1a/1b with Pd(dba),. A solution containing 1a (10.0 mg, 0.011
mmol) and 1b (10.0 g, 0.011 mmol) in C¢Ds (0.7 mL) was added slowly to solution of

bis(dibenzylideneacetone)palladium(0), Pd(dba), (6.1 mg, 0.011 mmol) in CDCI3 (0.3 mL) at
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room temperature. The mixture was introduced into an NMR tube and the reaction followed by
3P NMR spectroscopy. After 0.5 h standing at room temperature: 3'P{'H} NMR (202.5 MHz,
CDCl3, 25 °C): 6 = —13.3 (8%), —12.6 (32%), 17.6 (46%), 21.5 (14%).

Dichloromethane Activation: Synthesis of Bis(ortho-diphenylphosphinoferrocenyl)-
mercury Palladium(II) Complex 3a (meso). 2a (6.6 mg, 5.15 umol) was dissolved in CH2Cl»
(0.9 mL). No change of color was observed upon mixing. The solution was stirred at 40 °C for 24
h. A progressive change of color from red to yellow-orange was observed. The mixture was
allowed to cool to room temperature and all volatiles were removed under high vacuum. Analysis
of the crude product by 3'P NMR revealed almost full conversion into a new species. The residue
was washed several times with hexanes and recrystallized from CH>Cly/hexanes by slow partial
evaporation at room temperature to give 3a as a yellow-orange crystalline solid. Yield 5.4 mg
(93%). '"H NMR (599.7, MHz, CDCl3, 25 °C): ¢ = 8.48 (m, 4H, 0-Ph), 7.61 (br m, 5H, m,p-Ph),
7.18 (br m, 1H, p-Ph), 7.12 (m, 4H, m-Ph’), 6.97 (m, 4H, 0-Ph”), 4.66 (pt, *Juu = 1.7 Hz, 2H, Cp),
4.60 (nr, 2H, Cp), 4.56 (nr , 2H, Cp), 4.12 (s, 10H, free Cp), 2.15 (t, 2/p.u = 9.6 Hz, 2H, CH,Cl).
BC{!H} NMR (150.8 MHz, CDCl3, 25 °C): 6 = 136.8 (pt, >*Jpc = 6.0 Hz, 0-Ph), 136.1 (pt, 3Jcp
=22.6 Hz, i-Ph), 133.8 (pt, *Jcp = 24.1 Hz, i-Ph’), 132.9 (nr, 0-Ph”), 131.0 (s, p-Ph), 129.4 (s, p-
Ph’), 128.2 (pt, >°Jpc = 6.0 Hz m-Ph), 127.7 (pt, >*Jec = 4.5 Hz m-Ph’), 113.6 (pt, Jcp = 19.6
Hz, i-Cp-Hg), 81.3 (pt, *Jcp = 28.7 Hz, i-Cp-P), 77.2 (nr, Cp), 75.5 (nr, Cp), 73.6 (nr, Cp), 70.8
(s, free Cp), 43.2 (s, CH,Cl).*'P{'H} NMR (202.5 MHz, CDCls, 25 °C): § = 25.1 (s). High-
resolution ESI-MS (positive mode, CH»Cly/acetonitrile): m/z 1094.9316 ([M—CI]*, 100%, calcd
for '2C45'H38°°CI°%Fe?Hg?!P,1%Pd  1094.9578), 1080.9441 ([M—CH:CI]*, 45%, calcd for

12C441H3635C156F62200Hg31P2106Pd 1080.9421).
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Dichloromethane Activation: Synthesis of Bis(ortho-diphenylphosphinoferrocenyl)-
mercury Palladium(II) Complex 3b (pSpS). 2b (pSpS, 30.0 mg, 0.0234 mmol) was dissolved in
CH>ClI: (0.7 mL). No change of color was observed upon mixing. The solution was stirred at 40 °C
for 24 h. A progressive change of color from red to light green was observed. The mixture was
allowed to cool to room temperature and all volatiles were removed under high vacuum. Analysis
of the crude product by 3'P NMR revealed almost full conversion into a new species. The residue
was washed three times with hexanes to give 3b as a yellow solid with a slight greenish tint. Yield
20.0 mg (75%). All attempts to obtain single crystals of 3b for X-ray structures analyses furnished
amorphous solids. "TH NMR (599.7, MHz, CDCls, 25 °C): J = 8.34 (br m, 2H, 0-Ph), 8.24 (pt, *Jun
=7.2 Hz, 2H, 0-Ph), 7.58 (br m, 2H, o-Ph’), 7.51 (br m,3H, m+p-Ph), 7.42 (br m, 3H, o+p-Ph’),
7.31 (br m, 3H, m-Ph+p-Ph’), 7.26 (br, 1H, p-Ph”), 7.20 (pt, *Jun = 7.2 Hz, 2H, m-Ph’), 7.12 (pt,
3Jun = 7.2 Hz, 2H, m-Ph’) 4.90 (nr, 1H, Cp), 4.71 (nr, 1H, Cp), 4.64 (nr, 2H, Cp), 4.59 (nr, 1H,
Cp), 4.53 (nr, 1H, Cp), 4.24 (s, 5H, free Cp), 4.00 (s, 5SH, free Cp), 3.02 (br m, 1H, CH,Cl), 2.93
(br m, 1H, CH,Cl). 3C{H} NMR (150.8 MHz, CDCl;, 25 °C): 6 = 136.7 (nr, o-Ph), 136.6 (nr,
0-Ph), 136.2 (nr, i-Ph), 136.0 (nr, i-Ph), 134.9 (nr, i-Ph’), 134.7 (nr, i-Ph’), 133.9 (nr, 0-Ph), 133.8
(nr, 0-Ph), 133.7 (nr, 0-Ph’), 133.6 (nr, 0-Ph’), 133.2 (nr, 0-Ph’), 133.1 (nr, 0o-Ph’), 130.9 (nr, m-
Ph), 130.2 (nr, m-Ph), 129.7 (nr, m-Ph), 129.4 (nr, m-Ph), 128.3 (nr, m-Ph’), 128.2 (nr, m-Ph’),
127.8 (s, p-Ph), 127.8 (s, p-Ph), 127.7 (s, p-Ph’), 127.6 (s, p-Ph’), 112.3 (d, 2Jpc = 37.7 Hz, i-Cp-
Hg), 108.6 (nr, 2Jpc = 37.7 Hz, i-Cp’-Hg), 81.5 (d, 2Jp.c = 45.2 Hz, i-Cp’-P), 79.0 (nr, Cp), 78.9
(nr, Cp), 78.6 (d, 2Jpc = 53.0 Hz, i-Cp’-P), 76.6 (nr, Cp), 75.2 (nr, Cp’), 75.0 (nr, Cp’), 73.4 (nr,
Cp’), 70.8 (s, free Cp), 70.2 (s, free Cp’), 39.9 (s, CH,CI). 3'P{'H} NMR (202.5 MHz, CDCl;,

25 °C): 6 = 24.6 (d, 2Jp,p = 405 Hz), 20.7 (d, °Jpp = 405 Hz). High-resolution ESI-MS (positive
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mode, CH:Cl»/acetonitrile): m/z 1094.9320 (IM—CI1]", 100%, calcd for
12C4s H3s P CIP%Fer?"Hg3 P, 1%Pd 1094.9578).

Kinetic Study of the CH2Cl, Activation Reaction with 2a/2b. A solution containing a mixture
of CH2Cl; (0.4 mL), C¢Dg (0.6 mL), 2a (2.1 mg, 0.0016 mmol) and 2b (2.1 mg, 0.0016 mmol) was
introduced into an NMR tube and the reaction followed by *'P NMR spectroscopy at 40 °C. The

NMR spectra were recorded every 40 minutes for a total of 400 min.
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Table S1. Crystal data and refinement details for 2a, 2b, and 3a.

Compound

2a (meso)

2b (pSpS)

3a (meso)

CCDC

2053820

2053821

2053822

empirical formula

Ci22HosFesHgoO2P4Pd2

Cs1HsoFexHgOP2Pd

CasH3sCloFe HgPoPd - 2
CH:Clz

MW 2553.23 1279.64 1300.13
T,K 100 100 100
wavelength, A 1.54178 1.54184 1.54178
crystal system Triclinic Monoclinic Monoclinic
space group P-1 P2, P2i/c
a, A 10.2020(11) 9.5692(1) 11.975(4)
b, A 12.6346(13) 12.8337(2) 27.776(9)
c, A 19.684(2) 20.1024(3) 14.345(4)
a, deg 82.830(3) 90 90
p, deg 85.254(3) 91.986(1) 105.223(9)
y, deg 71.562(3) 90 90
v, A3 2385.7(4) 2467.26(6) 4604(2)
Z 1 2 4
Peale, g M 1.777 1.722 1.876
4 (CuKa), mm! 14.38 13.91 18.02
crystal size, mm 0.18x0.11x0.07 0.17x0.01x0.01 0.40x0.05%0.04
Orange, deg 2.3-68.7 2.2-77.8 3.2-68.8
limiting indices -12<h<12 8<h<1l1 -14<h<12
-11<k<15 -16 <k <16 32<k<32
22123 255125 -16 <1< 17
reflns collected 18344 44271 42767
independent reflns 7717 10288 8230
[R(int) = 0.065] [R(int) = 0.045] [R(int) = 0.049]
data/restraints/parameters | 7717/54/650 10288/1/613 8230/12/542
goodness-of-fit on /2 0.99 1.13 1.02
final R indices, RI1=0.065 RI1=0.036 RI1=0.038
[1>20(1) 1™ WR2=0.173 wR2 =0.102 WR2 = 0.082
R indices (all data) [ RI=0.1167 RI1=0.048 RI1=0.051
peakmax/holemin (e A7) 2.28/-3.25 1.15/-2.50 1.53/-1.71
Flack parameter 0.015(6)

BIR1 = 2 |Fo|—|Fc| 1/ 21Fo|; wR2 = {2[w(Fo*Fc?) 2]/ ZW(Fo

2) 2]}1/2
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Figure S1. Illustration of two molecules of 2a (meso) showing the disorder of the dba ligand.
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Analysis of Buried Volume and Ligand Steric Maps

We examined the diphosphine ligands in complexes 2a and 2b by performing an analysis of the
buried volume using the SambVca program.!® As expected we find a very large percentage of
buried volume (% V4,,) for the diphosphine ligand in both LPd’(dba) complexes, larger than that
of most common diphosphines!!. Using a sphere of 5.0 A to account for the large size of the dba
ligand and the steric pressure of the diferrocenylmercury unit relatively far from the Pd, the Vy,, of
the ligand in the meso-isomer 2a of 57.3% is in fact slightly smaller than that of the pSpS-isomer
2b of 62.5% (the differences for a 3.5 A sphere with % Vy,, of 58.2% and 61.0% respectively are
even smaller). A similar trend is seen for the respective trans-coordinated LPdCl, complexes, for
which the % V,,, within a 3.5 A sphere of the meso-isomer of 61.0 % is smaller to that of pSpS-
isomer of 63.1%. Clearly, the steric hindrance exerted by the diphosphines cannot be described
simply by the volume they take up. However, the dramatic differences between the ligands are
evident in the respective steric maps (Figure 3). In 2a the coparallel diferrocene unit forces the Ph
groups away from the proligand backbone but leaving space above the diferrocene unit. On the
other hand, for 2b, the diferrocene backbone arrangement does not provide space close to the

backbone for a ligand as large as the dba ligand.

2a Diphosphine Ligand

6 4 -2 0 2 4 6

2b Diphosphine Ligand

Figure S2. Steric maps for the diphosphines in the Pd® complexes 2a (top) and 2b (bottom).
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PPM

Figure S3a. 202.5 MHz *'P{'"H} NMR spectra for the competitive reaction between 1a/1b and
Pd(dba); in CsDs; the spectra were recorded every 30 min.
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Spectral Data for Isolated Compounds
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Figure S8. 202.5 MHz *'P{'H} NMR spectrum of 2a (meso) in C¢Ds.
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Figure S9. MALDI-TOF MS spectrum of 2a (meso) and expansion.

S19



4.018

4.018

BENZENE-d6

=

4.319
4.318

—4.318
L % 4.043

3.24 1.88 8.20
[ [

T T
435 430 425 420 415 410  4.05 4.00
Chemical Shift (ppm)

- 4.043

L

R —
12.313.63 4.126.28 10.14 2.23 2.60 3.24 1.88 8.20
T T N T N TR o

Il|IlIl|llll|llll|lllllllll|lIIlllIIl|lIIl|IIIl|IlIl|llIl|lllllllll|llll|ll|l|l||

8 7 6 5 4 3 2 1
Chemical Shift (ppm)

~
<
<
~

8.032
8.023
7.721
7.696
7.687
7.675

SN
.313.63

.
———

T
8.0 7.5
Chemical Shift (ppm)

N

=
=

T T T
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Figure S11. 150.8 MHz 3C{'H} NMR spectrum and expansions of 2b (pSpS) in C¢Ds.
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Figure S12. 202.5 MHz *'P {'H} NMR spectrum of 2b (pSpS) in CeDs.

S22



Intens. |
x108

1.04

0.8

0.6

0.4

0.2

1043.9862

1042.9845

1041.9866

A

1045.9890

1044.9888

)

1046

.9868

1047.9873

1048.9886

1049.9925
1050.9913

1051.9921

0.0

5000;
4000{
3000{
20005

1000+

1043.9811

1042.9804

1041.9807

1045.9820
1044.9812

1046

.9819

1047.9832

Calculated

1048.9827

1049.9845
1050.9842

1051.9864

1042 ' 1044

1046

1048

1050 ' 1052 m/z
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Figure S14. 599.7 MHz 'H NMR spectrum and expansions of 3a (meso) in CDCls.
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Figure S15. 150.8 MHz BC{'H} NMR spectrum and expansions of 3a (meso) in CDCls.
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Figure S16. 202.5 MHz *'P {'"H} NMR spectrum of 3a in CDCl;.
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Figure S17. ESI-MS spectrum and expansions of 3a (meso) in CH2Clo/CH3CN.
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Figure S18. 599.7 MHz 'H NMR spectrum and expansions of 3b (pSpS) in CDCls.
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Figure S19. Expansions of the 150.8 MHz *C{'H} NMR spectrum of 3b (pSpS) in CDCl;.
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Figure S20. 202.5 MHz *'P{'H} NMR spectrum and expansion of 3b (pSpS) in CDCls.
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Figure S21. ESI-MS spectrum and expansion of 3b (pSpS) in CH>Clz/acetonitrile.
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