Supporting Information

Samples	XRF		Elemental analysis		sis
	Pt /wt%	Ni /wt%	C /wt%	N /wt%	N/C
HPCS	0.0	0.0	88.0	1.5	0.017
PtNi ₀ /HPCS	29.3	0.0			
PtNi _{0.26} /HPCS	25.5	1.9			
PtNi _{0.41} /HPCS	25.4	3.1			
PtNi _{1.22} /HPCS	25.5	9.4	49.2	2.3	0.047
PtNi _{2.63} /HPCS	28.2	22.4			
Pt ₀ Ni/HPCS	0.0	11.1			
PtNi _{1.22} /HPCS-no dpa	27.9	10.2	52.6	1.0	0.019
PtNi _{1.23} /KB	26.3	9.7			

Table S1. Pt and Ni loading estimated by XRF and elemental analysis of the samples

Figure S1. FESEM image of silica resorcinol-formaldehyde particles SiO₂@SiO₂/RF.

Figure S2. FESEM images of (a) HPCS and (b) HPCS broken by ultrasonication for 4 h after annealing at 973 K for 5 h under Ar. (c) TGA of HPCS in air. (d) XRF of $PtNi_{1.22}/HPCS$ (blue), HPCS (green), and Blank (red).

Figure S3. (a–c) TEM images and (d–n) HAADF-STEM images of HPCS.

Figure S4. STEM-EDS mapping images of Pt and Ni of $PtNi_{1.22}/HPCS$ prepared without dpa ($PtNi_{1.22}/HPCS$ -no dpa).

Figure S5. XRD of PtNi_{1.22}/HPCS synthesized with different kinds of organic molecules.
dpa: 2,2'-dipyridylamine; L1: aniline; L2: 2-aminopyridine; L3: 2,6-diaminopyridine; L4: pyridine;
L5: diphenylamine; L6: 2,2'-dipicolylamine; L7: benzophenone; L8: benzaldehyde; L9: toluene.

Figure S6. Raman spectra of HPCS and $PtNi_{1.22}/HPCS$.

Figure S7. N 1s XPS spectra (black) of PtNi_{1.22}/HPCS and PtNi_{1.22}/HPCS-no dpa with peak fittings for pyridinic-N (398.4 eV, blue), amino-N (399.5 eV, violet), graphitic-N (400.5 eV, green), background (dark blue) and the fitting spectra (red). The peak positions of all peaks and FWHM of the peak at 399.5 eV (amino-N) were fixed in the fitting process, using an 80% Lorentzian-weighted Gaussian-Lorentzian sum function. A Shirley background was subtracted, and binding energies referenced to C 1s (284.6 eV). FWHM: (PtNi_{1.22}/HPCS -no dpa) graphitic-N 1.64 eV, pyridinic-N 1.36 eV; (PtNi_{1.22}/HPCS) graphitic-N 1.58 eV, amino-N 1.31 eV (fixed), pyridinic-N 1.3 eV.

Figure S8. Tafel plots of catalysts $PtNi_0/HPCS$, $PtNi_{1.22}/HPCS$, $PtNi_{1.22}/HPCS$ -no dpa, $PtNi_{1.23}/KB$, and TEC10E50E.

Organic molecules	$ECSA / m^2 g^{-1} m$	MA /A mg ⁻¹ Pt	SA /mA cm ⁻² _{Pt}
	105 + 9	2.25 + 0.14	2 11 + 0 00
2.2'-Dipyridylamine (dpa)	105 ± 8	3.25 ± 0.14	3.11 ± 0.09
	81 ± 1	2.55 ± 0.42	2.79 ± 0.42
Aniline (L1) H_{N} $(L2)$	82 ± 1	2.53 ± 0.10	3.10 ± 0.13
2 6-Diaminopyridine (L2) 2 6-Diaminopyridine (L3)	89 ± 3	3.14 ± 0.14	3.54 ± 0.04
Pyridine (L4)	80 ± 2	2.53 ± 0.27	3.16 ± 0.44
Diphenylamine (L5)	70 ± 1	1.74 ± 0.04	2.48 ± 0.02
2 2'-Dinicolylamine (L6)	30 ± 3	0.66 ± 0.01	2.25 ± 0.16
Benzophenone (L7)	66 ± 1	1.74 ± 0.01	2.62 ± 0.04
онс	55 ± 1	1.86 ± 0.08	3.42 ± 0.19
Toluene (L9)	62 ± 2	2.01 ± 0.15	3.24 ± 0.12

Table S2. Comparison of ORR results of prepared catalysts with different kinds of organic molecules

ECSA, electrochemical surface area; MA, mass activity; SA, specific activity.

catalysts	$ECSA$ (m^2/g_{pt})	MA (mA/µg _{Pt})	SA (mA/cm ² _{Pt})	Reference
Pt ₃ Fe NW	34.0	2.11	4.34	1
PtNi frame	73.4	1.51	2.05	2
PtNi frame	54.8	0.24	0.44	3
PtNiCo NW	82.2	4.2	5.11	4
Rh-Pt NW	86.4	1.41	1.63	5
PtNiPd NW	55.4	1.93	3.48	6
Pt ₃ Co NW	52.1	3.71	7.12	7
Jagged Pt NW	118	13.6	11.5	8
PtPb/Pt plate	55.1	4.3	7.8	9
Mo-Pt ₃ Ni	67.5	6.98	10.3	10
Pt Nanocage	38.2	0.75	1.98	11
PtNi thin film	9	0.216	2.4	12
Pt Nanotube	34.2	0.5	1.48	13
PtNi-NiB NP	59	5.3	9.05	14
Pt Nanocage	45.2	1.12	2.48	15
Pt73Ni27/C-Octahedral	32	1.69	5.29	16
PtNi-BNCs	68.2	3.52	5.16	17
Pt/NHCS	193 ± 29	0.68 ± 0.14	0.41 ± 0.06	18
Pt _{seed} /Pt ₃ NiMo/HGS	55	0.7	1.23	19
TEC10E50E	65.19 ± 3.64	0.24 ± 0.00	0.37 ± 0.03	This work
PtNi _{1.22} /HPCS	104.65 ± 7.81	3.25 ± 0.14	3.11 ± 0.09	This work

Table S3. Comparison of the ORR performance in recently published references.

Figure S9. Nyquist plots and Bode phase plots of PtNi_{1.22}/HPCS in the (a, b) kinetic region (1000– 900 mV), (c, d) mixed-diffusion region (895–870 mV), and (e, f) mass-transport region (850–800 mV). Inset: equivalent electrical circuit used to model the EIS data, considering solution resistance (R_S), polarization resistance (R_P), two constant phase elements (CPE₁ and CPE₂), resistance related to mass transfer (R_{MT}), and charge transfer resistance related to the ORR (R_{CT}). The EIS measurements were performed in O₂-saturated 0.1 M HClO₄ solution, over a frequency range of 0.03 Hz to 10 kHz, applying a 10 mV perturbation amplitude.

Figure S10. Anodic ORR polarization curves of $PtNi_{1.22}/HPCS$ recorded in O₂-saturated 0.1 M HClO₄ solution with a sweep rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm.

Figure S11. Durability of the catalysts to the ORR. LSV polarization curves of (a) $PtNi_{1,23}/KB$ and (b) $PtNi_{1,22}/HPCS$ after 0 and 40,000 ADT cycles. LSV recorded in O₂-saturated 0.1 M HClO₄ solution at a sweep rate of 10 mV s⁻¹ and rotation speed of 1600 rpm (293 K). The ADT was conducted at 293 K by applying cyclic sweeps between 0.6 and 1.0 V_{RHE} in O₂-saturated 0.1 M HClO₄ electrolyte at a sweep rate of 100 mV s⁻¹.

Figure S12. STEM-EDS comparison of $PtNi_{1.22}/HPCS$ before (bottom, green) and after (top, red) 60,000 ADT cycles.

Reference:

- 1. M. Luo, Y. Sun, X. Zhang, Y. Qin, M. Li, Y. Li, C. Li, Y. Yang, L. Wang, P. Gao, G. Lu and S. Guo, *Adv. Mater.*, 2018, **30**, 1705515.
- 2. H. Kwon, M. K. Kabiraz, J. Park, A. Oh, H. Baik, S.-I. Choi and K. Lee, Nano Lett., 2018, 18, 2930-2936.
- 3. S. Chen, Z. Niu, C. Xie, M. Gao, M. Lai, M. Li and P. Yang, ACS Nano, 2018, 12, 8697-8705.
- 4. K. Jiang, D. Zhao, S. Guo, X. Zhang, X. Zhu, J. Guo, G. Lu and X. Huang, *Sci. Adv.*, 2017, **3**, e1601705.
- 5. H. Huang, K. Li, Z. Chen, L. Luo, Y. Gu, D. Zhang, C. Ma, R. Si, J. Yang, Z. Peng and J. Zeng, *J. Am. Chem. Soc.*, 2017, **139**, 8152-8159.
- 6. N. Zhang, Y. Feng, X. Zhu, S. Guo, J. Guo and X. Huang, Adv. Mater., 2017, 29, 1603774.
- L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo and X. Huang, *Nat. Commun*, 2016, 7, 11850.
- M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.-Y. Chen, R. Yu, Q. Zhang, L. Gu, B. V. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard, Y. Huang and X. Duan, *Science*, 2016, **354**, 1414-1419.
- L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.-Y. Ma, D. Su and X. Huang, *Science*, 2016, 354, 1410-1414.
- X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller and Y. Huang, *Science*, 2015, 348, 1230-1234.
- L. Zhang, L. T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S.-I. Choi, J. Park, J. A. Herron, Z. Xie, M. Mavrikakis and Y. Xia, *Science*, 2015, 349, 412-416.
- 12. D. F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X. F. Zhang, M. K. Debe, R. T. Atanasoski, N. M. Markovic and V. R. Stamenkovic, *Nat. Mater.*, 2012, **11**, 1051-1058.
- Z. Huang, D. Raciti, S. Yu, L. Zhang, L. Deng, J. He, Y. Liu, N. M. Khashab, C. Wang, J. Gong and Z. Nie, J. Am. Chem. Soc., 2016, 138, 6332-6335.
- D. He, L. Zhang, D. He, G. Zhou, Y. Lin, Z. Deng, X. Hong, Y. Wu, C. Chen and Y. Li, *Nat. Commun*, 2016, 7, 12362.
- D. S. He, D. He, J. Wang, Y. Lin, P. Yin, X. Hong, Y. Wu and Y. Li, J. Am. Chem. Soc., 2016, 138, 1494-1497.
- X. Zhao, S. Takao, K. Higashi, T. Kaneko, G. Samjeskè, O. Sekizawa, T. Sakata, Y. Yoshida, T. Uruga and Y. Iwasawa, *ACS Catal.*, 2017, 7, 4642-4654.
- X. Tian, X. Zhao, Y.-Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. Lou and B. Y. Xia, *Science*, 2019, 366, 850-856.
- C. Galeano, J. C. Meier, M. Soorholtz, H. Bongard, C. Baldizzone, K. J. J. Mayrhofer and F. Schüth, ACS Catal., 2014, 4, 3856-3868.
- J. Knossalla, P. Paciok, D. Göhl, D. Jalalpoor, E. Pizzutilo, A. M. Mingers, M. Heggen, R. E. Dunin-Borkowski, K. J. J. Mayrhofer, F. Schüth and M. Ledendecker, *J. Am. Chem. Soc.*, 2018, 140, 15684-15689.