Electronic supplementary information-ESI

Synthesis of (3-nitro-2-oxo-benzaldehyde thiosemicarbazonato) zinc(II) complexes : the position of nitro group in phenyl ring alters antimicrobial activity against *K. pneumoniae* 1, *S. typhimurium* 2, MRSA and *C. albicans*[†]

Tarlok S. Lobana,*^a Shikha Indoria,^a^Ψ Henna Sood,^c Daljit S. Arora,^c Manpreet Kaur^d and Jerry P. Jasinski^d

^aDepartment of Chemistry, Guru Nanak Dev University, Amritsar – 143 005, India ^bDepartment of Microbiology, Guru Nanak Dev University, Amritsar-143 005, India ^cDepartment of Chemistry, Keene State College, Keene NH 03435-2001, USA *E-mail: tarlokslobana@yahoo.co.in; Fax: +91-183-2258820.

 ${}^{\Psi}$ Present Address: Department of Chemistry, Kanya Maha Vidyalaya , Jalandhar-144004, India;

1S. Thiosemicarbazone ligands

1S.1. 3-nitro-salicylaldehyde thiosemicarbazone (3-NO₂-stscH₂-N¹H₂)

To a solution of NH_2 thiosemicarbazide (1.0 g, 0.011 mol) in hot methanol (50 mL) and glacial acetic acid (5 mL), was added 5- NO_2 -salicyladehyde (1.83 g, 0.011 mol). The contents were refluxed for 6 h. The clear solution obtained was poured in a beaker and

allowed to evaporate at room temperature. Slow evaporation of the solution gave orange colored compound. Color: Orange. Yield: 0.86 g, 86 %, m.p. 200-201 °C. IR (KBr, cm⁻¹): v(N¹–H) 3452 s; v(N²–H) + v(O–H) 3328 s; v(C–H) 3144 w, 3099 w, 3006 w, 2950 m; v(C=N) + v(C=C)+ δ (N–H) 1593 s, v(N=O) 1532 s; δ (C–H) 1438 s, 1428 w; δ (N=O) 1369 s, 1272 s, 1148m, 1096 w, 1054 w; 944 w, v(C–S) 854 s, 825 s, 695 w, 644 w, 538 w, 420 s. ¹H NMR (δ , ppm; DMSO): δ = 10.99 (1H, s, OH), 8.50 (1H, s, N²H), 8.22 (1H, s, C²H), 8.11 (2H, d, C⁴H + C⁶H),

7.52 (2H, s, N¹H₂), 7.05 (1H, d, C⁵H). Electronic absorption spectrum (10⁻⁴ M in DMSO, λ_{max} /nm, ϵ /L·mol⁻¹·cm⁻¹): 316 (2.368 x10⁴). Thio-ligands **10**, **11** and **12** were also prepared by a similar method.

1S.2. 3-nitro-salicylaldehyde-N¹-methyl thiosemicarbazone (3-NO₂-stscH₂-N¹HMe)

Color: Orange. Yield: 0.85 g, 85 %, m.p. 230- 232°C. IR (KBr, cm⁻¹): v(N¹–H) 3351 s; v(N²–H)+ v(O–H), 3137 s, v(C–H) 2996 m, 2930 w, ; v(C=N) + v(C=C)+ δ (N–H) 1613 s, v(N=O) 1548 s; δ (C–H) 1443 m; δ (N=O) 1385 w, 1333 w, 1299s, 1256 m, 1235 m, 1162 w, 1100 s, 1044 s; 939 s, v(C–S) 857 s; 827 w, 698 w, 633 m, 504 m. ¹H

NMR (δ , ppm; DMSO): δ = 11.45 (1H, s, OH), 8.47 (1H, d, N²H), 8.25 (1H, d, C²H), 8.09 (2H, d, C⁴H + C⁶H), 7.62 (1H, s, N¹H), 7.04 (1H, m, C⁵H), 3.19 (3H, t, CH₃(N¹)). Electronic absorption spectrum (10⁻⁴ M in DMSO, λ_{max} /nm, ε /L·mol⁻¹·cm⁻¹): 315(1.877x 10⁴).

1S.3. 3-nitro-salicylaldehyde-N¹-ethylthiosemicarbazone (3-NO₂-stscH₂-N¹HEt)

Color: Orange. Yield: 0.86 g, 86 %, m.p. 185-186 °C. IR (KBr, cm⁻¹): v(N¹–H) 3360 s, v(O–H) 3321 s, v(N²–H) 3176 br, v(C–H) 2972 w; 2940 w, 2873; v(C=N) + v(C=C) + δ (N–H) 1613 s, 1594 s, v(N=O) 1550s; δ (C–H) 1498 s; 1442 m, δ (N=O) 1353 s, 1320 s, 1289 s, 1250 s, 1250s, 1212 s, 1136 m, 1111 s, 1053 w, 920 m; v(C–S) 850 s; 793 s, 743 s, 698 s, 672 s,

608 w, 583 w, 506 w, 456 w. ¹H NMR (δ, ppm; DMSO): $\delta = 11.02$ (1H, s, OH), 8.88 (1H, s, N²H), 8.31(1H, s, C²H), 8.02 (2H, m, C⁴H + C⁶H), 7.45 (1H, s, N¹H), 6.91 (1H, d, C⁵H), 3.59 (2H, m, N¹(CH₂), 1.28 (3H, m, CH³). Electronic absorption spectrum (10⁻⁴ M in DMSO, λ_{max} /nm, ε /L·mol⁻¹·cm⁻¹): 320(1.723x10⁴).

1S.4. *3-nitro-salicylaldehyde-N¹-phenyl thiosemicarbazone* $(3-NO_2-stscH_2-N^1HPh)$

Color: Yellow. Yield: 0.82 g, 82 %, m.p. 201-202 °C. IR (KBr, cm⁻¹): v(N¹–H) 3369 s; v(O–H) 3263 w, v(N²–H) 3179 br, 2989 m; v(C=N) + v(C=C)+ δ (N-H) 1643s, 1619 s, v(N=O) 1531 s, 1511 s; δ (C–H) 1442 w; 1399 w, δ (N=O) 1369 w; 1282 s, 1161 s, 1000 s, v(C–S) 842 s; 647 w, 6301 s, 565 w. ¹H NMR (δ , ppm; CDCl₃): δ = 11.53 (1H, s, OH), 10.21 (1H, s, N²H), 9.26 (1H, s, C²H),

8.46(1H, s, N¹H), 8.11 (2H, d, C⁴H + C⁶H), 7.52 (2H, s, o-H_{Ph}), 7.38(2H, m, m-H_{Ph}), 7.15 (1H, m, p-H_{Ph}), 7.07 (1H, d, C⁵H). Electronic absorption spectrum (10⁻⁴ M in DMSO, λ_{max} /nm, ϵ /L·mol⁻¹·cm⁻¹): 317 (1.348x10⁴).

2S. Bipy and Phen Co-ligands – NMR data

2S.1 : 2, 2'-bipyridine (bipy)

¹H NMR of 2, 2'-bipyridine (δ , ppm; CDCl₃): δ = 8.70 (2H, d, C⁷H_{bipy} + C¹⁴H_{bipy}); 8.42 (2H, d, C¹⁰H_{bipy} + C¹¹H_{bipy}), 7.87 (2H, m, C⁹H_{bipy} + C¹²H_{bipy}), 7.32 (2H, m, C⁸H_{bipy} + C¹³H_{bipy}).

2S.2: 1, 10 – phenanthroline (phen)

¹H NMR of 1, 10 –phenanthroline (δ , ppm; CDCl₃): δ = 9.20 (2H,

d, $C^{7}H_{phen} + C^{14}H_{phen}$); 8.25 (2H, d, $C^{9}H_{phen} + C^{12}H_{phen}$), 7.80 (2H, s, $C^{10}H_{phen} + C^{11}H_{phen}$), 7.64 (2H, dd, $C^{8}H_{phen} + C^{13}H_{phen}$).

3S. ESI-mass data with isotopic patterns

3S.1 [Zn(3-NO₂-stsc-N¹H₂)(bipy)] **1**

Fig. 38.1.2: ESI-mass peak due to $[Zn(bipy)_2 + H]^+(m/z = calcd, 376.1, obsd. 376.06)$

species with isotopic pattern (complex 1).

Fig. 38.1.3: ESI-mass peak due to molecular ion $[Zn(3-NO_2-stsc-N^1H_2)(bipy)+H]^+$ (m/z = calcd, 459.02, obsd. 459.01) with isotopic pattern (complex 1).

3S.2.[Zn(3-NO₂-stsc-N¹HMe)(bipy] (**2**)

Ig. 55.2.2. ESI-mass peak due to molecular foir $[2m(5-mO_2-sisc-m^2mme)^+ m]$ (in

316.96, obsd. 316.93) with isotopic pattern (complex 2).

Fig. 38.2.3. ESI-mass peak due to $[Cu(bipy)_2 + H]^+(m/z = calcd, 376.06 obsd. 375.98)$ species

with isotopic pattern (complex 2).

Fig. 38.2.4. ESI-mass peak due to molecular ion $[Zn(3-NO_2-stsc-N^1HMe)(bipy)+H]^+$ (m/z = calcd, 473.03, obsd. 472.98) with isotopic pattern (complex 2).

Fig. 38.3.2. ESI-mass peak due to molecular ion $[Zn(3-NO_2-stsc-N^1HEt)(bipy)+H]^+ \cdot H_2O$ (m/z = calcd, 505.06, obsd. 505.02) with isotopic pattern (complex 3).

3S.4. $Zn(3-NO_2-stsc-N^1H_2)(phen]$ (5)

(m/z = calcd, 483.02, obsd. 482.99) with isotopic pattern (complex 5).

Fig. 3S.5.1. ESI mass spectra of [Zn(3-NO₂-stsc-N¹HPh)(phen)] (8)

3S.5.2. ESI-mass peak due to molecular ion $[Zn(3-NO_2-stsc-N^1HPh)(phen)+H]^+ H_2O$ (m/z = calcd, 559.05, obsd. 559.01) with isotopic pattern (complex **8**).

4S. Zone of inhibtion values	
Table 1S. Zone of inhibition (ZOI, in mm) for zinc complexes 1-8 and free ligands. ^{a,b}

Complex	MRSA	S. aureus	K. pneumoniae 1	S. typhimurium2	C. albicans
No.					
	ZOI	ZOI	ZOI	ZOI	ZOI
1 (H, bipy)	15	15	16	NA	16
2 (Me, bipy)	21	24	21	21	25
3 (Et, bipy)	24	21	19	15	25
4 (Ph, bipy)	21	21	20	20	21
5 (H, phen)	18	21	18	13	27
6 (Me, phen)	19	14	15	NA	15
7 (Et, phen)	23	22	23	14	25
8 (Ph, phen)	21	17	19	12	15
3-NO ₂ -stscH ₂ -	18	-	14		14
N^1H_2				NA	
3-NO ₂ -stscH ₂ -	20	15	18		20
N ¹ HMe				NA	
3-NO ₂ -stscH ₂ -	20	16	16		17
N ¹ HEt				10	

3-NO ₂ -stscH ₂ -	18	15	15		15
N ¹ HPh				11	
Gentamicin ^c	33	26	35	35.5	-
Amphotericind	-	-	-	-	34

^{*a*}All measurements are in mm diameter of the inhibition zone. ^bStudies were made in 30% DMSO. ^{*c*}Gentamicin was used as positive control against bacteria {*MRSA*, *S. aureus*, *S. typhimurium* 2, *K.pneumoniae* 1) and ^dAmphotericin acts as a positive control against yeast (*C. albicans*).