Electronic Supporting Information for:

Hydroquinone/quinone electro- and photochemical interconversion in isolable polypyridylruthenium(II) complexes

Dai Oyama,*^a Takatoshi Kanno^b and Tsugiko Takase^a

^a Department of Natural Sciences and Informatics, Fukushima University, 1
 Kanayagawa, Fukushima 960-1296, Japan
 ^b Graduate School of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan

E-mail: daio@sss.fukushima-u.ac.jp (D. Oyama)

Table of Contents

Table S1	page 2
Table S2	page 3
Table S3	page 3
Figure S1	page 4
Figure S2	page 5
Figure S3	page 6
Figure S4	page 7
Figure S5	page 8
Figure S6	page 9
Figure S7	page 10
Figure S8	page 11
Figure S9	page 12
Figure S10	page 13
Figure S11	page 14

	HQ_AN	Q_AN
Chemical formula	$C_{33.25}H_{28}F_{12}N_6O_3P_2Ru$	$C_{35}H_{27}F_{12}N_7O_2P_2Ru$
Formula weight	950.62	968.64
Temperature (K)	293	93
Crystal system	monoclinic	triclinic
Space group	C2/c	<i>P</i> -1
<i>a</i> (Å)	12.4452(2)	8.9275(11)
<i>b</i> (Å)	12.9054(2)	9.3122(12)
<i>c</i> (Å)	49.4032(7)	22.021(3)
α (°)	90	86.863(2)
eta (°)	92.6880(10)	87.394(3)
$\gamma(^{\circ})$	90	87.946(2)
$V(Å^3)$	7925.9(2)	1825.0(4)
Ζ	8	2
Calcd density (g/cm ³)	1.593	1.763
μ (Mo $K\alpha$) (mm ⁻¹)	0.575	0.625
No. unique reflns	11354	8276
No. obsd reflns	9368	6652
Refinement method	Full-matrix leas	t-squares on F^2
Parameters	640	534
$R[I > 2\sigma(I)]^{1}$	0.0876	0.0902
wR (all data) ²	0.2020	0.2449
S	1.276	1.110

 Table S1. Crystallographic data for HQ_AN and Q_AN.

¹ $R = \Sigma(||F_{o}| - |F_{c}||)/\Sigma|F_{o}|; {}^{2} wR = \{\Sigma_{w}(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma_{w}(F_{o}^{2})^{2}\}^{1/2}.$

D –H \cdots A	<i>D</i> –Н	$\mathrm{H}^{\dots}A$	$D^{\cdots}A$	$D-\mathrm{H}^{\dots}A$
O1–H1···O2 ⁱ	0.82	1.96	2.765(8)	169
O2–H2…O5	0.82	1.94	2.730(15)	161
$O2-H2\cdots O5^{ii}$	0.82	1.96	2.779(15)	179
O5–H5A […] O2 ⁱⁱ	0.85	2.23	2.779(15)	123
C2–H2A […] F1A ⁱⁱⁱ	0.93	2.46	3.258(17)	144
$C2-H2A\cdots F3^{iii}$	0.93	2.54	3.218(17)	130
C5–H5…F10A	0.93	2.38	3.19(2)	146
C12–H12…O1	0.93	2.46	2.819(7)	103
$C24-H24\cdots F3A^{iv}$	0.93	2.54	3.38(2)	151
$C29-H29\cdots F10^{i}$	0.93	2.44	3.20(3)	139
$C33-H33C\cdots F7^v$	0.96	2.54	3.44(2)	157

Table S2. Hydrogen-bond geometry (Å, °) for HQ_AN.

Symmetry codes: (i) 3/2–*x*, 1/2+*y*, 3/2–*z*. (ii) 1–*x*, *y*, 3/2–*z*. (iii) 1/2+*x*, –1/2+*y*, *z*. (iv) –*x*, 1–*y*, 1–*z*. (v) –1/2+*x*, 1/2+*y*, *z*.

$D-\mathrm{H}^{\dots}A$	D–H	H····A	$D^{\cdots}A$	$D-\mathrm{H}^{\dots}A$
$C1-H4\cdots F4^i$	0.95	2.53	3.181(16)	126
$C2-H5\cdots F2^i$	0.95	2.43	3.310(13)	154
C3–H6 ^{···} O1 ⁱⁱ	0.95	2.43	3.379(9)	175
С9–Н9…О2	0.95	2.34	2.828(8)	112
$C12-H10\cdots F8^{iii}$	0.95	2.46	3.400(13)	169
$C17-H14\cdots N7^{ii}$	0.95	2.46	3.391(12)	168
$C20-H16\cdots F10^{iv}$	0.95	2.40	3.110(11)	132
$C31-H17\cdots F2^v$	0.95	2.52	3.181(16)	127
C31–H17…N6	0.95	2.60	3.154(13)	118
C25–H21 \cdots F3 ^{vi}	0.95	2.44	3.34(2)	156
C35–H25…F10	0.98	2.46	3.352(15)	151
C35–H26····F9 ^{vii}	0.98	2.31	3.271(17)	167

Table S3. Hydrogen-bond geometry (Å, °) for Q_AN.

Symmetry codes: (i) *x*, -1+y, *z*. (ii) 1-x, 1-y, 1-z. (iii) -1+x, -1+y, *z*. (iv) -x, 2-y, 1-z. (v) -1+x, *y*, *z*. (vi) 1-x, 2-y, -z. (vii) 1-x, 2-y, 1-z.

Figure S1. ORTEP views of (**a**) **HQ_Cl** and (**b**) **Q_Cl**. Ellipsoids are shown at the 50% probability level. Counteranions, solvent molecules and hydrogen atoms, with the exception of the OH hydrogens, are removed for clarity (D. Oyama, M. Kido, R. Abe and T. Takase, *ChemistrySelect*, 2017, **2**, 2583–2587.)

Figure S2. Electronic absorption spectra of (a) **HQ**-complexes and (b) **Q**-complexes in acetonitrile ($c = 1.0 \times 10^{-4}$ M).

Figure S3. Correlations of the reduction potentials (E_{pc1}) of **Q_Cl** with solvent acceptor numbers (AN).

Figure S4. First-order plots of the photoinduced substitution reactions of (a) HQ_AN or Q_AN ($c = 1.0 \times 10^{-4}$ M) with acetone, (b) HQ_AN ($c = 1.0 \times 10^{-4}$ M) with pyridine derivatives in CH₃CN at 298 K.

Figure S5. ¹H NMR spectrum of Q_Cl in CD₃CN.

Figure S6. ¹H NMR spectrum of Q_AN in CD₃CN.

Figure S7. ¹H NMR spectrum of Q_CO in CD₃CN.

Figure S8. ESI mass spectrum of HQ_AN (positive mode, CH₃CN).

Figure S9. ESI mass spectrum of HQ_CO (positive mode, CH₃CN).

Figure S10. ESI mass spectrum of Q_AN (positive mode, CH₃CN).

Figure S11. ESI mass spectrum of Q_CO (positive mode, CH₃CN).