Supporting Information

Coordination–driven discrete metallo–supramolecular assembly for rapid and selective photochemical CO₂ reduction in aqueous solution

Yanan Wang, Longxin Chen, Ting Liu, and Duobin Chao*

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

1. Experimental Section

1.1 Materials and instruments

All reagents including solvents and starting materials for synthesis were purchased from commercial suppliers and used as received. Terpyridine ligand **Phdtpy** was synthesized as reported.¹ ESI–MS spectra were recorded using a ThermoScientific Q Exactive instrument. ESI–TOF–MS was carried out with Triple TOF 600. UV–Vis–NIR absorption spectra were recorded on a G9 spectrophotometer. CV and SWV experiments were carried out on CHI660E in a one–compartment cell equipped with glassy carbon working electrode, Ag/AgCl reference electrode, and platinum plate counter electrode at room temperature. The potentials were referenced to SCE through an internal standard oxidation of ferrocene. GC analysis for CO₂ reduction was performed on Shimadzu GC–2014 (packed column TDX–01, 2 m x 3mm, FID detector with Shimadzu Methanizer MTN–1 for CO and TCD detector for H₂, N₂ as carrier gas). HCOOH was analyzed with HPLC Shimadzu LC–20AD (SI–52 4E column and 3.6 mmol/L Na₂CO₃ aqueous solution as the eluant). GC–MS experiment for ¹³CO was carried out with Agilent 7890B–5977A.

1.2 Synthesis of assembly Fe₆L₆

Ligand **Phdtpy** (0.3 mmol, 162 mg) was dissolved in 90 mL CH₂Cl₂/CH₃OH (V/V, 1:2) solution. Then FeCl₂·4H₂O (0.3 mmol, 60 mg) was added into the solution and the resulted purple solution was stirred at 40 °C for 24 hours. The reaction solution was further filtered through Celite and filtrate was collected. Excess NH₄FP₆ (1.8 mmol, 294 mg) was added to the filtrate to afford purple precipitate. The precipitate was further purified by silica column chromatograph using CH₃CN/ saturated KNO₃ aqueous solution (V/V, 5:1). The assembly **Fe₆L**₆ was obtained as purple solid. Yield: 37%. ¹H NMR (CD₃CN): δ 9.64(s, 24H), 9.37 (s, 6H), 8.91 (d, 24H, J= 6.4 Hz), 8.68 (d, 12H, J= 8.0 Hz), 8.25 (t, 6H, J = 8.0 Hz), 7.98 (t, 24H, J = 7.6 Hz), 7.37 (d, 24H, J = 5.2 Hz), 7.17 (m, 24H). ¹³C NMR (CD₃CN): 160.63, 158.20, 153.19, 149.80, 138.86, 138.45, 131.06, 129.88, 127.47, 124.20, 122.14. ESI–TOF–MS: m/z 445.7497[M–9(PF₆–)]⁹⁺ (calcd. 445.7486), 519.5891 [M–8(PF₆–)]⁸⁺ (calcd. 519.5879), 614.5240 [M–7(PF₆–)]⁷⁺ (calcd. 614.5264), 741.1094 [M–6(PF₆–)]⁶⁺ (calcd. 741.1054), 918.3211 [M–5(PF₆–)]⁵⁺ (calcd. 918.3193), 1184.1429 [M–4(PF₆–)]⁴⁺ (calcd. 1184.1402).

1.3 Photochemical CO₂ reduction

General procedure: a 5 mL DMF or DMF/H₂O solution containing Fe₆L₆, 4CzIPN and TEA was degassed with CO₂ for 15 min in a reaction tube and then the tube was sealed. The reaction solution was irradiated with a white LED light equipment (SMPC–LVWT, 420–650 nm, 3 W LEDs) supplied by Institute of Physics and Chemistry & Chinese Academy of Sciences. Unless otherwise stated, all photochemical experiments were conducted with this equipment. The generated CO and H₂ were analyzed through external standard method by injection of 100 μ L aliquots of headspace gas into Shimadzu GC–2014 instrument equipped with TCD and FID detectors. All photochemical CO₂ reduction reactions were carried out at least in duplicate.

The apparent quantum yield (AQY) of the photocatalytic reaction is calculated according to the following equation:

 Φ =(number of CO molecules) x 2/(number of incident photons) x 100%

The moles of CO molecules were determined by GC–2014. The light sources for AQY test are blue LEDs (440 nm, 180 mW cm⁻²). The number of incident photons was estimated based on power of LEDs and irradiation time. The power of blue LEDs is probably too large for this photocatalytic system and photons might be not completely used for photochemical reactions.

Fig. S1 Partial ¹H NMR spectra (400 MHz) of ligand Phdtpy in CDCl₃ and assembly Fe_6L_6 in CD₃CN.

Fig. S2 ¹H–¹H COSY spectrum of assembly **Fe₆L₆** in CD₃CN.

Fig. S3 ESI–TOF–MS spectrum of assembly Fe₆L₆. The instrument is Triple TOF 4600.

Fig. S4 Partial experimental ESI-TOF-MS spectra of cations derived from Fe₆L₆.

Fig. S5 SWV result of assembly Fe_6L_6 in DMF.

Fig. S6 CV and SWV results of ligand Phdtpy in DMF.

Fig. S7 CV result of assembly Fe₆L₆.

Water fraction (%)	CO (µmol)	H ₂ (µmol)	TON (CO)	TON (H ₂)
0	5.87±0.98	0	294±49	0
10	68.33±9.05	1.45±0.21	3417±453	73±11
20	75.49±2.65	1.35±0.07	3775±133	68±4
30	106.68±11.65	1.4±0.28	5334±582	70±14
40	299±4.24	1.1±0.14	14956±222	55±7
50	34.62±0.98	0	1732±48	0
60	0	0	0	0
70	0	0	0	0

Table S1. Photochemical CO_2 reduction using assembly Fe_6L_6 with various water fractions.

Conditions: catalyst $[Fe_6L_6] = 4 \mu M$, photosensitizer $[4CzIPN] = 50 \mu M$, [TEA] = 0.28 M in CO₂ saturated DMF/H₂O solution with water fractions from 0 to 70% at room temperature upon visible light irradiation for 2 h.

Table S2. Control experiments for photochemical CO₂ reduction.

Entry	Catalyst	Photosensitizer	Sacrificial Donor	Atmosphere	TON(CO)	TON(H ₂)
1	Fe ₆ L ₆	_	TEA	CO ₂	0	0
2	Fe ₆ L ₆	4CzIPN	TEA	N ₂	0	76
3	—	4CzIPN	TEA	CO ₂	0	0
4	Fe ₆ L ₆	4CzIPN	_	CO ₂	0	0
5	Fe ₆ L ₆	$Ru(bpy)_3^{2+}$	TEA	CO ₂	55	0

Conditions: $[Fe_6L_6] = 4 \mu M$, $[4CzIPN] = 50 \mu M$, [TEA] = 0.28 M, $[Ru(bpy)_3^{2+}] = 50 \mu M$ in DMF/H₂O (v/v, 3:2) solution at room temperature upon visible light irradiation for 2 hours.

Fig. S8 GC–MS result of isotopic labeling experiment with ${}^{13}CO_2$ instead of CO₂ for photochemical reduction reaction. The signal at 28.1 was also observed due to N₂ in air when the sample was injected to GC–MS instrument.

Table S3. Product H	, of	photochemical	CO	reduction with	various	concentrations	of Fe ₆ L ₆
	<u> </u>			2			0 0

Concentration	1 µM	2 µM	4 µM	8 μΜ
ofFe ₆ L ₆				
Time (min)				
0	0 μmol	0 μmol	0 μmol	0 μmol
15	trace	trace	0.07±0.014	0.12±0.028
			μmol	μmol
40	trace	trace	0.54±0.036	0.83±0.13 μmol
			μmol	
80	0.1±0.014 μmol	0.36±0.021	0.95±0.028	1.79±0.59 μmol
		μmol	μmol	
120	0.17±0.028	0.52±0.042	1.25±0.018	2.29±0.78 μmol
	μmol	μmol	μmol	

Conditions: Photosensitizer [4CzIPN] = 50 μ M, [TEA] =0.28 M in DMF/H₂O (V/V, 3:2) solution with various concentrations of **Fe₆L₆** (1 μ M, 2 μ M, 4 μ M, 8 μ M) at room temperature upon visible light irradiation.

Additives	CO (µmol)	H ₂ (µmol)	TON (CO)	TON (H ₂)
Fe ²⁺	2.05±0.66	trace	102±33	trace
Phdtpy	19.61±1.68	0.07±0.04	980±84	4±2
4CzIPN	3.11±1.27	0.82±0.36	155±63	41±18
4CzIPN, Phdtpy	215±1.89	0.81±0.14	10750±95	41±7
Fe ²⁺ , 4CzIPN	7.17±0.75	0.77±0.25	359±37	39±13

Table S4. Photochemical CO_2 reduction by adding various reagents into irradiated reaction solution.

Conditions: The solution containing $\mathbf{Fe}_6\mathbf{L}_6$ (4 µM), 4CzIPN (50 µM) and TEA (0.28 M) in DMF/H₂O (v/v, 3:2) solution under a CO₂ atmosphere was irradiated for 2 h. Then additives including Fe²⁺ (24 µM), Phdtpy (24 µM), 4CzIPN (50 µM), 4CzIPN (50 µM) plus Phdtpy (24 µM) and Fe²⁺ (24 µM) plus 4CzIPN (50 µM) were added into the irradiated solution for another catalytic cycle, respectively.

Fig. S9 UV–Vis–NIR absorption spectra of irradiate reaction solution before (blank line) and after addition of ligand **Phdtpy** (24 μ M). The reaction solution contained **Fe₆L₆** (4 μ M), 4CzIPN (50 μ M) and TEA (0.28 M) in DMF/H₂O (v/v, 3:2) solution under a CO₂ atmosphere for 2 h of visible light irradiation.

Fig. S11 UV–Vis–NIR absorption spectra of assembly Fe_6L_6 in the presence of TEA upon visible light irradiation under a N₂ atmosphere.

Fig. S12 UV–Vis–NIR absorption spectra of 4CzIPN in the presence of TEA upon visible light irradiation under a N_2 atmosphere.

8.87 8.80 8.80 8.76 8.76 8.76 8.74 8.04 8.04 8.04 8.02 8.02 8.02 8.02 8.02 8.02 8.02 7.13 7.13 7.140 7.140

Fig. S14 ¹H NMR spectrum of assembly Fe₆L₆ in CD₃CN.

Fig. S15 ¹³C NMR spectrum of assembly Fe₆L₆ in CD₃CN.

References:

(1) Matias, T. A.; Mangoni, A. P.; Toma, S. H.; Rein, F. N.; Rocha, R. C.; Toma, H. E.; Araki, K., Catalytic Water–Oxidation Activity of a Weakly Coupled Binuclear Ruthenium Polypyridyl Complex. *Eur. J. Inorg. Chem.* **2016**, 5547–5556.