Supporting information

Photogenerated charges separation and recombination path modification in monocline Lu₂WO₆ via lattice transition and Bi-O antibonding states

Chunyu Zheng,^{a‡} Ce Yu,^{b‡} Han Yu,^{a‡} Huibing Zheng,^c Luqiao Yin,^d Nian Fu,^e Bangfu Ding,^{b*}, Liang Mao,^{f*} Junying Zhang,^g

^aKey Laboratory of brain-like neuromorphic devices and systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China; ^bCollege of Civil Engineering and Architecture, Hebei University, Baoding 071002, China;

^cSchool of mathematics and physics, Anyang Institute of Technology, Anyang 455099, China

^dKey Laboratory of Advanced Display and System Applications, Shanghai University, Ministry of Education, Shanghai 200444, China

^eCollege of Physics Science and Technology, Hebei University, Baoding 071002, China;

^fSchool of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China

^gSchool of Physics, Beihang University, Beijing 100191, China

Corresponding author. E-mail address: <u>dbf1982@126.com</u> and dingbangfu@gmail.com (B. F. Ding), E-mail: <u>maoliang@cumt.edu.cn</u> (L. Mao)

Table S1. Masses of raw materials in Bi-doped and Bi³⁺+RE³⁺-codoped samples

		1	1	1
Samples (g)	WO ₃	Lu_2O_3	Bi ₂ O ₃	RE ₂ O ₃
ωBi	0.3478	(1-ω)×0.5969	ω×0.6989	0.0
1% Bi ³⁺ +x Sm ³⁺	0.3478	(0.09-x)×0.5969	0.0070	x×0.5231
1% Bi ³⁺ +y Eu ³⁺	0.3478	(0.09-y)×0.5969	0.0070	y×0.5279
1% Bi ³⁺ +z Dy ³⁺	0.3478	(0.09-z)×0.5969	0.0070	z×0.5595
$\omega = 0.005, 0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50$				
x=0.01, 0.03, 0.05, 0.07, 0.10				
y=0.01, 0.05, 0.10, 0.15, 0.20				
z=0.005, 0.02, 0.04, 0.06, 0.08				

Table S2. All VCNEB parameters setting in INPUT file upon simulating monocline to perovskite phases transition

* TYPE OF RUN AND SYSTEM *	

VCNEB : calculationMethod	
numSpecies	
24 4 4 4	
EndNumSpecies	
atomType	
O Lu W Bi	
EndAtomType	
valences	
2 3 6 3	
endValences	
0.00 : ExternalPressure	

* VCNEB options *	

111 : vcnebType	
15 : numImages	
143 : numSteps	
1 : optimizerType	

: optReadImages 1 3 : optRelaxType 0.1 : dt : ConvThreshold 0.005 **** * **NEB** options * ***** : VarPathLength 0.3 3 : K min : K_max 6 0 : optFreezing 0 : optMethodCIDI ***** * OUTPUT * ****** 2 : FormatType : PrintStep 10 ***** DETAILS OF AB INITIO CALCULATIONS * * ****** abinitioCode 1 ENDabinit commandExecutable yhrun -n 48 -p TH_NEW1 /vol6/home/user/bin/vasp >out EndExecutable 1 : whichCluster 1 : numParallelCalcs Table S3. Lobsterin file in COHP calculation for one, two, and three Bi3+-doped monoclinic

Table S3. Lobsterin file in COHP calculation for one, two, and three Bi^{3+} -doped monoclinic Lu_2WO_6

COHP Parameters	Values			
COHPstartEnergy	-6			
COHPendEnergy	10			
basisSet	pbeVaspFit2015			
basisfunctions	O 2s 2p	W 5p 5d 6s	Lu 4f 5s 5p 5d 6s	Bi 5d 6s 6p
cohpGenerator	from p to q between atom I and atom II*			
*p and q denoting bond length				

Figure S1 Photographs of samples under natural light (above) and 365 nm ultraviolet damp (down)

Figure S2. High resolution SEM images of 1at% (a), 15at% (b), and 50at% (c) Bi-doped samples

Note: single and double colors denoting full and semi occupation. semi replacement different Lu3 for models I and II N and S representing neighbor and staggering occupation

Figure S3 Six P21/c and four A2/m $1 \times 2 \times 1$ supercell models to obtain the lowest energy sites in initial and final images

Figure S4 phonon spectra with 2×2×1 P21/c (a) and 2×4×1 A2/m (b) supercell models calculations

Figure S5 Emission spectral with (a) λ_{ex} =300 nm as well as excitation spectrum with detection wavelengths (b) λ_{em} =450 nm and (c) λ_{em} =510 nm to Bi-doped samples

Figure S6 Degradation efficiency of phenol under visible light condition

Figure S7 Energy band edge configuration of P21/c (a) and A12/m1 structures (b)Absorption spectrum (c) and Kubelka-Munk function fitting band gap values upon 1at% and 50at% Bi-doped samples (d)

Figure S8 Total, projected DOS of $Lu1_{Bi}$ (a), $Lu2_{Bi}$ (b), $Lu3_{Bi}$ (c), $Lu1_{Bi}Lu1_{Bi}$ (d), $Lu1_{Bi}Lu2_{Bi}$ (e), $Lu1_{Bi}Lu3_{Bi}$ (f), $Lu2_{Bi}Lu2_{Bi}$ (g), $Lu2_{Bi}Lu3_{Bi}$ (h), $Lu3_{Bi}Lu3_{Bi}$ (i), $Lu1_{Bi}Lu3_{Bi}$ (j) models with Bi-O local state charge density in 0.007 e/Bohr³ isosurface value

Figure S9 COHP of $Lu2_{Bi}Lu2_{Bi}$ (a) and $Lu1_{Bi}Lu2_{Bi}Lu3_{Bi}$ (b) models with Fermi levels 0 eV Table S4. Bader charge of Bi^{3+} in three Lu sites for ten doping models

Models	Bi ³⁺ charge numbers
Lu1 _{Bi}	12.9635
$Lu2_{Bi}$	12.9093
$Lu3_{Bi}$	12.9436
Lu1 _{Bi} Lu1 _{Bi}	12.9658/12.9658
$Lu1_{Bi}Lu2_{Bi}$	12.9623/12.9138
$Lu1_{Bi}Lu3_{Bi}$	12.9610/12.9491
$Lu2_{Bi}Lu2_{Bi}$	12.9113/12.9113
$Lu2_{Bi}Lu3_{Bi}$	12.9118/12.9521
$Lu3_{Bi}Lu3_{Bi}$	12.9468/12.9468
Lu1 _{Bi} Lu2 _{Bi} Lu3 _{Bi}	12.9611/12.9155/12.9378

Figure S10 XRD patterns (a), (b), (c), emission spectra of all codoped samples upon 340 nm excitation (d), (e), (f), and dependence relation of $I(Bi^{3+})/I(Bi^{3+}+RE^{3+})$ on x^2/y^2z^1 with photograph (g), (h), (i)

Table S5 Performance parameters of three LED damps

Samples	Current (mA)	Ra	Tc (K)	Purity (%)	Luminous Power (mW)
Bi+Sm	50	84.2	3914	53.3	1.024
	100	84.2	3963	52.1	2.067
	150	84.3	4005	51.4	3.051
Bi+Eu	50	49.5	1270	92.6	1.181
	100	59.6	1275	92.7	2.23
	150	50.4	1282	92.8	3.082
Bi+Dy	50	58.7	5001	47.3	0.6394
	100	58.4	5023	47	1.291
	150	59.6	5030	46.7	1.883

Figure S11 Formation energies of Bi³⁺+RE³⁺ models (a), density of states for the lowest formation

models (b), (c), and (d)

Models	RE ³⁺	charge
	numbers	
$Lu2_{Bi}Lu2_{Sm}$	13.9046	
$Lu2_{Sm}Lu2_{Bi}$	13.9044	
$Lu2_{Bi}Lu2_{Eu}$	14.8900	
$Lu2_{Eu}Lu2_{Bi}$	14.8902	
$Lu2_{Bi}Lu2_{Dy}$	17.8026	
$Lu2_{Dy}Lu2_{Bi}$	17.8015	

Table S6 Bader charge numbers of Sm³⁺/Eu³⁺/Dy³⁺ in six typical models

Figure S12 Bi-O antibonding state, LS1, LS2, and LS3 charge density with 0.007 e/Bohr³ isosurface value (a) and recombination path modification using Bi-O antibonding and RE^{3+} 4f states (b)