The oxidative addition of cyanogen bromide to C,N-chelated and Lappert's

Stannylenes

Petr Švec^{a*}, Maksim A. Samsonov,^a Zdeňka Růžičková,^a Jiří Brus,^b Aleš Růžička^a

^aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10, Pardubice, Czech Republic

^bInstitute of Macromolecular Chemistry CAS, Heyrovského nám. 2, CZ-162 06, Prague, Czech Republic

*Corresponding author, e-mail: petr.svec2@upce.cz

Fig. S1 - ¹ H NMR spectra of sole 1b, sole 1c and 1a/b/c mixture	S2
Fig. S2 - ¹ H NMR spectra of mixture of sole 1b + 1c and 1a/b/c mixture	S2
Fig. S3 - ¹¹⁹ Sn NMR spectra of mixture of sole 1b + 1c and 1a/b/c mixture	S 3
Fig. S4 - ¹³ C NMR spectra of sole 1b, sole 1c and 1a/b/c mixture	S3
Fig. S5 - Detail of the aromatic region of the ¹³ C NMR spectra of 1b, 1c and 1a/b/c	S4
Fig. S6 - Detail of the aliphatic region of the ¹³ C NMR spectra of 1b, 1c and 1a/b/c	S4
Preparation and characterization of 2b	S5
Scheme S1 - Exclusive preparation of 2b	S5
Fig. S7 - ¹ H NMR spectra of 2b and 2a/b/c	S5
Estimation of K_c and ΔG_r values of formation of 1a and 2a	S6
Table S1 - Melting points and ¹¹⁹ Sn NMR chemical shift values of prepared compounds	S6
Table S2 - Temperature dependence of the $\delta(^{119}Sn)$ of 1a-c (recorded in CDCl ₃)	S7
Table S3 - Temperature dependence of the $\delta(^{119}Sn)$ of 2a-c (recorded in CDCl ₃)	S7
Fig. S8 - ¹ H VT NMR spectra of 1a/b/c measured in CDCl ₃	S8
Fig. S9 - ¹¹⁹ Sn VT NMR spectra of 1a/b/c measured in CDCl ₃	S8
Fig. S10 - ¹¹⁹ Sn VT NMR spectra of 2a/b/c measured in CDCl ₃	S 9
Fig. S11 - ¹³ C CP/MAS NMR spectra of 1c, 1b, 1b + 1c mechanical mixture, and 1a/b/c	S10
Fig. S12 - ¹¹⁹ Sn CP/MAS NMR spectrum of 1c and its lineshape analysis	S10
Fig. S13 - ¹¹⁹ Sn CP/MAS NMR spectrum of 1b and 1c mixture and its lineshape analysis	S11
Fig. S14 - ¹¹⁹ Sn CP/MAS NMR spectrum of 1a/b/c and its lineshape analysis	S11
Table S4 - Selected crystallographic data of different solvates of 1a	S12
Table S5 - Selected crystallographic data of 2a and 2b	S13
Fig. S15 - Molecular structures of complexes 1b-c within the co-crystal of 1a/b/c	S14
Table S6 - Important bond lengths within different solvates of 1a, and sole 1b and 1c	S15
Fig. S16 - Molecular structures of 2b-c	S16
Table S7 - Comparison of the important bond lengths in 2a/b/c and sole 2b	S16
Fig. S17 - Comparison of crystal packing within different solvates of 1a	S17
Fig. S18 - Intermolecular interactions found in the co-crystal packing of $1a/b/c \cdot 0.5 CH_2 Cl_2$	S18
Fig. S19 - Theoretical molecular graphs of 1b and 1c	S19
Table S8 - Selected topological parameters of 1a-c	S20
Fig. S20 - Laplacian plot of the electron density distributions in 1a	S20

Fig. S1: ¹H NMR spectra of sole **1b** (blue), **1c** (red) and **1a/b/c** mixture formed *via* the reaction of **1** with BrCN (green) measured in CDCl₃. The resonance at 5.30 ppm in the bottom green spectrum is due to the presence of the CH₂Cl₂ solvent.

Fig. S2: ¹H NMR spectra of mixture of sole 1b + 1c (violet) and 1a/b/c mixture formed *via* the reaction of **1** with BrCN (green) in CDCl₃. The resonance at 5.30 ppm in the bottom green spectrum is due to the presence of the CH₂Cl₂ solvent.

Fig. S3: ¹¹⁹Sn NMR spectra of mixture of sole **1b** + **1c** (violet) and **1a/b/c** mixture formed *via* the reaction of **1** with BrCN (green) in CDCl₃.

Fig. S4: ¹³C NMR spectra of sole **1b** (blue), **1c** (red) and **1a/b/c** mixture formed *via* the reaction of **1** with BrCN (green) measured in CDCl₃. The resonance at 53.6 ppm in the bottom green spectrum is due to the presence of the CH₂Cl₂ solvent.

Fig. S5: Detail of the aromatic regions of the ¹³C NMR spectra of sole **1b** (blue), **1c** (red) and **1a/b/c** mixture formed *via* the reaction of **1** with BrCN (green) measured in CDCl₃.

Fig. S6: Detail of the aliphatic region of the ¹³C NMR spectra of sole **1b** (blue), **1c** (red) and **1a/b/c** mixture formed *via* the reaction of **1** with BrCN (green) measured in CDCl₃. The resonance at 53.6 ppm in the bottom spectrum is due to the presence of the CH_2Cl_2 solvent.

Preparation of (L^N)₂SnBr₂ (2b)

2 (879 mg, 2.00 mmol) was dissolved in hexane (25 mL) and cooled down to ca. 0 °C. Solution of Br₂ (320 mg, 2.00 mmol) in cold hexane (25 mL) was then added dropwise to the hexane solution of **2**. The original dark orange reaction mixture became immediately colourless. Afterwards, filtration and evaporation of the volatiles in vacuo was carried out yielding a sticky off-white solid. The crude product was crystallized from hexane in a freezing box providing colourless crystals of **2b**. Overall yield 803 mg (67 %). M.p. > 180 °C (dec.). ¹H NMR (C₆D₆, 295 K, ppm): 0.37 (s, Si(CH₃)₃). ¹³C{¹H} NMR (C₆D₆, 295 K, ppm): 5.9 (Si(CH₃)₃, ¹J(²⁹Si,¹³C) = 57 Hz, ³J(^{119/117}Sn,¹³C) = 18 Hz). ¹¹⁹Sn{¹H} NMR (C₆D₆, 295 K, ppm): -283.4. ¹H NMR (CDCl₃, 295 K, ppm): 0.37 (s, Si(CH₃)₃). ¹³C{¹H} NMR (CDCl₃, 295 K, ppm): 5.6 (Si(CH₃)₃, ³J(^{119/117}Sn,¹³C) = 18 Hz). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): 5.6 (Si(CH₃)₃, ³J(^{119/117}Sn,¹³C) = 18 Hz). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): 5.6 (Si(CH₃)₃, ³J(^{119/117}Sn,¹³C) = 18 Hz). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): 5.6 (Si(CH₃)₃, ³J(^{119/117}Sn,¹³C) = 18 Hz). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): 5.6 (Si(CH₃)₃, ³J(^{119/117}Sn,¹³C) = 18 Hz). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): 5.6 (Si(CH₃)₃, ³J(^{119/117}Sn,¹³C) = 18 Hz). ¹¹⁹Sn{¹H} NMR (CDCl₃, 295 K, ppm): -283.6. Elemental analysis (%): found C, 24.5; H, 6.2; N, 4.4. Calc. for C₁₂H₃₆Br₂N₂Si₄Sn (599.28): C, 24.05; H, 6.06; N, 4.67.

Scheme S1: Exclusive preparation of 2b

Fig. S7: ¹H NMR spectra of **2b** (blue) and **2a/b/c** mixture formed *via* the reaction of **2** with BrCN (green) measured in CDCl₃.

Estimation of equilibrium constants and Gibbs energies for the formation of 1a and 2a

Taking into account the NMR findings (*i.e.* the observed rough ratio of 1a(2a):1b(2b):1c(2c) = 1:0.4:0.4 within the entire temperature range of 228–323 K for 1a/b/c and 258–323 K in the case of 2a/b/c) and stoichiometry of the reaction (*i.e.* $L_2SnBr_2 + L_2Sn(CN)_2 = 2 L_2Sn(Br)CN$, where $L = L^{CN}$ or L^N), it is possible to at least estimate the equilibrium constant for both cases (estimation for ambient temperature of 295 K):

$$K_{c\,(295)} = \frac{[L_2 Sn(Br)CN]^2}{[L_2 SnBr_2][L_2 Sn(CN)_2]} = \frac{1^2}{0.4 \times 0.4} = 6.25$$

Having the K_c value, determination of the ΔG_r (at 295 K) is then possible:

$$\Delta G_{r(295)} = -RT lnK_c = -8.314462 \times 295 \times ln6.25 = -4494.9 \frac{J}{mol} \approx -1.07 \frac{kcal}{mol}$$

The obtained ΔG_r value thus represents slightly exothermic reaction and the result are very close to ΔG_r values acquired from the theoretical calculations for the formation of both **1a** and **2a** (see the DFT calculation section in the manuscript).

Compound	М. р.	δ_{solution}	$\boldsymbol{\delta}_{\text{solid-state}}$	c. n.
		(ppm) ^a	(ppm)	(Sn)
1a	233-234 °C ^b	-333.7	-350	6
1b	246 °C	-271.2	-290	6
1c	199-200 °C	-389.0	-394/-401	6
2 a	203-205 °C (dec.) ^c	-281.8	n/a	4
2b	> 180 °C (dec.)	-283.6	n/a	4
2c	n/a	-309.7	n/a	4

Table S1: Melting points and ¹¹⁹Sn NMR chemical shift values of prepared compounds

^a measured in CDCl₃, ^bm.p. valid for co-crystals **1a/b/c**; ^cm.p. valid for co-crystals **2a/b/c**

Temperature	δ(¹¹⁹ Sn) 1a	δ(¹¹⁹ Sn) 1b	δ(¹¹⁹ Sn) 1c
[K]	[ppm]	[ppm]	[ppm]
323	-330.9	-268.1	-386.0
308	-332.7	-270.4	-387.3
295	-333.7	-271.8	-388.0
273	-337.9	-277.0	-391.0
258	-340.1	-279.9	-392.6
243	-342.3	-282.9	-394.1
228	-344.5	-285.9	-395.5

Table S2: Temperature dependence of the $\delta(^{119}Sn)$ of **1a-c** (recorded in CDCl₃)

Table S3: Temperature dependence of the $\delta(^{119}Sn)$ of **2a-c** (recorded in CDCl₃)

Temperature	δ(¹¹⁹ Sn) 2a	δ(¹¹⁹ Sn) 2b	δ(¹¹⁹ Sn) 2c
[K]	[ppm]	[ppm]	[ppm]
323	-282.9	-285.4	-310.2
308	-282.4	-284.4	-310.0
295	-281.7	-283.6	-309.7
273	-281.2	-282.0	-309.3
258	-280.6	-280.8	-309.0

Fig. S8: ¹H VT NMR spectra of **1a/b/c** measured in CDCl₃.

Fig. S9: ¹¹⁹Sn VT NMR spectra of **1a/b/c** measured in CDCl₃.

Fig. S10: ¹¹⁹Sn VT NMR spectra of **2a/b/c** measured in CDCl₃. At 258 K, signals of **2a** and **2b** are overlapped by coincidence.

Fig. S11: ¹³C CP/MAS NMR spectra of the investigated systems **1c** (a, **red**), **1b** (b, green), mechanical mixture of **1b** and **1c** (c, blue), and **1a/b/c** mixture formed *via* the reaction of **1** with BrCN (d, black).

Fig. S12: ¹¹⁹Sn CP/MAS NMR spectrum of 1c recorded at 15 kHz and its lineshape analysis.

Fig. S13: ¹¹⁹Sn CP/MAS NMR spectrum of the mechanical mixture of 1b and 1c recorded at 15

kHz and its lineshape analysis.

Fig. S14: ¹¹⁹Sn CP/MAS NMR spectrum of **1a/b/c** recorded at 17 kHz and its lineshape analysis.

Compound	$1a \cdot 0.5CH_2CI_2$	1a ∙0.5THF	$\mathbf{1a} \cdot 0.17 C_6 H_6$
CCDC deposition number	2014595	2014599	2014597
Empirical formula	$C_{20}H_{26}BrCl_2N_3Sn$	$C_{21.20}H_{28}Br_{0.80}N_{3.20}O_{0.50}Sn$	$C_{60.11}H_{75}Br_{2.89}N_{9.11}Sn_{3}$
Formula weight	577.94	518.28	1512.16
Temperature/K	150(2)	150(2)	150(2)
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	Сс	P-1	C2/c
a/Å	16.2740(4)	8.4177(2)	45.2810(4)
b/Å	9.8889(3)	9.2090(3)	9.6530(3)
c/Å	14.5937(5)	15.3664(5)	29.1120(7)
α/°	90	94.2816(12)	90
β/°	103.2152(10)	90.6193(10)	107.087(3)
γ/°	90	115.8048(9)	90
Volume/Å ³	2286.40(12)	1068.16(6)	12163.1(5)
Z	4	2	8
$ ho_{calc} g/cm^3$	1.679	1.611	1.652
µ/mm⁻¹	3.109	2.706	3.167
F(000)	1144	519	6005
Crystal size/mm ³	0.413 x 0.200 x 0.200	0.374 x 0.257 x 0.117	0.414 x 0.179 x 0.117
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	2.428 to 28.000	1.330 to 28.000	1.882 to 27.499
Index ranges	-21<=h<=21, -12<=k<=13, -19<=l<=19	-10<=h<=11, -12<=k<=12, -20<=l<=20	-52<=h<=58, -12<=k<=12, -37<=l<=30
Reflections collected	13788	23476	39669
Independent reflections	5044 [R(int) = 0.0199]	5111 [R(int) = 0.0233]	13403 [R(int)=0.0517]
Data/restraints/parameters	5044 / 8 / 272	5111 / 11 / 295	13403 / 18 / 739
Goodness-of-fit on F ²	0.942	1.134	1.126
	R1 = 0.0183,	R1 = 0.0201,	R1 = 0.0400,
Final K indexes [l≥2σ (l)]	wR2 = 0.0390	wR2 = 0.0397	wR2 = 0.0700
	R1 = 0.0213,	R1 = 0.0241,	R1 = 0.0696,
Final R indexes [all data]	wR2 = 0.0396	wR2 = 0.0403	wR2 = 0.0768
Largest diff. peak/hole / e Å ⁻³	0.516 and -0.401	0.585 and -0.543	1.021 and -0.760

 Table S4:
 Selected crystallographic data of different solvates of 1a

Compound	2a	2b
CCDC deposition number	2014598	2014596
Empirical formula	C _{12.94} H ₃₆ Br _{1.06} N _{2.94} Si ₄ Sn	$C_{12}H_{36}Br_2N_2Si_4Sn$
Formula weight	548.50	599.30
Temperature/K	150(2)	150(2)
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	C2/c
a/Å	16.8435(7)	16.6850(6)
b/Å	8.6250(3)	8.606(2)
c/Å	18.3789(8)	18.3540(11)
α/°	90	90
β/°	109.3808(15)	109.413(6)
γ/°	90	90
Volume/Å ³	2518.70(18)	2485.6(6)
Z	4	4
$\rho_{calc}g/cm^3$	1.446	1.601
µ/mm⁻¹	2.883	4.433
F(000)	1109	1192
Crystal size/mm ³	0.324 x 0.281 x 0.214	0.255 x 0.220 x 0.184
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	3.841 to 27.992	2.589 to 27.498
	22<-b<-10	-21<=h<=21,
Index ranges	-22<-11<-19, -10<=k<=11,	-11<=k<=10,
	-20<=l<=24	-23<=l<=21
Reflections collected	9513	8827
Independent reflections	2982 [R(int) = 0.0173]	2761 [R(int) = 0.0157]
Data/restraints/parameters	2982 / 3 / 109	2761/0/102
Goodness-of-fit on F ²	1.120	1.153
Final P indexes [1>2g (1)]	R1 = 0.0210,	R1 = 0.0176,
Fillal K illuexes [1220 (1)]	wR2 = 0.0415	wR2 = 0.0396
Einal P indovas [all data]	R1 = 0.0255,	R1 = 0.0234,
rillal k illuexes [all uala]	wR2 = 0.0427	wR2 = 0.0413
Largest diff. peak/hole / e Å ⁻³	0.434 and -0.454	0.318 and -0.597

Table S5: Selected crystallographic data of 2a and 2b

Fig. S15: Molecular structures of complexes **1b**-**c** within the co-crystal of **1a/b/c**. Thermal ellipsoids are at the 40% probability level. Solvating CH₂Cl₂ molecule is omitted for clarity. Selected bond distances (Å) and angles (°): Sn1-C1 2.127(3), Sn1-C10 2.131(3), Sn1^{...}N1 2.499(3), Sn1^{...}N2 2.629(3), Sn1-C19 2.195(13), Sn1-C20 2.145(14), Sn1-Br1 2.655(2), Sn1-Br2 2.6523(9); C1-Sn1-C10 153.65(12), C19-Sn1-N1 82.7(6), N1-Sn1-Br2 163.17(6).

Compound	$1a \cdot 0.5CH_2Cl_2$	1a ∙0.5THF	1a ·0.17C ₆ H ₆ *	1b ⁷⁰	1c ⁶²
			2.550(3)		
			2.647(3)		
Sn N	2.499(3)	2.4818(14)	2.580(3)	2.581(5)	2.485(3)
	2.629(3)	2.695(2)	2.589(3)	2.600(5)	2.587(3)
			2.583(3)		
			2.594(3)		
			2.6007(13)		
			2.6612(15)		
Cr. Dr.	2.6523(9)	2.6188(10)	2.6063(10)	2.6164(7)	
SU-BL	2.655(2)	2.6619(14)	2.6285(9)	2.6201(7)	
			2.5777(18)		
			2.6114(15)		
			2.142(13)		
			2.207(14)		
	2.145(14)	2.159(7)	2.126(15)		2.239(4)
SII-C(CIN)	2.195(13)	2.228(7)	2.213(18)		2.245(5)
			2.213(18)		
			2.265(19)		
			2.121(4)		
			2.130(4)		
	2.127(3)	2.1162(17)	2.126(4)	2.114(5)	2.131(5)
Sn-C(Ph)	2.131(3)	2.1274(16)	2.133(4)	2.128 (5)	2.239(4)
			2.120(4)		
			2.127(4)		

Table S6: Important bond lengths () within 1a ·0.5CH ₂ Cl ₂ , 1a ·0.5THF, 1a ·0.17C ₆ H ₆ , 1	1b and 1c
------------------------------------	---	-----------

*The independent area contains three molecules of the complex.

⁶² P. Švec, Z. Růžičková, P. Vlasák, J. Turek, F. De Proft and A. Růžička, *J. Organomet. Chem.*, 2016, **801**, 14-23.
 ⁷⁰ Z. Padělková, I. Císařová and A. Růžička, *Acta Cryst.*, 2005, **E61**, m2691-m2693.

Fig. S16: Molecular structures of **2b-c**. Thermal ellipsoids are at the 40% probability level. Symmetry operations: (A) 1-x, y, 1.5-z. Selected bond distances (Å) and angles (^o): Sn1-N1 2.0085(14), Sn1-C7 2.078(9), Sn1-Br1 2.5042(5); N1-Sn1-N1A 120.34(8), Br1-Sn1-Br1A 99.16(3).

Table 37. Companyon of the important bond lengths (A) in Za / \mathbf{b}/\mathbf{c} and sole Z	Table S7: Com	parison of the in	portant bond	lengths (Å) in 2a/b/c and	l sole 2b
---	---------------	-------------------	--------------	------------	------------------------	------------------

Compound	2b (in 2a/b/c)	2b (sole product)
Sn-N	2.0085(14)	2.0074(13)
Sn-Br	2.5042(5)	2.4754(3)

Fig. S17: Comparison of crystal packing within $1a \cdot 0.5$ CH₂Cl₂ (upper left), $1a \cdot 0.5$ THF (upper right) and $1a \cdot 0.17$ C₆H₆ (bottom). Thermal ellipsoids are drawn at the 40% probability level. Hydrogen atoms are omitted for clarity.

Fig. S18: Presentation of common Br^{...}H and/or CN^{...}H intermolecular interactions found in the co-crystal packing of **1a/b/c**·0.5CH₂Cl₂.

Fig. S19: Theoretical molecular graphs of **1b** (top) and **1c** (bottom). Only CP(3,-1) are presented in green for clarity.

Table S8: Selected topological parameters at CP(3,-1) (a.u.) of the Sn1…N(1,2) bonds, charge on Sn and energies of Sn1…N(1,2) interactions.

Species	Sn1 q, e	Bond	E _{int} , kcal/mol	ρ(r _{cp})	$\nabla^2 \rho(r_{cp})$	G(r _{cp})	V(r _{cp})	H(r _{cp})
15	2 1 2 4	Sn1 N1	-11.62	0.038	0.105	0.032	-0.037	-0.005
Id	2.124	Sn1 N2	-8.37	0.031	0.084	0.024	-0.027	-0.003
16	2 075	Sn1 N1	-10.25	0.035	0.096	0.028	-0.033	-0.004
10	2.075	Sn1 N2	-8.81	0.032	0.087	0.025	-0.028	-0.003
1-	2 1 6 0	Sn1 N1	-9.43	0.033	0.091	0.026	-0.030	-0.004
10	2.169	Sn1 […] N2	-11.14	0.037	0.103	0.031	-0.036	-0.005

* $\rho(r_{cp})$ - the electron density, $\nabla^2 \rho(r_{cp})$ - the Laplacian function of the electron density, $G(r_{cp})$ - the kinetic electron energy density, $V(r_{cp})$ - the potential electron energy density, $H(r_{cp})$ - the total electron energy density. E_{int} - energies were obtained from Espinosa's equation (E_{A-B}=1/2 $V(r_{cp})$). q - atomic charges from AIM.

Fig. S20: Laplacian plot of the electron density distribution in C1-Sn1-N2 plane of **1a**. Red dashed lines correspond to negative values of $\nabla^2 \rho(r)$, solid blue – positive. Only CP(3,-1) are presented in green for clarity.