ESI for:

Coordination capabilities of bis-(2-pyridyl)amides in the field of divalent germanium, tin and lead compounds.

Jan Zechovský, Ondřej Mrózek, Maksim Samsonov, Roman Jambor, Aleš Růžička and Libor Dostál ${ }^{*}$

*E-mail: libor.dostal@upce.cz (L.D.)

Table of contents:

1) NMR spectra of studied compounds S2-S25
2) Crystallographic data for studied compounds S26-S30
3) Theoretical study S31-S35
4) NMR spectra of studied compounds.

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}(*$ traces of toluene).

Figure S2: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S3: ${ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S5: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S6: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in CDCl_{3} (* traces of thf).

Figure S7: $\left.{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right\}$-APT NMR spectrum of $\mathbf{4}$ in CDCl_{3}.

Figure S8: ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}$ in CDCl_{3}.

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in $\mathrm{C}_{6} \mathrm{D}_{6}(*$ traces of toluene).

Figure S10: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 5 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S12: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of 7 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S14: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ - APT NMR spectrum of 7 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S15: ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (*unknown impurity).

Figure S17: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S18: ${ }^{1} \mathrm{H}$ NMR spectrum of 9 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (*unknown impurity).

Figure S19: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{9}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S20: ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{9}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S21: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S22: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S23: ${ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S24: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S25: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S26: ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S27: ${ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S28: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S29: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ in toluene- $\mathrm{d} 8-60^{\circ} \mathrm{C}$.

Figure S30: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S31: ${ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S32: ${ }^{207} \mathrm{~Pb}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S33: ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY NMR spectrum of 6 in $\mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{*}\right)$ illustrating the presence of two isomers 6 and $\mathbf{6}^{\prime}$ in solution at r.t.

Figure S34: Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra stannylene 7 and mixture of two isomers germylene 6 and $\mathbf{6}^{\prime}$ in $\mathrm{C}_{6} \mathrm{D}_{6}\left(^{*}\right)$ showing a close resemblance between 7 and $\mathbf{6}^{\prime}$.

Figure S35: ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ EXSY NMR spectrum of of $\mathbf{6}$ in $\mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{*}\right)$ showing a mutual dynamic exchange between both $d p a$ ligands in 6 (green) and their exchange with the proposed second isomer $\mathbf{6}^{\prime}$ (red). Note that all marked cross-peaks are in the same phase as the diagonal peaks.

Figure S36: Comparison of ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1 0 - 1 2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{*}\right)$ showing a mutual resemblance between 10-12 (in the case of $\mathbf{1 2}$ some resonances seem to be overlapped). Furthermore, a mixture obtained upon dissolution of single crystals of $\mathbf{1 0}$ (top) containing besides signals of $\mathbf{1 0}$ those of germylene $\mathbf{8}$ and lithium derivative $\mathbf{2}$ as a result of partial decomposition of $\mathbf{1 0}$ in solution. Please note that some signals of $\mathbf{2}$ are not resolved due their significant broadening, please see also ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of isolated $\mathbf{2}$ showing a very broaden resonances (Figure S2).

Figure S37: Comparison of ${ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1 0 - 1 2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{*}\right)$ showing a mutual resemblance between 11 and 12. Furthermore, a mixture of two components obtained upon dissolution of single crystals of $\mathbf{1 0}$ containing besides signals of $\mathbf{1 0}$ that of the lithium derivative $\mathbf{2}$ as a result of partial decomposition of $\mathbf{1 0}$ in solution is presented. The ${ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of pure $\mathbf{2}$ is also included.

Figure S38: ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ EXSY NMR spectrum of dissolved single crystals of $\mathbf{1 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}(*)$ showing a mutual dynamic exchange between $\mathbf{1 0}$ (blue) and the germylene $\mathbf{8}$ (orange). The exchange with the lithium complex $\mathbf{2}$ is not resolved probably due a significant broadening of the signals. Note that all marked cross-peaks are in the same phase as the diagonal peaks.

2. Crystallographic data.

Table S1. Crystal data and structure refinement of studied compounds.

	2	3	4
Formula	$\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{Li}_{4} \mathrm{~N}_{12}$	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClGeN}_{3}$	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{Sn}_{2}$
Formula weight, $\mathrm{g} \mathrm{mol}^{-1}$	662.28	278.23	648.67
Crystal system	Triclinic	Triclinic	Orthorhombic
Crystal size, mm	$0.44 \times 0.25 \times 0.13$	$0.59 \times 0.38 \times 0.20$	$0.20 \times 0.19 \times 0.16$
Space group	P-1	P-1	Pca2 ${ }_{1}$
$a, ~ \AA \AA$	11.1572(4)	8.2653(5)	17.1415(8)
b, \AA	11.5648(4)	9.9478(6)	8.3019(4)
c, \AA	19.6657(7)	12.6110(7)	14.9727(6)
$\alpha,{ }^{\circ}$	79.294(2)	91.910(3)	90
$\beta,{ }^{\circ}$	76.670(2)	92.733(3)	90
$\gamma,{ }^{\circ}$	62.192(2)	91.899(3)	90
V, \AA^{3}	2174.94(14)	1034.51(11)	2130.72(11)
Z	2	4	4
$\rho_{\text {calcd }}, \mathrm{Mg} \mathrm{m}^{-3}$	1.253	1.982	2.022
$\mu\left(\mathrm{Mo} K \alpha\right.$), mm^{-1}	0.593	3.185	2.616
$F(000)$	864	552	1248
θ range, deg	1 to 27.5	1 to 27.5	1 to 27.5
No. of reflns collected	52110	30605	19086
No. indep. Reflns	9155	4750	4850
No. obsd reflns with ($I>2 \sigma(I)$), $R_{\text {int }}$	4900, 0.1578	3956, 0.037	3907, 0.60
No. refined params	586	271	272
GooF (F^{2})	1.297	1.025	1.027
$R_{1}(F)(I>2 \sigma(I))$	0.1095	0.0295	0.0373
$w R_{2}\left(F^{2}\right)$ (all data)	0.2443	0.0676	0.0793
Largest diff peak/hole, e \AA^{-3}	0.648 / -0.691	0.693 / -0.679	$2.453 /-0.901$
CCDC	2032982	2032974	2032973

$\sum\left|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|$ for observed data, $w R\left(F^{2}\right)=\left[\Sigma\left(w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right) /\left(\sum w\left(F_{\mathrm{o}}^{2}\right)^{2}\right)\right]^{1 / 2}$ for all data.

Table S1 (continuation). Crystal data and structure refinement of studied compounds.

	5	6	7
Formula	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClGeN}_{3}$	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{GeN}_{6}$	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{Sn}$
Formula weight, $\mathrm{g} \mathrm{mol}^{-1}$	306.29	412.98	459.08
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Crystal size, mm	$0.59 \times 0.39 \times 0.38$	$0.37 \times 0.29 \times 0.22$	$0.59 \times 0.57 \times 0.16$
Space group	$\mathrm{P} 21 / \mathrm{c}$	Pbca	$\mathrm{P} 21 / \mathrm{n}$
a, \AA	7.9626(5)	7.7879(4)	11.8487(6)
b, \AA	9.3447(5)	18.4219(11)	9.2747(4)
c, \AA	17.4878(10)	24.4619(12)	16.9821(9)
$\alpha,{ }^{\circ}$	90	90	90
$\beta,{ }^{\circ}$	95.358(2)	90	104.129(2)
$\gamma,{ }^{\circ}$	90	90	90
V, \AA^{3}	1295.55(13)	3509.5(3)	1809.76(15)
Z	4	8	4
$\rho_{\text {calcd }}, \mathrm{Mg} \mathrm{m}^{-3}$	1.570	1.563	2.022
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) , mm^{-1}	2.551	1.764	1.429
$F(000)$	616	1680	912
θ range, deg	1 to 27.5	1 to 27.5	1 to 27.5
No. of reflns collected	33637	31981	38955
No. indep. Reflns	2972	4018	4154
No. obsd reflns with ($I>2 \sigma(I)$), $R_{\text {int }}$	2561, 0.0296	2848, 0.058	3733, 0.017
No. refined params	156	244	244
GooF (F^{2})	1.086	1.057	1.147
$R_{1}(F)(I>2 \sigma(I))$	0.0301	0.0473	0.0226
$w R_{2}\left(F^{2}\right)$ (all data)	0.0607	0.0740	0.0530
Largest diff peak/hole, e \AA^{-3}	0.377 / -0.372	0.392 / -0.489	0.370 / -0.651
CCDC	2032978	2032972	2032975
$\begin{aligned} & \hline R_{\text {int }}=\sum_{0_{0}}^{2}-F_{\mathrm{o}, \text { mean }}^{2} \mid / \sum F_{0}^{2}, \mathrm{~S}=\left[\sum\left(w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right) /\left(N_{\text {diffrs }}-N_{\text {params }}\right)\right]^{1 / 2} \text { for all data, } R(F)= \\ & \sum\left\|\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right\| / \sum\left\|F_{\mathrm{o}}\right\| \text { for observed data, } w R\left(F^{2}\right)=\left[\sum\left(w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right) /\left(\sum w\left(F_{\mathrm{o}}^{2}\right)^{2}\right)\right]^{1 / 2} \text { for all data. } \end{aligned}$			

Table S1 (continuation). Crystal data and structure refinement of studied compounds.

	8	9	10
Formula	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{GeN}_{6}$	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Sn}$	$\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{GeLiN}_{9}$
Formula weight, $\mathrm{g} \mathrm{mol}^{-1}$	469.08	515.18	674.27
Crystal system	Triclinic	Monoclinic	trigonal
Crystal size, mm	$0.59 \times 0.57 \times 0.23$	$0.59 \times 0.34 \times 0.28$	$0.59 \times 0.59 \times 0.48$
Space group	P-1	$\mathrm{P} 21 / \mathrm{c}$	R3c
a, \AA	8.8339(5)	11.4993(5)	12.0085(9)
b, \AA	12.1659(6)	21.1590(8)	12.0085(9)
c, \AA	12.3964(6)	9.1723(4)	41.775(3)
$\alpha,{ }^{\circ}$	111.554(2)	90	90
$\beta,{ }^{\text {o }}$	96.379(2)	92.591(2)	90
$\gamma,{ }^{\circ}$	110.358(2)	90	120
V, \AA^{3}	1117.25(10)	2229.46(16)	5217.0(9)
Z	2	4	6
$\rho_{\text {calcd }}, \mathrm{Mg} \mathrm{m}{ }^{-3}$	1.394	1.535	1.288
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) , mm^{-1}	1.394	1.170	0.920
$F(000)$	484	1040	2100
θ range, deg	1 to 27.5	1 to 27.5	1 to 27.5
No. of reflns collected	36087	51074	18638
No. indep. Reflns	5147	5118	3418
No. obsd reflns with ($I>2 \sigma(I)$), $R_{\text {int }}$	4703, 0.024	4672, 0.016	2917, 0.036
No. refined params	284	284	146
GooF (F^{2})	1.035	1.138	1.039
$R_{1}(F)(I>2 \sigma(I))$	0.0258	0.0225	0.0312
$w R_{2}\left(F^{2}\right)$ (all data)	0.0644	0.0519	0.0626
Largest diff peak/hole, e \AA^{-3}	0.272 / -0.459	0.298 / -0.613	$0.208 /-0.279$
CCDC	2032977	2032981	2032979
$R_{\text {int }}=\sum\left\|F_{\mathrm{o}}^{2}-F_{\mathrm{o}, \text { mean }}{ }^{2}\right\| / \sum F_{\mathrm{o}}^{2}, \mathrm{~S}=\left[\sum\left(w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right) /\left(N_{\text {diffrs }}-N_{\text {params }}\right)^{1 / 2}\right.$ for all data, $R(F)=$ $\sum\left\|\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right\| / \sum\left\|F_{\mathrm{o}}\right\|$ for observed data, $w R\left(F^{2}\right)=\left[\sum\left(w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right) /\left(\sum w\left(F_{\mathrm{o}}^{2}\right)^{2}\right)\right]^{1 / 2}$ for all data.			

Table S1 (continuation). Crystal data and structure refinement of studied compounds.

Figure S39: Overlay complexes structures of 10-12: Sn (grey) and Ge (green) (left); Sn (grey) and Pb (green) (right). Li atoms were removed.

3. Theoretical study

a)

b)

Figure S40: p-orbital associated with bridging nitrogen of $d p a$ ligand in different coordination modes for heteroleptic chlorogermylenes (a) and homoleptic (dpa) ${ }_{2} \mathrm{Ge}$ compounds (b).
a)

b)

Figure S41: Calculated bond lengths, Wiberg bond indicies and natural charges for $d p a$ - and $\mathrm{Me}-d p a \mathrm{Ge}$ and Sn (in bracket) compounds.

Figure S42: Relative energies between optimized structures (M062X/def2-TZVP level of theory) of chlorogermylenes (green curve) and chlorostannylenes (blue curve) with different arrangement of $d p a$ (a) and $\mathrm{Me}-d p a$ (b) ligand. Electronic energies, given in $\mathrm{kcal} / \mathrm{mol}$ are related to respective species with four-membered N, N-chelate ring.

Figure S43: Relative energies between optimized structures (M062X/def2-TZVP level of theory) of homoleptic Ge (green curves) and Sn (blue curves) complexes with different arrangement of $d p a$ (a) and $M e-d p a$ (b) ligand respectively. Electronic energies, given in $\mathrm{kcal} / \mathrm{mol}$ are related to respective species with six-membered N, N-chelate ring.

Table S2. Topological properties of BCPs for complexes 10-11a in a.u. ${ }^{[a]}$

Complex	Bond	$\rho\left(r_{\mathrm{cp}}\right)$	$\nabla^{2} \rho\left(r_{\mathrm{cp}}\right)$	$G\left(r_{\mathrm{cp}}\right)$	$V\left(r_{\mathrm{cp}}\right)$	$H\left(r_{\mathrm{cp}}\right)$
$\mathbf{1 0}$	Li4 $\ldots \mathrm{N}(5,32$,	0.023	0.017	0.034	-0.025	0.009
	$59)$	0.023	0.017	0.034	-0.025	0.009
$\mathbf{1 0 a}$	Ge119...Li3	0.023	0.017	0.034	-0.025	0.009
	Li3 ..N(4, 31,	0.022	0.081	0.017	-0.014	0.003
$\mathbf{1 1}$	$58)$	0.022	0.162	0.032	-0.023	0.009
	0.022	0.162	0.032	-0.023	0.009	
$\mathbf{1 1 a}$	Sn1...Li4	0.016	0.061	0.013	-0.011	0.002

${ }^{[a]} \rho\left(r_{\mathrm{cp}}\right)$ - the electron density, $\nabla^{2} \rho\left(r_{\mathrm{cp}}\right)$ - the Laplacian function of the electron density, $G\left(r_{\mathrm{cp}}\right)$ the kinetic electron energy density, $V\left(r_{\mathrm{cp}}\right)$ - the potential electron energy density, $H\left(r_{\mathrm{cp}}\right)$ - the total electron energy density.

Figure S44: Molecular graphs of complexes 10 and $\mathbf{1 0 a}$ / the key fragment of it. Only critical points $(3,-1)$ are presented for clarity (green).

Figure S45: Molecular graphs of complexes 11 and 11a / the key fragment of it. Only critical points $(3,-1)$ are presented for clarity (green).

Table S3: Energy values of HOMO and LUMO in eV.

Complex				
	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	
HOMO	-4.77	-5.01	-5.21	
LUMO	-0.73	-0.66	-0.61	
HOMO-2	Complex			
	$\mathbf{1 0 a}$	$\mathbf{1 1 a}$	$\mathbf{1 2 a}$	
HOMO	-4.70	-4.76	-4.77	
LUMO	-0.99	-1.14	-1.41	
HOMO-3			-5.78	

Figure S46: The HOMO orbitals for $\mathbf{1 1}$ and $\mathbf{1 1 a}$ complexes (isovalue $=0.03$).

Figure S47: The HOMO-2 orbital for $\mathbf{1 2}$ and HOMO-3 for 12a complexes (isovalue $=0.03$).

