Structural and Proton Conductivity Studies of Fibrous π -Ti₂O(PO₄)₂·2H₂O: Application in Chitosan-Based Composite Membranes

Artem A. Babaryk, *^[a] Alaa Adawy,^[b] Inés García,^[c] Camino Trobajo,^[d] Zakariae Amghouz,^[e] Rosario M. P. Colodrero,^[f] Aurelio Cabeza,^[f] Pascual Olivera-Pastor,^[f] Montse Bazaga-García*^[f] and Lucía dos Santos-Gómez*^[a]

[a] Department of Physical and Analytical Chemistry, University of Oviedo – CINN (CSIC), 33006-Oviedo, Spain. E-mail: ldsg@uniovi.es; artem.babaryk@gmail.com

- [b] Laboratory of HRTEM, Institute for Scientific and Technological Resources, University of Oviedo, 33006, Oviedo, Spain.
- [c] Nanomaterials and Nanotechnology Research Centre CINN (CSIC), 33940 El Entrego, Asturias, Spain.
- [d] Department of Organic and Inorganic Chemistry, University of Oviedo CINN (CSIC), 33006-Oviedo, Spain.
- [e] Department of Materials Science and Metallurgical Engineering, University of Oviedo, 33203, Gijón, Spain.
- [f] Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, 29071-Málaga, Spain.

E-mail: m.bazaga@uma.es

Table of Contents

Full Details of the DFT Calculations	S4
Figure S1. Final plot of the HR-PXRD profile after Rietveld refinements for	π-TiP_0
compound	S5
Figure S2. BF-STEM/SAED image of π -TiP_0	
Figure S3. Rietveld plot for decomposition products at 900 °C	S6
Figure S4. The final plot of the XRD profile after Rietveld refinements	S7
Figure S5. The local environment of P1 and P2 atoms	S7
Figure S6. TGA curves comparison for π -TiP_0 and π -TiP derivatives: π -TiF	2_0 after
impedance measurement, washing-treated π -TiP_10, partially rehydrated π -TiP	_10 and
H ₃ PO ₄ @π-TiP_10	S8
Figure S7 PXRD pattern for partially rehydrated π -TiP_10 (blue) and as-synthesized a compound (red).	τ-TiP_10

CS/ π -**TiP**-*10* (blue) membranes at 95% RH and differences temperatures: 80 (black), 70 (red), 60 (green), 50 (blue), 40 (cyan), 30 (magenta) and 25 °C (yellow).......S12 **Table S1**. Selected parameters of the Rietveld refinements for Ti₂O(PO₄)₂·2H₂O (π -**TiP_0**) structure from SR-PXRD data......S12

Table **S2** Selected interatomic distances for the $Ti_2O(PO_4)_2 \cdot 2H_2O$ $(\pi$ -TiP 0) structure......S13 **Table S3.** Crystallographic summary for $Ti_2O(PO_4)_2$ (π -TiP 500) structure has been determined **Table S4**. Selected interatomic distances for the $Ti_2O(PO_4)_2$ (π -TiP 500) structure......S14 **Table S5.** The unit cell parameters and fractional atomic coordinates of π -TiP after structure **Table S6.** The unit cell parameters and fractional atomic coordinates of π -TiP-500 after structure **Table S7**. Calculated isotropic and anisotropic characteristics of ³¹P chemical shift tensor for π -**Table S8**. ³¹P chemical shifts (ppm) for the bulk π -TiP and distribution of protonated phosphate species $H_2PO_4^-$, HPO_4^{2-}) π -TiP $(H_3PO_4,$ for selected at surface of

Full Details of the DFT Calculations

Initial coordinates of atoms in the unit cell were taken from PXRD-refined crystal structures and used for further optimizations. Generalized gradient approximation of DFT in pristine Perdew-Becke-Ernzerhof (PBE)¹ and revised for solids (PBEsol)² parametrizations were applied to account for electron exchange and correlation. The valence electrons considered in the pseudopotentials for each atomic species are as follows: $3p^{6}4s^{2}3d^{4}$ for Ti, $3s^{2}p^{3}$ for P, $2s^{2}2p^{4}$ for O and $1s^{1}$ for H. The correction to the energies for London dispersion force was accounted utilizing the Tkachenko-Scheffler approach.³ The plane-wave cutoff energy was set to be 520 eV. Brillouin zone sampling of electronic states was performed on $4\times3\times8$ and $6\times3\times2$ Monkhorst-Pack grids for Ti₂O(H₂O)₂[PO₄] and Ti₂O[PO₄], respectively. The structures were fully relaxed by the residual minimization method - direct inversion in the iterative space (RMM-DIIS),⁴ after which the residual forces were converged to < 10^{-2} eV Å⁻¹ and free of Puley stress.

The calculation of magnetic response parameters were carried out using the gauge-including projector augmented wave (GIPAW) method^{5,6} delivering the accuracy comparable to allelectron calculation for isolated and periodic boundary condition systems both equally ³¹P NMR shifts were referenced to the absolute chemical shielding of H₃PO₄ ($\delta_{31P} = 0$ ppm) standard sample. The latter was calculated for an isolated molecule in the box of 17×17×17 Å³ using the same parameters as for π -TiP models.

Figure S1. Final plot of the HR-PXRD profile after Rietveld refinements for π -TiP_0 compound.

Figure S2. (a) BF-STEM image and (b) selected-area electron diffraction pattern of π -TiP_0.

Figure S3. Rietveld plot for decomposition products at 900 °C [black ticks: TiP₂O₇, red ticks: Ti₅O₄(PO₄)₄; $R_{Wp} = 0.125$; $R_F(TiP_2O_7) = 0.051$; $R_F(Ti_5O_4(PO_4)_4) = 0.0421$]

Figure S4. The final plot of the XRD profile after Rietveld refinements.

Figure S5. The local environment of P1 (a) and P2 (b) atoms (O, P and Ti atoms are depicted as red, violet and grey spheres). [Symmetry codes correspond to labels at the picture: (*i*) x,1/2-y, 1/2+z; (*ii*) -x,1/2+y, 1/2+z; (*iii*) 1-x, 1/2+y, 1/2-z; (*iv*) x, 1/2-y, 1/2+z; (*v*) -x, 1/2+y,1/2-z; (*vi*) 1-x, 1-y, -z].

Figure S6. TGA curves comparison for π -TiP derivatives: as-synthetized π -TiP_0 (blue), π -TiP_0 after impedance (red), after washed treatment π -TiP_10 (green), π -TiP_10 partially rehydrated (orange), H₃PO₄@ π -TiP_10 (black).

Figure S7. PXRD pattern for partially rehydrated π -TiP_10 (blue) and as-synthesized π -TiP_10 compound (red)

Figure S8. Plots of the complex impedance plane for (a) π -TiP_0, (b) π -TiP_4, (c) π -TiP_10, (d) π -TiP_10 partially rehydrated and (e) H₃PO₄@ π -TiP_10 materials at 95% RH and different temperatures: 90 (black), 80 (red), 70 (green), 60 (blue), 50 (cyan), 40 (magenta) and 30 °C (yellow).

Figure S9. PXRD pattern comparison of π -Ti₂O(PO₄)₂·2H₂O (π -TiP_0) as synthetized (blue) and post impedance (red) compounds.

Figure S10. Impedance studies for π -**TiP_0**: (a) Conductivity values as function of temperature (Arrhenius plot) at different relative humidity: 95 (cyan), 90 (blue), 85 (green), 80 (red) and 75% RH (black); (b) Proton conductivity, at 90 °C, vs. % RH with activation energy values (Ea, eV).

Figure S11. Comparison of PXRD pattern of π -TiP_0 (magenta), π -TiP after immersing in an acetic acid solution (green), CS (black), CS/ π -TiP_5 (red) and CS/ π -TiP_10 (blue) membranes.

Figure S12. Comparison of TG analyses of CS (black), CS/π -TiP-5 (red) and CS/π -TiP-10 (blue) membranes.

Figure S13. Plots of the complex impedance plane for (a) CS (black), CS/ π -TiP-5 (red) and CS/ π -TiP-10 (blue) membranes at 95% RH and differences temperatures: 80 (black), 70 (red), 60 (green), 50 (blue), 40 (cyan), 30 (magenta) and 25 °C (yellow).

Parameter	π-TiP_0
<i>T</i> (K)	100
Space group	P21/c
<i>a</i> , <i>b</i> , <i>c</i> (Å)	5.1121(2), 14.4921(9), 12.0453(11)
β (deg)	115.31(1)
Ζ	4
Cell volume (Å ³)	806.74(11)
Calcd density (g cm ⁻³)	2.784
Radiation wavelength (Å)	0.457904
$R_{ m p}, R_{ m wp}, \chi^2$	0.062, 0.083, 1.347

Table S1. Selected parameters of the Rietveld refinements of the $Ti_2O(PO_4)_2 \cdot 2H_2O(\pi-TiP_0)$ structure from SR-PXRD data.

 $R_{\rm p} = (\Sigma|Y_{{\rm o},m}-Y_{{\rm c},m}|) (\Sigma Y_{{\rm o},m})^{-1}, R_{\rm wp} = \{\Sigma w_m (Y_{{\rm o},m}-Y_{{\rm c},m})^2 (\Sigma w_m Y_{{\rm o},m}^2)\}^{1/2}, \chi^2 = \{w_m (Y_{{\rm o},m}-Y_{{\rm c},m})^2 ({\rm M}-{\rm P})^{-1}\}^{1/2} \text{, where where } Y_{{\rm o},m} \text{ and } Y_{{\rm c},m} \text{ are the observed and calculated data respectively at data point } m, M \text{ the number of data points, } P \text{ the number of parameters, } wm \text{ the weighting given to data point } m \text{ which for counting statistics is given by } w_m = \sigma(Y_{{\rm o},m})^{-2} \text{ where } \sigma(Y_{{\rm o},m}) \text{ is the error in } Y_{{\rm o},m}.$

Bond	Length (Å)	Bond	Length (Å)
Ti1–O1	1.9045(2)	Ti2–O1	1.8083(2)
Ti1–O3	1.9517(2)	Ti2–O2	2.0630(2)
Ti1-06	2.0380(2)	Ti2–O10	2.2484(2)
Ti1–O7	1.9065(2)	Ti2–O11	2.1704(2)
Ti1–O8	1.9742(2)	Ti2–O5	1.9427(2)
Ti1–O4	2.0251(2)	Ti2–O9	1.9687(2)
P1-O2	1.5928(1)	P206	1.5761(1)
P1-O3	1.5524(1)	P209	1.5445(1)
P1O4	1.5279(1)	P2–O8	1.5289(1)
P1O5	1.5767(1)	P207	1.5004(1)

Table S2. Selected interatomic distances for the $Ti_2O(PO_4)_2 \cdot 2H_2O(\pi-TiP_0)$ structure.

Table S3. Crystallographic summary of the of the $Ti_2O(PO_4)_2$ (π -TiP_500) structure determined from HT-PXRD.

Parameter	<i>π</i> -TiP_500
Т(К)	773
Space group	$P2_1/c$
<i>a</i> , <i>b</i> , <i>c</i> (Å)	5.1187(13), 11.0600(21), 14.4556(26)
β (deg)	107.645(17)
Ζ	4
Cell volume (Å ³)	779.87(29)
Calcd density (g cm ⁻³)	2.569
Radiation wavelength (Å)	1.54178
$R_{\rm p}, R_{\rm wp}, \chi^2$	0.030, 0.040, 1.377

Bond	Bond Lengths (Å) Bon		Length (Å)
Ti1–O1	1.8529(5)	Ti2–O7	1.8461(5)
Ti1–O5	1.9112(5)	P1O1	1.4649(4)
Ti1–O6	1.9680(5)	P1O2	1.5990(4)
Ti1–O8	1.8711(5)	P1O3	1.5864(4)
Ti1–O9	1.9166(5)	P1O4	1.5207(4)
Ti1–O4	1.9827(5)	P205	1.6036(4)
Ti2–O2	1.7865(5)	P2–O7	1.5133(4)
Ti2-09	1.7352(4)	P206	1.6122(4)
Ti2–O3	1.8802(5)	P2–O8	1.4207(4)

Table S4. Selected interatomic distances for the $Ti_2O(PO_4)_2$ (π -TiP_500) structure.

Table S5. Unit cell parameters and fractional atomic coordinates of π -TiP after structure relaxation.

Space group – $P2_1/c$, $a = 5.1213$ Å, $b = 14.4099$ Å, $c = 11.9312$ Å, $\beta = 115.0030^\circ$, $V = 797.9771$ Å ³				
Atom	x/a	y/b	z/c	
Til	0.04817	0.04311	0.30931	
Ti2	0.55189	0.16843	0.05467	
01	0.13888	0.63132	0.31579	
O2	0.33562	0.06062	0.06820	
03	0.30515	0.47449	0.24299	
O4	0.16260	0.53572	0.70233	
05	0.64404	0.38551	0.42981	
O6	0.41034	0.11676	0.35764	
07	0.77071	0.46112	0.05294	
08	0.05553	0.63120	0.08114	
09	0.72664	0.28733	0.04314	
O10	0.37251	0.23847	0.16693	
011	0.15406	0.29607	0.39917	
P1	0.61089	0.47295	0.35101	
P2	0.28906	0.62350	0.03145	
H1	0.04365	0.23863	0.39655	
H2	0.02025	0.34765	0.35972	
H3	0.37620	0.19940	0.23630	
H4	0.17415	0.26220	0.12712	

Space group – $P2_1/c$, $a = 5.1509$ Å, $b = 11.05990$ Å, $c = 14.48890$ Å, $\beta = 107.7990^{\circ}$, $V = 785.9015$ Å ³					
Atom	x/a	<i>y/b</i>	z/c		
Til	0.28690	0.18433	0.05099		
Ti2	0.14993	0.44849	0.15506		
P1	0.28971	0.66028	0.02744		
P2	0.14062	0.53039	0.37344		
01	0.08082	0.76033	0.02030		
O2	0.81837	0.42847	0.06144		
03	0.31439	0.58251	0.11937		
O4	0.43069	0.20740	0.46865		
05	0.23973	0.44151	0.45741		
O6	0.13843	0.08336	0.13237		
O7	0.11001	0.46121	0.27694		
08	0.64874	0.13178	0.11840		
09	0.31456	0.31824	0.13959		

Table S6. The unit cell parameters and fractional atomic coordinates of π -TiP-500 after structure relaxation.

Table S7. Calculated isotropic and anisotropic characteristics of ³¹P chemical shift tensor for π -TiP.

Compound	$\delta_{ m iso}$	Ω	К
H ₃ PO ₄	-292.75	112.48	0.49
- TiD	-306.19	34.54	-0.27
π- 11Γ	-317.97	11.98	0.19

Table S8. ³¹P NMR shifts (ppm) and NMR-MAS percentage of surface protonated phosphate species (H₃PO₄, H₂PO₄⁻, HPO₄²⁻) for selected π -TiP derivatives.

Sample	H ₃ F	PO ₄	H ₂ P	04-	HP	O ₄ ²⁻	P	O ₄ ³⁻
π-TiP_0	- 0.079 (5.80)	0.370 (8.37)	- 5.382 (3.00)	- 7.00 (7.47)	- 17.34 (1.29)	- 18.82 (9.04)	- 11.923 (37.29)	- 25.221 (27.73)
<i>π</i> -TiP_4	- 0.079 (1.84)	-	- 5.06 (5.41)	- 6.80 (7.30)	- 17.34 (5.77)	- 18.82 (7.89)	- 11.923 (40.59)	- 25.221 (31.21)
π-TiP_6	- 0.079 (1.69)	-	- 5.78 (8.12)	-	-	- 18.28 (14.93)	- 11.923 (41.27)	- 25.221 (33.99)
π-TiP_10	- 0.079 (1.65)	-	- 5.78 (7.75)	-	-	- 17.97 (15.42)	- 11.923 (40.82)	- 25.221 (34.37)
H ₃ PO ₄ @π-TiP_10	- 0.079 (1.87)	-	- 4.87 (2.78)	- 6.69 (8.24)	- 17.63 (4.34)	- 18.82 (8.43)	- 11.923 (42.14)	- 25.221 (32.20)

REFENCES:

(1) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865.

(2) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. *Phys. Rev. Lett.* **2008**, *100*, 136406.

(3) Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. *Phys. Rev. Lett.* **2009**, *102*, 073005.

(4) Pulay P. Convergence Acceleration of Iterative Sequences. The Case of SCF Iteration. *Chem. Phys. Lett.* **1980**, *73*, 393-398.

(5) Pickard, C. J.; Mauri F. All-electron Magnetic Response with Pseudopotentials: NMR Chemical Shifts. *Phys. Rev. B* 2001, *63*, 245101.

(6) Yates, J. R.; Pickard, C. J. Mauri, F. Calculation of NMR Chemical Shifts for Extended

Systems Using Ultrasoft Pseudopotentials. Phys. Rev. B 2007, 76, 024401.