Supporting Information

A supramolecular complex based Gd-containing polyoxometalate for MRI/CT imaging and NIR-Triggered Photothermal therapy

Simin Zhang, ^{a, b} Meng Li, ^a Yuan Zhang, ^c Ruichun Wang, ^a Yukun Song, ^a Weiping Zhao, ^a and Songyi Lin*^{a, b}

^{a.} National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China.

E-mail: linsongyi730@163.com

^{b.}Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic Un iversity, Dalian 116034, China.

^{c.} State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.

Supporting Information

Table of Contents

HPLC chromatograms	S1
MS spectra	S1
FT-IR spectra	.S2
Elemental Analysis (EA)	S3
Zeta potential	.S3
Dynamic Light Scattering (DLS) Analysis	.S3
Isothermal titration calorimetric (ITC) Measurement	.S4
Cytotoxicity	.S4
Photothermal curves	.S5

Structure Characterization of the peptide

Figure S1. HPLC chromatograms of KDHCHVTPY.

Figure S2. MALDI-TOF mass spectrum of KDHCHVTPY peptide.

Figure S3. FT-IR spectra of pure GdW_{10} , peptide KDHCHVTPY, and K-Gd in KBr pellets.

Table S1.	The assignm	nents of infrar	ed spectra of	f pure GdW1	0, peptide	KDHCHVTPY,	and K-Gd
in solid sta	ate.						

peptide /cm ⁻¹	K-Gd /cm ⁻¹	Assignment peptide /cr		K-Gd /cm ⁻¹	Assignment	
1672	1672	-CO–NH-	1000-1300	1000-1300	С–О, С–ОН, С–N	
1538	1538	C=C frame		946	W=O _d	
		str.				
1450	1452	CH_2		847	W-O _b -W	
		scissoring		7 -0		
1411	1408	CH ₂		787	W-O _c -W	
		wagging		782		
1335	1333	CH ₂		714	WOW	
		wagging		/14	w-O _c -w	
1248	1252	CH ₂	722	722	CS	
		twisting	122	122	C-3	

	С	Н	Ν	S	Gd	W
Calcd. (%)	27.49	3.36	9.35	1.53	3.75	43.83
Found (%)	27.12	3.55	9.23	1.33	3.69	43.55

Table S2. The summary of elemental analysis for the prepared complex K-Gd.^[a]

[a] The elemental analytical results of C, H, N and S were obtained from organic elemental analysis, and the elemental analysis of Gd, W was performed on inductive coupled plasma emission spectrometer.

Figure S4. Zeta potential of (a) GdW_{10} and (b) K-Gd in aqueous solution.

Figure S5. DLS curves of K-Gd in dulbecco's modified eagle medium (DMEM) culture medium solution.

Figure S6. Isothermal titration calorimetric curves of the thermogram and the isotherm corresponding to GdW_{10} binding to peptide Lys-Asp-His-Cys-His-Val-Thr-Pro-Tyr.

Figure S7. Columnar plots of viability of HepG2 cells after incubation for 24 h in the presence of K-Gd and GdW_{10} versus the increase in their concentrations.

Figure S8. Photothermal heating curves of rK-Gd aqueous solution under 808 nm laser irradiation at a power density of 0.5 W/cm² for 10 min.