Supporting Information

Structural, magnetic and theoretical analyses of anionic and cationic phthalocyaninato-terbium(III) double-decker complexes: Magnetic relaxation via higher ligand-field sublevels enhanced by oxidation

Yoji Horii,^{a*} Marko Damjanović,* Keiichi Katoh^{b*} and Masahiro Yamashita^{c,d*}

^c Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan

^{d.} School of Materials Science and Technology, Nankai University, Tianjin 300350, China

^a. Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan

^b. Department of Chemistry, Graduate School of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan

Physical properties measurements

Single-crystal X-ray diffraction measurements were performed using a Rigaku Varimax with Saturn724+ with CrysAlisPro 1.171.40.53^[1] and a Rigaku VariMax with RAPID II with RAPID AUTO. Initial structures were obtained using SHELXT (2018/3) and refined with SHELXL (2018/3)^[2] combined with Yadokari-XG.^[3] For the analyses of the crystal structures of 1⁻ at 263 K, SQUEEZE^[4] command of platon was used to consider the disordered DMSO molecule. Powder X-ray diffraction (PXRD) pattern was acquired by Rigaku RINT-2000 using glass capillary and Bruker D2 PHASER. Simulated PXRD patterns were obtained from the cif file using Mercury 4.1.0.^[5] Magnetic measurements were performed on Quantum Design SQUID magnetometers MPMS-XL, MPMS3, and the ACMS option of PPMS MODEL 6000.

Preparation of magnetically diluted samples

Magnetically diluted samples of 1^- and 1^+ , denoted as 1^{-*} and 1^{+*} , respectively, were prepared by doping 1 to an excess amount of Y^{3+} analogue (1Y). 1Y was prepared according to the literature method.^[6]

Preparation of 1^{-*}

7.08 mg of **1** (0.0030 mmol) and 60.80 mg (0.027 mmol) of **1Y** were dissolved in 2 mL of dichloromethane, and the solution was stirred overnight. After evaporation of the solvent, 10 mL of dimethyl sulfoxide and 500 mL of hydrazine monohydrate were added, and the mixture was ultrasonicated until the solid mixture was completely dissolved in DMSO (ca. 30 min). Addition of 107 mg of TBA·Br to the light blue reaction solution afforded purple precipitation. The reaction mixture was filtrated, and the purple solid was washed with 10 mL of DMSO (67.1 mg, 87%).

Preparation of 1+*

9.37 mg of 1 (0.0040 mmol) and 78.79 mg of 1Y (0.035 mmol) were dissolved in ~10 mL of toluene, and the solution was stirred overnight. 30 mg of SbCl₆·Ox (0.056 mmol) were added, and the mixture was ultrasonicated for 5 min. The vial was placed in the oven and heated at 100 °C for 5 h, followed by slow cooling down to room temperature over 12 h to afford the crystalline 1^{+*} (88.1 mg, 87%).

Debye model equations

Magnetic relaxation time τ was obtained by simultaneously fitting the real (χ_M) and imaginary (χ_M ") parts of the ac magnetic susceptibilities using the following generalized Debye model equations:

$$\chi_{M} = \chi_{S} + (\chi_{T} - \chi_{S}) \frac{(2\pi\tau)^{1-\alpha} \sin\left(\frac{\pi\alpha}{2}\right)}{1 + 2(2\pi\tau)^{1-\alpha} \sin\left(\frac{\pi\alpha}{2}\right) + (2\pi\tau)^{2-2\alpha}}$$
eq. S1a

$$\chi_{M}^{"} = (\chi_{T} - \chi_{S}) \frac{(2\pi\tau)^{1-\alpha} \cos{(\frac{\pi\alpha}{2})}}{1 + 2(2\pi\tau)^{1-\alpha} \sin{(\frac{\pi\alpha}{2})} + (2\pi\tau)^{2-2\alpha}}$$
eq. S1b

where χ_T is the isothermal magnetic susceptibility, χ_S is the adiabatic magnetic susceptibility and α is the dispersion factor. Optimized parameters are summarized in Tables S3-S6.

		1-	1+
T/K	120	263	120
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	<i>P</i> -1
Formula	$C_{146}H_{200}N_{17}O_{17}STb$	$C_{146}H_{200}N_{17}O_{17}STb$	$C_{191}H_{232}Cl_6N_{16}O_{16}SbTb$
Ζ	4	4	2
<i>a</i> / Å	20.1606(4)	20.6206(4)	16.3767(2)
<i>b</i> / Å	30.2161(6)	30.5969(5)	24.6005(3)
<i>c</i> / Å	23.2154(16)	23.4609(5)	24.8548(2)
lpha / °	90	90	65.8000(10)
β/°	102.336(7)	101.534(2)	78.6380(10)
γ/°	90	90	80.6740(10)
$V/\text{\AA}^3$	13815.7(11)	14503.2(5)	8917.33(19)
ho / g cm ⁻³	1.277	1.182	1.304
R_1	0.0816	0.0608	0.0531
wR_2	0.2020	0.1487	0.1357
GOF	1.070	1.034	1.007
CCDC number	1973905	2085462	1973906

Table S1. Crystallographic data for 1^- and $1^+\!.$

Figure S1. Experimental (lower) and calculated (upper) power X-ray diffraction patterns for 1^- and 1^{-*} .

Figure S2. Experimental (lower) and calculated (upper) power X-ray diffraction patterns for 1^+ and 1^{+*} .

Frequency calculation

Geometry optimization and analytical frequency calculations were performed at B3LYP/Def2-SVP^[7-8] level of theory using the software ORCA 4.2.1^[9]. A RIJCOSX approximation using Def2/J^[10] auxiliary basis was applied to reduce the computational costs. Initial structures for calculations were made based on the crystal structures. To reduce the computational costs, the Tb atom and *n*-butoxy chains were replaced by an Y atom and methoxy groups. After the calculation, the atomic weight of Y was changed to that of Tb using orca_vib module to get better agreement between the experimental and the theoretical IR spectra. Frequency calculation using the cif of 1^- (indicated as 1^{*-} in Table S2) afforded one imaginary frequency, while the calculations using the crystal structure of 1^+ (indicated as 1^-) showed no imaginary frequency.

Figure S3. Experimental (black lines) and calculated (red lines) IR spectra for 1^- and 1^+ . A Gaussian type lineshape function with 20 cm⁻¹ of FWHM and a vibrational frequency scaling factor (0.97) were applied for calculated vibrational mode and transition moment.

	Way	enumber / cm	-1	73	204 51	211 59	206 97	147	486 81	485 77	482.58
No. –	14-	1-	4.+	74	206.09	212.02	200.57	149	401.27	401.44	102.00
	1*-	I ⁻	Ľ	74	200.08	212.82	207.30	146	491.27	491.44	484.03
1	-7.51	6.99	9.68	75	211.00	213.19	210.32	149	497.26	491.56	485.56
2	8.56	10.37	10.35	76	212.43	214.18	210.66	150	497.40	497.35	493.36
3	10.46	10.80	12.82	77	214.41	214.26	210.85	151	497.50	497.40	493.41
1	11 13	12.40	12.02	78	216.08	215.84	213.24	152	504.03	497.46	493.91
-	12.47	12.40	12.50	79	216.82	215.95	213.61	153	507.46	497 56	493 97
3	12.47	12.54	13.38	20	210.02	213.35	210.42	155	510.20	510.05	511.21
6	13.79	15.25	16.39	80	217.80	222.35	219.42	154	510.20	510.05	511.51
7	21.97	21.73	23.06	81	221.61	222.76	219.74	155	526.19	510.20	511.45
8	24.20	24.92	25.43	82	223.84	224.97	223.30	156	528.68	528.32	530.20
õ	24.71	25.52	26.01	83	224.60	228.61	226.54	157	530.27	530.20	530.32
10	24.71	25.52	20.01	84	226.78	234.19	226.97	158	533 30	530.31	542.62
10	30.21	30.00	51.20	95	225.06	224.92	220.97	150	527.12	522.52	547.02
11	31.91	31.10	31.91	85	233.00	254.62	227.40	139	337.12	333.33	347.27
12	36.22	35.76	35.43	86	238.03	241.03	236.72	160	543.85	545.12	550.04
13	37.57	35.90	35.48	87	242.50	241.54	236.83	161	547.41	548.19	552.18
14	39.75	39.04	38.93	88	249.57	251.00	242.58	162	549.59	556.67	558.58
15	40.25	40.19	40.62	89	250.99	251.26	242.81	163	557 36	557.86	558 72
15	40.55	40.18	40.62	00	259.14	261.20	251 72	164	558.01	557.05	560.72
16	41.73	40.41	41.73	90	256.14	204.40	251.75	104	550.01	559.00	500.40
17	42.37	40.52	42.00	91	261.10	264.50	252.01	165	558.15	558.02	560.63
18	50.00	49.92	50.69	92	263.85	265.15	252.93	166	559.92	558.24	560.68
19	50.39	50.05	50.71	93	264.36	265.38	253.33	167	569.84	558.32	560.77
20	54.41	54.90	56.21	94	264.72	269.38	257.71	168	594.03	594.09	599.44
20	54.41	54.90	56.20	95	265.03	271 74	261.60	160	596.01	594 50	500.67
21	55.45	54.95	56.28	95	205.05	271.74	201.00	109	500.01	507.01	(01.05
22	63.64	66.24	67.57	96	270.07	275.64	262.11	170	598.30	597.91	601.95
23	68.25	66.72	68.10	97	272.69	276.50	262.70	171	601.56	598.43	602.46
24	72.02	74.16	78.10	98	275.58	277.32	267.05	172	627.83	632.74	634.99
25	74.10	74.52	78 51	99	276.12	278.18	267.67	173	632.89	632.80	635.07
25	74.10	75.12	70.29	100	276 51	278 42	270.41	174	633 11	633.28	635.62
20	/4./8	/5.15	79.28	100	270.51	270.42	270.41	175	(22.(1	(22.22	(25.72
27	74.99	75.62	79.77	101	278.14	2/0.//	2/1./2	173	035.01	055.52	033.72
28	75.58	76.62	82.86	102	278.72	280.40	272.00	176	635.65	646.41	646.74
29	76.73	76.80	83.08	103	279.62	280.60	272.31	177	646.50	646.44	646.78
30	78 79	78.02	83 31	104	280.24	287.25	276.63	178	656.51	656.75	655.34
21	82.26	82.65	88.20	105	287 35	287 39	277 32	179	658 66	656 93	655 47
20	82.30	82.03	100.29	106	288.08	287.71	285.43	180	680.20	680.86	682.77
32	92.10	95.17	100.74	100	200.00	207.71	205.45	100	(82.44	(82.7((04.44
33	92.49	95.46	100.94	107	288.91	287.93	285.65	181	682.44	082.70	084.44
34	95.98	102.48	103.47	108	297.39	289.40	285.67	182	700.63	700.98	696.60
35	98.86	103.08	103.64	109	302.37	289.89	285.85	183	701.37	701.69	697.29
36	103.00	103 22	107.05	110	324.51	325.40	312.71	184	722.62	722.24	725.98
27	102.00	102.42	107.34	111	325 19	325 48	312.85	185	722 73	722.42	726.93
20	105.72	102.45	111.72	112	328.68	342.16	326.47	186	722.79	722.59	728 30
38	106.14	108.01	111.72	112	222.00	242.10	220.47	100	722.15	722.57	720.50
39	108.16	108.26	112.02	115	332.00	342.22	326.39	18/	/23.15	722.62	/28.42
40	109.22	112.60	113.54	114	341.72	343.33	328.22	188	725.43	722.73	728.83
41	113.07	119.57	118.77	115	342.44	343.76	328.96	189	725.64	722.99	728.98
42	114 59	121 38	120.85	116	343.61	362.29	348.51	190	726.56	725.23	729.14
12	120.68	122.50	122.05	117	349 37	366 52	352.28	191	727 10	725 48	729 92
43	120.08	123.39	123.13	118	362.44	377.42	375.20	192	729.76	729.37	732.88
44	124.92	123.93	123.42	110	267.04	277.50	275.20	102	720.00	729.57	732.00
45	125.86	129.79	131.62	119	507.04	3/1.39	3/3.31	195	730.09	729.30	755.05
46	130.06	129.82	136.52	120	377.57	388.95	386.34	194	734.33	/34.27	/33./4
47	130.51	130.45	136.57	121	384.36	390.14	386.61	195	734.64	734.64	733.83
48	131.02	130.47	136 74	122	389.22	390.25	386.75	196	736.05	734.80	733.99
/0	131.87	131.00	136.80	123	390.12	390.46	387.02	197	736.61	734.91	734.21
4) 50	122.47	121.00	120.24	124	390.27	390.53	387 37	198	743 56	736.80	734 60
50	132.47	131.99	139.34	125	300.67	300.69	388 00	100	746.07	736.00	721 74
51	135.07	134.76	139.77	123	390.02	390.08	200.00	199	740.07	150.00	/ 34./0
52	147.94	154.54	154.50	126	406.06	405.87	392.55	200	/54.//	/54.//	/56.59
53	153.24	154.68	155.02	127	406.98	406.29	393.15	201	755.35	754.84	756.77
54	154.40	155.00	157.63	128	407.80	407.12	397.74	202	756.38	757.88	756.90
55	155.61	155.46	157 75	129	408.54	407.28	397.77	203	757.69	758.15	756.96
56	156.62	162.20	164 75	130	411.26	408 33	399 52	204	758 44	758 28	758 55
50	150.05	102.30	104.73	121	422.64	408.40	200.70	205	759 74	758.42	758.62
57	161./5	162.52	165.27	122	422.04	400.49	339.70	205	750.74	750.42	758.05
58	165.68	170.31	169.40	132	425.03	424.81	412.68	206	/60.3/	/60.09	/63./1
59	166.95	170.71	169.61	133	430.61	425.33	413.07	207	760.48	760.14	763.92
60	168.86	171.04	170.47	134	449.12	471.68	464.99	208	761.72	761.21	768.87
61	169 33	171.40	170.60	135	454.37	472.12	465.19	209	763.74	761.39	769.10
62	171.00	181 82	177.07	136	470 50	472.44	477 94	210	769 72	771.65	774 45
02	171.09	101.03	177.10	127	172 00	172.57	478.01	210	772 24	777 07	775 20
63	172.37	182.00	177.12	13/	472.00	4/2.3/	4/0.01	211	112.34	112.81	115.20
64	181.64	185.98	183.98	138	473.09	472.74	4/8.40	212	//4.71	775.79	777.53
65	184.43	186.06	184.22	139	473.15	472.85	478.47	213	775.94	775.97	777.75
66	185 91	196.62	191 12	140	473.36	472.96	478.71	214	790.35	790.63	787.83
67	186.36	196 75	191 30	141	473.45	473.07	478.73	215	791.96	792.15	793.86
07	100.50	100.73	191.30	142	474 75	473 73	479.17	216	793 66	793 55	707 00
08	190.85	198.01	190.18	142	101 12	474.00	470.47	210	704 00	702.60	700.50
69	197.02	198.07	196.39	145	401.10	4/4.09	4/7.4/	217	/ 74.02	795.02	199.32
70	197.48	204.07	196.61	144	484.79	484.91	481.65	218	/97.42	/97.51	/99.79
71	202.47	204.82	197.15	145	485.44	484.97	481.79	219	797.80	797.71	800.34
72	203.54	208.48	204.42	146	485.70	485.70	482.50	220	797.89	797.75	800.48

Table S2. Calculated molecular vibrational frequencies for 1^{*-} , 1^{-} and 1^{+} .

221	798.23	797.89	801.34	298	1172.87	1172.83	1169.20	375	1453.56	1454.28	1451.68
222	798.66	798.05	801 54	200	1172.87	1172.86	1169.22	376	1454 55	1454 85	1452 63
222	790.00	790.05	001.04	2))	1172.07	1172.00	1109.22	370	1455.05	1454.00	1452.05
223	/99.41	/98.15	802.28	300	11/3.08	11/2.94	1169.23	377	1455.05	1454.89	1452.75
224	822.37	828.66	829.86	301	1174.34	1172.98	1169.29	378	1455.60	1461.36	1456.46
225	828.96	828 74	829.97	302	1174 96	1178.66	1169 34	379	1455 76	1461 38	1456.63
225	020.70	020.74	029.97	502	11/4.70	1170.00	1107.54	577	1455.70	1401.50	1450.05
226	829.00	829.13	830.88	303	11/9.27	11/8./8	1169.39	380	1460.83	1461.44	1460.28
227	829.88	829.16	830.96	304	1179.64	1180.46	1169.40	381	1461.25	1461.49	1466.28
220	956 55	866 27	868.01	205	1192 /2	1120.66	1160.45	292	1461 20	1461 52	1466 41
220	850.55	800.27	808.01	305	1105.45	1180.00	1109.45	362	1401.39	1401.52	1400.41
229	866.53	866.60	868.37	306	1194.32	1195.93	1169.57	383	1461.54	1461.56	1466.51
230	870.40	876.92	878 31	307	1195 93	1196.07	1169 59	384	1461 57	1461 63	1466 57
250	070.40	870.92	070.51	307	1195.95	1190.07	1109.39	304	1401.57	1401.05	1400.37
231	876.30	877.04	878.50	308	1198.87	1203.45	11/5.46	385	1461.61	1461.65	1466.62
232	876 89	878 98	881 78	309	1201.62	1204 60	1175 82	386	1461 67	1462.09	1466 67
222	077.(4	070.01	001.70	210	1201.02	1205.42	1202.04	207	1461.05	14(2.19	1466.74
233	8//.64	8/9.01	882.66	310	1203.61	1205.42	1202.64	387	1461.95	1462.18	1466./4
234	879.17	879.87	882.86	311	1204.23	1205.49	1202.86	388	1462.06	1462.20	1466.78
235	870 12	870.00	883 18	312	1205 13	1205.65	1202.04	380	1462.07	1462.28	1467.15
235	079.42	879.90	005.10	512	1205.15	1205.05	1202.94	569	1402.07	1402.20	1407.15
236	880.07	880.01	883.29	313	1205.47	1205.72	1202.99	390	1462.15	1462.30	1467.25
237	885.08	886 54	887 61	314	1205.66	1206 37	1203 10	391	1462.34	1462.37	1467 32
220	200.77	001.07	002.14	215	1206.50	1206 72	1202.21	202	14(2.42	14(2.40	14(7.42
238	890.77	891.07	892.14	315	1206.58	1206.72	1203.21	392	1462.42	1402.48	1407.43
239	891.45	891.30	892.37	316	1207.93	1209.03	1204.83	393	1462.52	1462.49	1467.45
240	802 32	801 58	802 50	317	1208 74	1200.26	1205.06	30/	1465 10	1467 47	1467 55
240	092.32	091.50	092.39	517	1208.74	1209.20	1205.00	594	1405.19	1407.47	1407.55
241	892.49	892.02	892.77	318	1209.17	1211.66	1207.51	395	1467.42	1467.57	1467.64
242	893.02	892.33	893.00	319	1209.46	1211.71	1207.62	396	1467.84	1467.71	1467.67
242	802.15	802.60	802.27	220	1211.74	1211.00	1207.60	207	1460.46	1460.06	1472.76
245	695.15	892.09	695.57	520	1211./4	1211.69	1207.09	397	1409.40	1409.90	14/2./0
244	895.11	892.93	893.58	321	1211.88	1212.02	1207.98	398	1475.99	1476.16	1472.98
245	896.41	802.08	803 72	322	1215 76	1210.83	1208.04	300	1476 40	1476 76	1473 45
245	090.41	092.90	095.72	522	1213.70	1219.85	1208.04	399	14/0.49	1470.70	1473.45
246	900.56	900.64	905.21	323	1219.94	1220.79	1208.17	400	1477.31	1479.96	14/4.55
247	900 76	900 74	905 29	324	1224.03	1237 14	1212.13	401	1480 13	1479 99	1474 56
240	001.00	000.07	005.52	221	122 (.05	1227.10	1212.10	402	1 400.46	1400.55	1474.70
248	901.98	900.87	905.53	325	1226.66	1237.19	1212.39	402	1480.46	1480.55	14/4./8
249	902.06	901.16	905.66	326	1237.06	1239.01	1235.49	403	1480.85	1480.62	1474.96
250	002.82	001 56	005.05	227	1229.91	1220 12	1225 57	404	1490.02	1490.95	1475.07
250	902.83	901.50	905.95	327	1230.01	1239.12	1235.57	404	1460.95	1460.65	14/3.0/
251	903.14	902.28	906.57	328	1239.06	1239.29	1235.71	405	1481.09	1480.91	1475.58
252	935 35	902.47	906 79	329	1239 44	1239 36	1235 76	406	1481 65	1481.01	1475 63
252	025.50	002.17	007.05	220	1239.11	1237.30	1235.00	100	1401.01	1402.11	1475.00
253	935.56	903.36	907.85	330	1240.96	1242.43	1235.96	407	1481.91	1482.11	14/5./2
254	1020.80	1024.40	1019.17	331	1242.49	1242.86	1236.06	408	1482.14	1482.20	1476.19
255	1021 52	1024 71	1010 55	222	1242 64	1246.14	1220.02	400	1482.25	1482 47	1476 50
233	1021.32	1024.71	1019.55	332	1245.04	1240.14	1239.03	409	1462.23	1462.47	14/0.39
256	1024.30	1031.92	1028.82	333	1245.93	1246.69	1239.10	410	1482.56	1482.51	1476.63
257	1030.62	1031 99	1028.85	334	1246 41	1264.28	1279 37	411	1482 68	1482 64	1476 71
257	1030.02	1031.99	1020.00	225	1210.11	1201.20	1279.57	111	1 102.00	1 102.01	1170.71
258	1031.95	1032.28	1030.08	335	1250.75	1264.43	12/9.56	412	1483.13	1482.70	14/6./6
259	1032.03	1032.39	1030.12	336	1264.75	1264.71	1279.72	413	1483.38	1482.83	1477.33
260	1037 11	1043.80	1036.40	337	1265 21	1265 76	1280.05	414	1483 63	1482 03	1477 40
200	1037.11	1045.80	1030.49	557	1205.21	1205.70	1280.05	414	1405.05	1402.95	14//.49
261	1043.72	1044.23	1037.90	338	1265.73	1265.91	1280.08	415	1484.26	1484.18	1477.69
262	1070.05	1088.09	1077.09	339	1266.22	1266.49	1280.83	416	1484.42	1484.22	1477.80
2(2	1071 ((1000 10	1077.10	240	1200.04	10((72	1200.02	417	1404.05	1404.01	1470.02
263	10/1.66	1088.12	10//.12	340	1266.64	1266.73	1280.93	41/	1484.95	1484.81	14/9.93
264	1087.15	1089.09	1080.45	341	1267.53	1267.33	1282.53	418	1485.39	1485.88	1484.60
265	1088.06	1080 13	1080 57	342	1300.85	1316.03	1327.00	/10	1/186 30	1/85 06	1484 67
205	1000.00	1007.15	1000.57	542	1507.05	1010.00	1327.90	41)	1400.57	1405.90	1404.07
266	1088.58	1090.02	1080.75	343	1313.55	1316.96	1330.83	420	1504.62	1505.98	1486.19
267	1089.50	1090.04	1080.78	344	1316.40	1317.41	1331.01	421	1506.44	1506.74	1486.33
260	1000.60	1002.19	1001.00	245	1217.40	1210.12	1221 15	422	1507.11	1512 40	1511.00
208	1089.09	1095.18	1081.02	545	1517.40	1519.15	1551.15	422	1307.11	1313.48	1311.09
269	1092.40	1093.31	1081.09	346	1318.56	1319.88	1331.35	423	1510.62	1513.77	1511.80
270	1093.07	1093 48	1081.88	347	1320.03	1319.95	1331.81	424	1511 48	1514.26	1514 54
270	1075.07	1000.40	1001.00	340	1320.05	1017.75	1331.01	125	1511.40	1514.40	1514.54
2/1	1093.44	1093.57	1081.99	348	1320.69	1321.17	1331.92	425	1513.98	1514.48	1514.66
272	1097.45	1102.81	1088.00	349	1321.42	1321.27	1333.04	426	1514.45	1514.94	1514.84
272	1102.17	1102.00	1002 45	250	1247 21	1248 46	1265 61	427	1516 42	1517 47	1515 20
275	1102.17	1102.90	1095.45	550	1347.21	1340.40	1303.01	427	1510.42	1317.47	1515.59
2/4	1103.09	1103.74	1093.50	351	1349.15	1348.63	1366.50	428	1516.57	1518.07	1515.52
275	1103.96	1103.82	1094.55	352	1353.13	1353.85	1371.59	429	1518.60	1518.79	1517.38
276	1110.02	112/ 10	1004.61	352	1352 74	1354 65	1371.07	120	1522.19	1526.92	1510 12
270	1117.04	1124.10	1074.01	555	1333./4	1334.03	13/1.7/	450	1545.10	1520.85	1310.12
277	1125.44	1124.50	1118.09	354	1354.35	1354.73	1376.01	431	1527.32	1527.22	1521.84
278	1129.04	1131.29	1126.11	355	1355.72	1354.88	1376.22	432	1529.97	1531.60	1535.98
270	1121.00	1121.00	1122.05	250	1274 70	1201 21	1201.14	422	1521 (0	1522.00	152(20
279	1131.09	1131.09	1132.85	330	13/4./0	1391.31	1391.14	433	1551.00	1552.82	1536.29
280	1132.82	1136.56	1133.52	357	1375.90	1393.86	1397.97	434	1532.44	1538.24	1536.69
281	1136.65	1136.94	1137.81	358	1392 21	1396.63	1405.03	435	1538 59	1538 35	1536.91
201	1120.05	1130.74	11.11.00	350	1372.21	1370.05	1405.05	455	1550.57	1550.55	1550.71
282	1138.30	1137.77	1141.92	359	1396.75	1396.71	1405.46	436	1539.77	1540.70	1541.58
283	1138.73	1139.96	1141.99	360	1396.83	1397.50	1405.67	437	1540.95	1540.84	1542.06
281	1155 24	1150 92	1154.92	361	1307 17	1307 72	1405 74	120	1548 29	15/0 00	1562 21
204	1133.24	1137.03	1134.02	501	137/.1/	1371.14	1403./4	430	1.540.30	1.047.00	1303.21
285	1159.82	1159.88	1154.86	362	1397.66	1399.76	1406.16	439	1549.76	1550.03	1563.28
286	1168.70	1172.33	1156.29	363	1400.09	1400.50	1406.38	440	1551.18	1550.97	1566 15
200	1160.20	1172.25	1156 40	264	1409 55	1400.00	1411 10	4.4.1	1551.05	1551 11	15(0.00
287	1169.38	11/2.35	1156.40	364	1408.55	1409.06	1411.19	441	1551.95	1551.11	1568.25
288	1171.75	1172.42	1157.91	365	1431.63	1432.50	1411.90	442	1562.02	1563.58	1568.37
280	1172.01	1172 55	1158 12	366	1432 80	1435 82	1420 74	412	1564.22	1564.68	1571.04
207	11/2.01	11/2.33	1130.12	500	1-132.09	1433.82	1420.74	443	1.504.22	1304.08	13/1.94
290	1172.02	1172.56	1165.87	367	1435.85	1435.88	1441.09	444	1607.05	1607.35	1628.88
291	1172.30	1172.61	1165 93	368	1437 85	1438 97	1441.21	445	1608 19	1608 36	1629.95
202	1172.24	1172.01	11/0 00	200	1420 74	1420.00	1441 51	444	1622.10	1640 72	1(27.12
292	11/2.34	11/2.62	1108.80	369	1438./4	1439.06	1441.51	446	1035.18	1040.75	1037.13
293	1172.45	1172.64	1168.92	370	1447.28	1451.53	1447.62	447	1634.40	1641.08	1638.08
294	1172 57	1172.66	1168.96	371	1451 20	1451 97	1447 70	448	1640 64	1641 49	1638 33
227	1172.57	1172.00	1100.20	271	1451.20	1452.27	1450.01		1640.50	1041.42	1030.33
295	1172.67	11/2.70	1169.06	372	1451.78	1452.37	1450.04	449	1640.70	1641.63	1638.63
		1172 74	1160.08	272	1452.06	1452 67	1450.21	450	1641 12	1 (11 70	1 (20 (7
296	1172.68	11/2./4	1109.00	3/3	1452.00	1452.07	1450.51	450	1041.12	1641.70	1038.05
296 297	1172.68	1172.74	1169.08	373	1452.00	1452.07	1450.51	450	1641.12	1641.70	1638.05

452	1642.12	1642.46	1639 16	477	2992.45	2985 60	3001 32	502	3121 11	3121 27	3149 53
453	1642.92	1643 70	1639.27	478	3049 35	3049.87	3074.09	503	3121.60	3121.31	3149.61
454	1658.66	1658.63	1646 64	479	3050.18	3050.07	3074.63	504	3121.60	3121.01	3149.62
151	1659.00	1650.05	1646 77	480	3050.10	3050.12	3074.64	505	3121.05	3121.10	3149.75
456	1659.84	1650.02	1647.13	400	3050.57	3050.12	3074.04	506	3122.73	3121.45	3150.04
457	1660.17	1660.34	1647.62	482	3050.63	3050.27	3074.80	507	3122.72	3121.75	3150.04
457	1660.25	1660.34	1647.02	402	2051.00	2050.37	2074.00	509	2124.03	2121.77	2150.16
450	1661.44	1660.70	1647.70	465	2051.00	2050.44	2075.00	500	2124.21	2122.94	2150.25
439	1001.44	1000.95	1047.91	404	3051.57	3030.33	3075.00	509	3124.04	3122.03	3130.23
460	1664.30	1661.36	1648.41	485	3051.//	3050.63	30/5.13	510	3207.37	3220.14	3227.15
461	1664.72	1661.99	1649.93	486	3052.18	3050.73	3075.15	511	3208.86	3220.22	3227.34
462	2983.24	2983.04	2999.00	487	3053.08	3050.90	3075.19	512	3218.74	3220.92	3227.97
463	2983.63	2983.22	2999.34	488	3054.35	3050.97	3075.29	513	3219.63	3220.96	3228.14
464	2983.65	2983.34	2999.48	489	3058.71	3051.01	3075.42	514	3220.16	3221.18	3228.38
465	2983.69	2983.39	2999.49	490	3059.10	3051.21	3075.59	515	3220.32	3221.45	3228.50
466	2983.99	2983.62	2999.72	491	3059.96	3051.37	3075.62	516	3220.34	3221.50	3228.55
467	2984.36	2983.66	2999.75	492	3075.22	3051.47	3075.76	517	3220.57	3221.72	3228.60
468	2984.96	2983.88	2999.94	493	3075.52	3051.55	3075.84	518	3220.69	3221.78	3228.71
469	2985.17	2984.13	3000.07	494	3117.22	3120.15	3148.33	519	3221.85	3221.88	3228.88
470	2985.67	2984.39	3000.19	495	3117.60	3120.27	3148.49	520	3222.16	3222.55	3229.53
471	2986.23	2984.51	3000.42	496	3120.25	3120.34	3148.70	521	3222.24	3222.94	3229.87
472	2986 36	2984 60	3000 54	497	3120.71	3120.42	3148 75	522	3222.35	3223 14	3230.05
473	2987 74	2984 78	3000.59	498	3120.82	3120.61	3148.80	523	3222.55	3223.11	3230.14
474	2989.68	2984.92	3000.72	499	3120.87	3120.01	3149.03	524	3223.61	3223.52	3230.31
475	2000.42	2085.02	2000.92	500	2120.07	2121.02	2140.15	525	2223.01	2222.41	2220.26
475	2990.43	2765.05	2000.85	500	2120.92	2121.05	2149.13	323	3224.24	3443.38	5250.50
4/0	2992.20	2985.12	3000.99	501	3120.99	5121.25	3149.23				

Figure S4. (a) AC magnetic susceptibilities and (b) Argand plots of 1⁻ without a bias dc field. Solid curves represent the fit using generalized Debye model equations.

Figure S5. (a) AC magnetic susceptibilities and (b) Argand plots of 1⁻ at 2000 Oe bias dc field. Solid curves represent the fit using generalized Debye model equations.

Figure S6. (a) AC magnetic susceptibilities and (b) Argand plots of **1**⁺ without a bias dc field. Solid curves represent the fit using generalized Debye model equations.

Figure S7. (a) AC magnetic susceptibilities and (b) Argand plots of **1**⁺ at 2000 Oe bias dc field. Solid curves represent the fit using generalized Debye model equation

Figure S8. (a) AC magnetic susceptibilities and (b) Argand plots of 1^{-*} without a bias dc field. Solid curves represent the fit using generalized Debye model equations.

Figure S9. (a) AC magnetic susceptibilities and (b) Argand plots of 1^{-*} at 2000 Oe bias dc field. Solid curves represent the fit using generalized Debye model equations.

Figure S10. (a) AC magnetic susceptibilities and (b) Argand plots of 1^{+*} without a bias dc field. Solid curves represent the fit using generalized Debye model equations.

Figure S11. (a) AC magnetic susceptibilities and (b) Argand plots of 1^{+*} at 2000 Oe bias dc field. Solid curves represent the fit using generalized Debye model equations.

Figure S12. Arrhenius plots of 1^{-*} with and without a dc bias field. Solid curves represent a fit using Eq. 1 from the main text. The optimized parameters are summarized in Table S3. Due to the linearity of the data, the Raman process was not considered in the fitting of this data. To exclude the small contribution of the Raman process, data points in the *T* range of 36-44 K were used for the Arrhenius fit.

Figure S13. Arrhenius plots of 1^{+*} with and without a dc bias field. Solid curves represent a fit using Eq. 1 from the main text. The optimized parameters are summarized in Table S3. Due to linearity of the data, the Raman process was not considered in the fitting of this data. To exclude the small contribution of the Raman process, data points in the *T* range of 40-46 K at 0 Oe and 42-48 K at 2000 Oe were used for the Arrhenius fit.

	$ au_0$ / s	$\Delta E / \mathrm{cm}^{-1}$
1 ^{-*} @0 Oe	$2.7(2) \times 10^{-12}$	480(2)
1 ^{-*} @2000 Oe	$1.4(2) \times 10^{-12}$	502(4)
1+*@0 Oe	$1.9(6) \times 10^{-12}$	528(11)
1 ^{+*} @2000 Oe	$1.8(5) \times 10^{-12}$	530(8)

Table S3. Optimized parameters obtained by fitting the Arrhenius plots of 1^{-*} and 1^{+*}.

Figure S14. $\chi_M T$ vs T plots for 1^{-*} and 1^{+*} at 1000 Oe dc magnetic field.

T/K	$\chi_{\rm S}$ / cm ³	$dev(\chi_S)$	$\chi_{\rm T}$ / cm ³	$dev(\chi_T)$	τ/s	$dev(\tau/s)$	α	$dev(\alpha)$
10	0.0084	6.05E-04	1.12277	0.01268	0.2396	0.00558	0.26678	0.00342
12	0.00847	7.93E-04	0.88498	0.00856	0.13103	0.00253	0.23436	0.00424
13	0.00911	8.34E-04	0.80075	0.00687	0.10136	0.00171	0.21954	0.00438
15	0.00886	9.94E-04	0.67634	0.00531	0.06471	9.83E-04	0.19808	0.0051
18	0.00963	9.08E-04	0.54857	0.00304	0.03698	4.05E-04	0.17251	0.00469
20	0.00873	0.001	0.48996	0.00269	0.02699	3.06E-04	0.16499	0.00524
25	0.00944	8.52E-04	0.38625	0.00151	0.01355	1.25E-04	0.14404	0.00474
27	0.00895	9.40E-04	0.35772	0.00144	0.01019	1.02E-04	0.13599	0.00529
29	0.0089	9.52E-04	0.33153	0.00122	0.00718	7.08E-05	0.12159	0.00536
31	0.00949	8.55E-04	0.30803	8.81E-04	0.00443	3.70E-05	0.09785	0.00471
33	0.00819	8.50E-04	0.28892	6.57E-04	0.00229	1.72E-05	0.08563	0.00432
35	0.00734	6.75E-04	0.27175	3.59E-04	0.00103	5.36E-06	0.07439	0.00299
37	0.0088	0.00104	0.25618	3.37E-04	4.41E-04	3.00E-06	0.05979	0.00378
38	0.00768	0.00175	0.25021	4.07E-04	2.82E-04	3.05E-06	0.0569	0.00545
40	0	0.00272	0.23756	2.44E-04	1.16E-04	1.85E-06	0.04832	0.00528
43	0.02294	0.01262	0.22106	2.12E-04	4.15E-05	3.32E-06	0.00549	0.01262

Table S4. Optimized parameters obtained by fitting the ac magnetic susceptibilities of 1⁻ at 0 Oe.

Table S5. Optimized parameters obtained by fitting the ac magnetic susceptibilities of 1⁻ at 2000 Oe.

T/K	$\chi_{\rm S}$ / cm ³	$dev(\chi_S)$	$\chi_{\rm T}$ / cm ³	$dev(\chi_T)$	τ/ s	$dev(\tau/s)$	α	$dev(\alpha)$
27	0.00427	4.66E-04	0.35587	0.00591	0.15784	0.00399	0.09127	0.00717
29	0.00463	4.30E-04	0.33167	0.00198	0.06166	5.92E-04	0.09393	0.00437
31	0.00328	5.63E-04	0.30935	0.00118	0.01967	1.52E-04	0.09726	0.00424
33	0.00608	8.36E-04	0.28894	9.83E-04	0.006	5.43E-05	0.0845	0.0052
35	0.00213	9.23E-04	0.27238	6.44E-04	0.00184	1.49E-05	0.08997	0.00461
38	0.00162	0.00196	0.25037	5.55E-04	3.69E-04	4.64E-06	0.07026	0.0066
40	0	0.00532	0.23778	5.74E-04	1.36E-04	4.37E-06	0.06539	0.01132
43	0	0.05052	0.22064	8.54E-04	4.19E-05	1.19E-05	0	0.04558

T/K	$\chi_{\rm S}$ / cm ³	$dev(\chi_S)$	$\chi_{\rm T}$ / cm ³	$dev(\chi_T)$	au / s	$dev(\tau / s)$	α	$dev(\alpha)$
15	0.01446	0.00104	0.96148	0.01534	0.19388	0.00806	0.3797	0.0051
20	0.01786	0.00148	0.6429	0.00835	0.06589	0.00209	0.32191	0.00736
25	0.01994	0.00168	0.48481	0.00516	0.03099	7.85E-04	0.27453	0.00878
30	0.02152	0.00172	0.39007	0.0034	0.0166	3.63E-04	0.23169	0.00952
35	0.02285	0.00159	0.32434	0.00197	0.00762	1.34E-04	0.17496	0.00893
40	0.02213	0.0012	0.27741	7.06E-04	0.00176	1.78E-05	0.10877	0.00561
41	0.02264	0.0011	0.26998	5.31E-04	0.00122	1.05E-05	0.09611	0.0048
42	0.02368	0.00101	0.26406	3.92E-04	8.35E-04	6.18E-06	0.0846	0.00406
43	0.02358	0.00105	0.25719	3.11E-04	5.68E-04	4.08E-06	0.07637	0.00376
44	0.02479	0.00111	0.25084	2.43E-04	3.89E-04	2.85E-06	0.06631	0.00351
45	0.02336	0.0014	0.24449	2.10E-04	2.65E-04	2.41E-06	0.06042	0.00374
46	0.02385	0.0017	0.23867	1.65E-04	1.84E-04	2.03E-06	0.05094	0.00373
47	0.02125	0.00285	0 2334	1.62E-04	1.25E-04	2.32E-06	0.04608	0.00482
						00		

Table S6. Optimized parameters obtained by fitting the ac magnetic susceptibilities of 1⁺ at 0 Oe.

Table S7. Optimized parameters obtained by fitting the ac magnetic susceptibilities of 1⁺ at 2000 Oe.

T/K	$\chi_{\rm S}$ / cm ³	$dev(\chi_S)$	$\chi_{\rm T}$ / cm ³	$dev(\chi_T)$	τ / s	$dev(\tau/s)$	α	$dev(\alpha)$
35	0.00535	5.06E-04	0.37819	0.00164	0.04115	3.20E-04	0.12354	0.00373
36	0.00609	4.80E-04	0.36353	0.00111	2.55E-02	1.52E-04	0.10983	0.00318
37	0.00523	5.65E-04	0.35288	9.82E-04	1.55E-02	9.37E-05	0.10665	0.00336
38	0.00535	5.39E-04	0.34187	7.22E-04	9.32E-03	4.82E-05	0.09914	0.00293
39	0.00603	5.65E-04	0.3323	5.96E-04	5.63E-03	2.77E-05	0.09138	0.00283
40	0.00572	5.75E-04	0.32378	4.81E-04	3.41E-03	1.55E-05	0.08687	0.00263
41	0.00627	7.54E-04	0.31567	4.99E-04	2.09E-03	1.14E-05	0.08431	0.00314
42	0.0073	9.07E-04	0.30773	4.68E-04	1.29E-03	7.69E-06	0.07986	0.00342
43	0.00834	0.00125	0.30116	4.97E-04	8.29E-04	6.19E-06	0.0741	0.0042
44	0.00921	0.00148	0.29454	4.37E-04	5.34E-04	4.39E-06	0.06798	0.00437
45	0.01115	0.0015	0.28696	3.11E-04	3.49E-04	2.80E-06	0.06366	0.00381
46	0.01521	0.00178	0.28042	2.48E-04	2.35E-04	2.21E-06	0.04966	0.00384
47	0.0159	0.00303	0.27463	2.57E-04	1.58E-04	2.55E-06	0.04583	0.00518
48	0.02135	0.0043	0.26908	2.14E-04	1.10E-04	2.56E-06	0.03207	0.00587

T/K	$\chi_{\rm S}$ / cm ³	$dev(\chi_S)$	$\chi_{\rm T}$ / cm ³	$dev(\chi_T)$	τ/s	$dev(\tau/s)$	α	$dev(\alpha)$
30	0	0.00176	0.38804	0.0125	0.00923	5.64076E-4	0.20593	0.01741
32	0	0.00204	0.3308	0.00648	0.00373	1.39514E-4	0.16595	0.01647
34	0	0.00246	0.30215	0.00431	0.00149	4.7712E-5	0.1485	0.01655
36	0	0.00277	0.28078	0.00295	5.73392E-4	1.66409E-5	0.12527	0.01591
38	0	0.00366	0.2648	0.00236	2.11223E-4	6.80009E-6	0.13353	0.01723
40	0	0.0052	0 25116	0.00198	8 44629E-5	3 28765E-6	0 12726	0.0196
42	0	0.00889	0.2386	0.00178	3 63315E-5	2.16732E-6	0.10744	0.02533
44	0	0.00005	0.22672	9 47126E 4	1 78400E 5	1.02049E.6	0.07574	0.01925
44	0	0.00893	0.22072	8.4/120E-4	1./6492E-3	1.03048E-0	0.07374	0.01855

Table S8. Optimized parameters obtained by fitting the ac magnetic susceptibilities of 1^{-*} at 0 Oe.

Table S9. Optimized parameters obtained by fitting the ac magnetic susceptibilities of 1^{-*} at 2000 Oe.

T/K	$\chi_{\rm S}$ / cm ³	$dev(\chi_S)$	$\chi_{\rm T}$ / cm ³	$dev(\chi_T)$	τ / s	$dev(\tau / s)$	α	$dev(\alpha)$
32	0	0.0024	0.32812	0.01395	0.00792	5.75418E-4	0.14581	0.02623
34	0	0.0029	0.3034	0.00688	0.00241	1.13381E-4	0.17128	0.02217
36	0	0.00308	0.28348	0.00374	7.38595E-4	2.61589E-5	0.15688	0.01846
38	0	0.0044	0.26393	0.00308	2.48302E-4	1.0085E-5	0.13968	0.02163
40	0	0.00439	0.25015	0.00178	9.32015E-5	3.12555E-6	0.12382	0.01724
42	0	0.00666	0.2365	0.00151	4.08147E-5	1.79486E-6	0.08668	0.02058
44	0	0.00925	0.22471	9.23725E-4	1.86004E-5	1.11572E-6	0.07359	0.01968

_									
	T/K	$\chi_{\rm S}$ / cm ³	$dev(\chi_S)$	$\chi_{\rm T}$ / cm ³	$dev(\chi_T)$	τ/s	$dev(\tau / s)$	α	$dev(\alpha)$
	34	9.66048E-4	8.8555E-4	0.27032	0.00401	0.0063	1.51112E-4	0.10383	0.01062
	36	0	0.00142	0.24488	0.00301	0.00217	5.25899E-5	0.10794	0.01312
	38	0	0.00317	0.24045	0.00416	8.62872E-4	3.82395E-5	0.14829	0.02335
	40	0	0.00498	0.23391	0.0041	3.44486E-4	1.99836E-5	0.17321	0.02949
	42	0	0.0051	0.21729	0.00244	1.29665E-4	6.60055E-6	0.17288	0.02456
	44	0	0.01014	0.20377	0.00265	5.63123E-5	4.83587E-6	0.17686	0.04338
	46	0	0.01356	0.20036	0.00188	2.7598E-5	3.78815E-6	0.24261	0.03548

Table S10. Optimized parameters obtained by fitting the ac magnetic susceptibilities of 1^{+*} at 0 Oe.

Table S11. Optimized parameters obtained by fitting the ac magnetic susceptibilities of 1^{+*} at 2000 Oe.

T/K	$\chi_{\rm S}$ / cm ³	$dev(\chi_S)$	$\chi_{\rm T}$ / cm ³	dev(χ_T)	τ/ s	$dev(\tau/s)$	α	$dev(\alpha)$
34	0	6.55724E-4	0.38237	0.0044	0.00944	1.68744E-4	0.08686	0.00673
36	0	0.00121	0.34774	0.00299	0.00283	4.43361E-5	0.09686	0.00848
38	0	0.00239	0.33211	0.00326	9.4888E-4	2.26449E-5	0.11711	0.01318
40	0	0.00366	0.31055	0.00304	3.43896E-4	1.05578E-5	0.12647	0.01679
42	0	0.00445	0.29785	0.00238	1.37638E-4	4.33787E-6	0.13642	0.01661
44	0	0.00653	0.2852	0.00196	6.18543E-5	2.5702E-6	0.14248	0.01903
46	0	0.0119	0.27468	0.00175	2.81812E-5	2.18417E-6	0.175	0.02448
48	0	0.0208	0.26231	0.00142	1.36913E-5	1.90525E-6	0.17763	0.0297

Theoretical calculations

The restricted complete active-space self-consistent-field (CASSCF) method was used to get the detailed information about the ligand-field splitting of Tb^{3+} ions.^[11] RASSCF and RASSI modules of the Molcas 8.2 software package^[12] were used for RASSCF calculations and inclusion of the spinorbit coupling (SOC), respectively. SINGLE_ANISO and POLY_ANISO modules were used for calculating the magnetic properties. Molecular geometries for the calculations were taken from the crystal structures. To reduce the computational costs, all the *n*-butoxy chains on the present samples were replaced with the methoxy groups. Eight electrons in the seven 4f-orbitals were selected as the active space ((8,7)-RASSCF). All the septet states (7), the quintet states (140) and the triplet states (588) were used to get the SOC states. The ANO-RCC-VDZP basis set was used for Tb and ANO-RCC-VDZ basis sets were used for all other atoms.^[13-15]

	1-	1+
State	E/cm^{-1}	E/cm^{-1}
1	0	0
2	0.000	0.000
3	324.600	321.866
4	324.614	321.878
5	536.150	523.950
6	536.219	524.475
7	632.432	612.245
8	642.995	620.577
9	663.931	637.940
10	699.409	659.940
11	701.240	663.181
12	742.017	681.632
13	742.190	682.376

Table S12. Energy level of the $^{7}F_{6}$ states of 1^{-} and 1^{+} .

m_J	w.f. 1	w.f. 2	w.f. 3	w.f. 4	w.f. 5	w.f. 6	w.f. 7	w.f. 8	w.f. 9	w.f.	w.f.	w.f.	w.f.
-6	69.60	71.70	0.00	0.00	1.50	1.50	0.20	0.20	0.20	0.00	0.20	0.00	0.10
-5	0.00	0.00	70.50	70.60	1.10	1.10	4.00	4.40	1.10	2.30	0.20	1.00	0.40
-4	1.50	1.60	1.00	1.00	69.40	69.50	3.90	5.50	11.40	1.00	12.00	2.40	5.30
-3	0.10	0.10	4.70	4.60	3.60	3.60	58.70	66.70	11.00	38.60	4.60	17.70	9.70
-2	0.00	0.00	0.30	0.30	12.70	12.40	6.10	9.70	52.20	16.90	67.10	25.70	37.10
-1	0.00	0.00	0.40	0.30	0.90	0.50	38.50	19.70	5.50	56.40	17.90	53.00	42.30
0	0.00	0.00	0.20	0.00	3.70	3.40	4.20	5.50	63.00	8.70	5.00	49.30	58.50
1	0.00	0.00	0.40	0.30	0.90	0.50	38.50	19.70	5.50	56.40	17.90	53.00	42.30
2	0.00	0.00	0.30	0.30	12.70	12.40	6.10	9.70	52.20	16.90	67.10	25.70	37.10
3	0.10	0.10	4.70	4.60	3.60	3.60	58.70	66.70	11.00	38.60	4.60	17.70	9.70
4	1.60	1.50	1.00	1.00	69.40	69.50	3.90	5.50	11.40	1.00	12.00	2.40	5.30
5	0.00	0.00	70.50	70.50	1.10	1.10	4.00	4.40	1.10	2.30	0.20	1.00	0.40
6	71.70	69.60	0.00	0.00	1.50	1.50	0.20	0.20	0.20	0.00	0.20	0.00	0.10

Table S13. Wave function composition (in %) of the 7F_6 states of 1⁻.

Table S14. Wave function composition (in %) of the 7F_6 states of 1⁺.

m_J	w.f. 1	w.f. 2	w.f. 3	w.f. 4	w.f. 5	w.f. 6	w.f. 7	w.f. 8	w.f. 9	w.f.	w.f.	w.f.	w.f.
-6	73.10	68.20	0.00	0.00	0.40	0.40	0.00	0.00	0.00	0.10	0.10	0.00	0.10
-5	0.00	0.00	70.70	70.70	0.60	0.60	1.60	1.60	0.40	0.40	0.40	0.10	0.10
-4	0.50	0.40	0.60	0.60	70.30	70.50	2.20	2.90	6.90	2.50	4.90	1.10	1.80
-3	0.00	0.00	1.60	1.60	2.50	2.60	63.60	69.50	8.50	29.50	3.90	8.40	8.60
-2	0.00	0.00	0.20	0.20	6.40	5.10	4.30	9.00	58.80	12.80	67.80	37.30	15.10
-1	0.10	0.10	0.40	0.20	1.90	0.80	30.20	8.00	1.90	62.10	19.00	11.10	68.30
0	0.00	0.00	0.50	0.00	4.80	0.40	4.80	5.30	53.30	13.70	0.80	82.70	7.60
1	0.10	0.10	0.40	0.20	1.90	0.80	30.20	8.00	1.90	62.10	19.00	11.10	68.30
2	0.00	0.00	0.20	0.20	6.40	5.10	4.30	9.00	58.80	12.80	67.80	37.30	15.10
3	0.00	0.00	1.60	1.60	2.50	2.60	63.60	69.50	8.50	29.50	3.90	8.40	8.60
4	0.40	0.50	0.60	0.60	70.30	70.50	2.20	2.90	6.90	2.50	4.90	1.10	1.80
5	0.00	0.00	70.70	70.70	0.60	0.60	1.60	1.60	0.40	0.40	0.40	0.10	0.10
6	68.20	73.10	0.00	0.00	0.40	0.40	0.00	0.00	0.00	0.10	0.10	0.00	0.10

		1-		1+					
	g_x	g_y	g_z	g_x	g_y	g_z			
G ₀	0	1.0E-08	17.9	0	2.9E-08	17.9			
Ex1	1E-09	1.3E-08	14.6	0	9.5E-08	14.6			
Ex2	0	3.9E-08	11.4	0	7.2E-08	11.6			
Ex3	3.0E-08	5.3E-08	7.74	2.0E-08	1.69E-07	8.13			
Ex4	1.68E-07	3.87E-07	9.45	5.97E-07	1.98E-06	10.48			
Ex5	1.02E-06	6.39E-06	6.06	1.20E-06	2.43E-06	3.66			

Table S15. Main values of the *g*-tensor of the ground (G_0) and excited (Ex) quasi-Kramers doublets.

Figure S15. Calculated easy axis direction of 1^- . The molecular fragment is shown from two perspectives, differing by ca. 90 degrees from one another with respect to the rotation around the axis perpendicular to two ligands.

Figure S16. Calculated easy axis direction of 1^+ . The molecular fragment is shown from two perspectives, differing by ca. 90 degrees from one another with respect to the rotation around the axis perpendicular to two ligands.

References

- [1] CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.
- [2] G. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.
- [3] Yadokari-XG, Software for Crystal Structure Analyses, K. Wakita (2001); Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, C. Kabuto, S. Akine, T. Nemoto, and E. Kwon, J. Cryst. Soc. Jpn., 51(3), 218-224 (2009).
- [4] A. Spek, Acta Crystallogr. C 2015, 71, 9-18.
- [5] C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Crystallogr. 2020, 53, 226-235.
- [6] K. Katoh, Y. Horii, N. Yasuda, W. Wernsdorfer, K. Toriumi, B. K. Breedlove, M. Yamashita, *Dalton Trans.* 2012, 41, 13582.
- [7] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305.
- [8] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, *Theor. Chim. Acta* 1990, 77, 123-141.
- [9] N. Frank, Wiley. Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78.
- [10] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
- [11] L. Ungur, L. F. Chibotaru, Phys. Chem. Chem. Phys. 2011, 13, 20086-20090.
- [12] F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, *J. Comput. Chem.* 2016, *37*, 506-541.
- [13] B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, P.-O. Widmark, J. Phys. Chem. A 2004, 108, 2851-2858.
- [14] B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, P.-O. Widmark, A. C. Borin, J. Phys. Chem. A 2008, 112, 11431-11435.
- [15] P.-O. Widmark, P.-Å. Malmqvist, B. O. Roos, *Theor. Chim. Acta* 1990, 77, 291-306.