# **Electronic supplementary materials**

# Two 6/10-connected Cu<sub>12</sub>S<sub>6</sub> cluster-based organic frameworks:

# crystal structure and proton conduction

Jia-Ming Li<sup>a\*</sup>, Tian-Yang Xu<sup>a,b</sup>, Ya-Li Zhao<sup>a</sup>, Xing-Liang Hu<sup>b</sup>, Kun-Huan He<sup>a\*</sup>

<sup>a</sup> Qinzhou Key Laboratory for Development and Application of High Performance

Functional Materials, College of Petroleum and Chemical Engineering, Beibu Gulf

University, Qinzhou 535011 People's Republic of China

<sup>b</sup> School of Chemistry and Pharmacy, Guangxi Normal University, Key Laboratory

for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of

Education), Guilin 541004 People's Republic of China

## **Corresponding Author**

\*Email: jmli@bbguu.edu.cn (Jia-Ming Li)

\*Email: hkh821227@163.com (Kun-Huan He)

# **1. Experimental section**

## 1.1. Materials and physical measurements

All chemical reagents were purchased from Jinan Henghua Sci. & Tec. Co. Ltd. without further purification. Powder X-ray diffraction (PXRD) data were collected on a Bruker D8 ADVANCE X-ray diffractometer with Cu-K $\alpha$  radiation ( $\lambda = 1.5418$  Å) at 40 kV, 40 mA with a scanning rate of  $6^{\circ}$ /min and a step size of  $0.02^{\circ}$ . The simulation of the PXRD spectra was carried out by the single-crystal data and diffraction-crystal module of the Mercury 2.0 (Hg) program available free of charge via the Internet at http://www.iucr.org. The purity and homogeneity of the bulk products were determined by comparing the simulated and experimental X-ray powder diffraction patterns (Figure S1). Elemental analyses (EA) for C, H, N and S were performed on an EA1110 CHNSO CE elemental analyzer (Figure S2). FT-IR spectra were recorded in the range of 4000-450 cm<sup>-1</sup> on a PerkinElmer Frontier spectrometer (Figure S3). Thermogravimetric analyses (TG) were performed under nitrogen with a heating rate of 10<sup>o</sup>C min<sup>-1</sup> using a PerkinElmer Thermogravimetric Analyzer TGA4000. The Alternating Current (AC) impedance analysis was carried out on a Zennium X electrochemical workstation by the three electrode method. Transmission Electron Microscope (TEM) measurements were obtained with Talos F200 (Figure S4). Hirshfeld surface analyses were calculated by using the CrystalExplorer 17.<sup>1</sup> Point symbol and topological analyses were conducted by using the TOPOS 4.0 program package.<sup>2</sup>

#### **1.2. X-ray crystallography**

Suitable single crystals of MOFs **1** and **2** were selected and glued to thin glass fibers. Intensities data for crystal structure analysis of compounds **1** and **2** were collected at 298 K with Mo-K $\alpha$  radiation ( $\lambda = 0.71073$  Å) on a Rigaku XtaLAB Mini (ROW) diffractometer equipped with CCD. The instrument was controlled with CrysAlisPro software package,<sup>3</sup> which was used for collecting the diffraction images, absorption correction, and data reduction. Using Olex2,<sup>4</sup> the structure was solved with the ShelXT structure solution program using Intrinsic Phasing<sup>5</sup> and refined with the ShelXL refinement package using Least Squares minimization<sup>6</sup>. Carbon-bound H

atoms were placed in calculated positions ( $d_{C-H} = 0.97$  Å) and were included in the refinement in the riding model approximation, with  $U_{iso}(H)$  set to  $1.2U_{eq}(C)$ . The H atoms of coordinated and solvent water in 1 and 2 were also positioned geometrically and refined as riding atoms, with  $d_{\text{O-H}} = 0.82-0.90$  Å and  $U_{\text{iso}}(\text{H}) = 1.5U_{\text{eq}}(\text{O})$ . There is some displacement disorder C/O/S-atoms from the 2-mercaptoethanesulfonic acid and 3-mercaptopropanesulfonic acid in 1 and 2. Therefore, the PART 1 and PART 2 introductions implemented in Olex2 were used to divide these atoms into two disordered groups. The disordered atoms were refined with an occupancy ratio of 0.63:0.37 for 1, and 0.90:0.10 for 2. A maximal residual electron density peak 3.35 e Å<sup>-</sup> <sup>3</sup> is close to 1.1 Å from Cu4 in **1**. So, the copper atom Cu4 in **1** has been split into two parts and refined with an occupancy ratio of 0.82:0.18. Subsequently, the appropriate restraint or constraint instructions SADI, EADP and DFIX from ShelXL were applied to constrain the displacement parameters of those disordered atoms. The structures were examined using the Addsym subroutine of PLATON<sup>7</sup> to ensure that no additional symmetry could be applied to the models. The total potential solvent accessible void volume (SOLV-Map Value) about 38 Å<sup>3</sup> is found in **1** [about 1% (38 Å<sup>3</sup>) of the unit cell volume (3962.8 Å<sup>3</sup>)] using the PLATON program. Pertinent crystallographic data collection and refinement parameters are collated in Table S1. Selected bond lengths and angles, and hydrogen-bond geometry are organized in Tables S2-S7. CCDC 2024526 (1) and 2024527 (2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data request/cif.

## **1.3.** Synthesis of [Cu<sub>12</sub>(MES)<sub>6</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub> (1)

Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O (0.242 g, 1 mmol), sodium 2-mercaptoethanesulfonate (0.083 g, 0.5 mmol), 1,3-bis (4-pyridyl) propane (0.100 g, 0.5 mmol), H<sub>2</sub>O (15 ml) were sealed in a 25ml Teflon-lined reactor at 120°C for 3 days. After gradually cooling to room temperature at a rate of 6 °C h<sup>-1</sup>, yellow block-shaped of **1** was obtained (Yield: 60%). Elemental analysis (EA) calc. (%) for C<sub>12</sub>H<sub>30</sub>Cu<sub>12</sub>O<sub>21</sub>S<sub>12</sub> (**1**),  $M_r = 1657.56$ : C, 8.69; H, 1.81; S, 23.17. Found: C, 8.66; H, 1.84; S, 23.21.

## **1.4.** Synthesis of {[Cu<sub>12</sub>(MPS)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]·6H<sub>2</sub>O}<sub>n</sub> (2)

The synthesis of **2** is similar to that for **1** except for sodium 2mercaptoethanesulfonate (0.083 g, 0.5 mmol) substituted for sodium 2mercaptopropanesulfonate (0.088 g, 0.5 mmol). Similarly, yellow block-shaped of **2** was obtained (Yield: 50%). Elemental analysis *calc*. for C<sub>18</sub>H<sub>56</sub>Cu<sub>12</sub>O<sub>28</sub>S<sub>12</sub> (**2**),  $M_r =$ 1867.82: C, 11.56; H, 3.00; S, 20.56. Found: C, 11.54; H, 3.02; S, 20.57.

#### 1.5. Reaction mechanism of synthesis for 1 and 2

Interestingly, the synthesis of 1 and 2 rely on subtle control over various hydrothermal parameters, particularly the starting materials. In the process of synthesis of 1 and 2, we had attempted to directly use the univalent or divalent copper salts to react with the 2-mercaptoethanesulfonate or sodium 2-mercaptoethanesulfonate ligand. No matter how to change and combine to be considered various conditions, unfortunately, we can not get the target product. In comparison, we had also tried to apply the univalent copper salts to react with the combination of 2mercaptoethanesulfonate or sodium 2-mercaptoethanesulfonate and 1,3-bis (4-pyridyl) propane ligands under various conditions. The same results are obtained as above. In summary, the optimum solution is to combine the three substances Cu(II) salt, sodium 2-mercaptoethanesulfonate and 1,3-bis (4-pyridyl) propane at the same time. We infer the first step probably is a redox reaction that  $Cu^{2+}$  cation acts as an oxidant and 1,3-bis (4-pyridyl) propane as a reductant in this synthesis. This ratiocination is consistent with the obtained reaction products, which contain both the title Cu(I)-based organic framework and diaqua-bis(pyridine-4-carboxylate-N)-copper(II) monohydrate and were confirmed by single-crystal X-ray diffraction. Therefore, taking the synthesis of **1** as its sample, the recommended two step successive reaction equations are as follow.

$$Cu^{2+} + N \xrightarrow{N} W \xrightarrow{Hydrothermal} Cu \left[ \left( N \xrightarrow{P} Coo \right)_2 (H_2O)_2 \right] H_2O + 2Cu^+$$
(1)

$$12Cu^{+} + 6^{-}O_{3}SCH_{2}CH_{2}S^{-} \xrightarrow{\text{Hydrothermal}} [Cu_{12}(O_{3}SCH_{2}CH_{2}S)_{6}(H_{2}O)_{3}]_{n}$$
(2)

#### **1.6.** Proton conductivity measurement

The Alternating Current (AC) impedance spectrums of composite membrane

stemmed from MOFs **1** and **2** were measured on a Zennium X electrochemical workstation with a three-electrode system. The working electrode was the MOFs/Nafion composite membrane modified glass carbon electrode (GCE). Platinum plate is the reference electrode and the counter electrode. The electrolyte solution is 0.1M potassium aqueous solution. The AC impedance data were obtained at an applied potential of 500 mV and frequency ranging from 1 to  $1 \times 10^6$  Hz, and cycle back and forth twice.

The composite membrane was prepared according to the document<sup>8</sup> and as following procedure: first, the bare GCE was polished carefully with 0.3  $\mu$ m alumina slurry and cleaned successively with water. 1.0 mg MOFs sample was ultrasonically dispersed into 500  $\mu$ L water to form homogeneous MOFs solution. 100  $\mu$ L pure Nafion was add to 400  $\mu$ L water to form Nafion diluent. Then, 5  $\mu$ L MOFs solution and 5  $\mu$ L Nafion diluent were mixed under ultrasonic condition. The mixture was placed onto the GCE surface, and dry at room temperature, then put in oven, drying under the temperature of 60 °C for 0.5 h.

## 2. Thermal stabilities

The thermogravimetric (TG) analyses the thermal decomposition behaviors of MOFs **1** and **2** have been performed in a nitrogen atmosphere at a heating rate of 10 °C min<sup>-1</sup> between 25 and 1000 °C to confirm their thermal stability (Figure S23). For MOF **1**, a weight loss of 3.22% was observed in the region 120–290 °C, which is attributed to the release of the three coordinated water molecules (calcd. 3.26%). For MOF **2**, a continuously sharp weight loss of 10.02% was observed in the region 90–150 °C, which is attributed to the release of the six free and four coordinated H<sub>2</sub>O molecule (calcd. 9.64%). It can be observed from TG curves that the two MOFs could maintain their structural framework up to 300 °C for **1** and 220 °C for **2**. Above these temperatures, both MOFs display a sharply thermogravimetric process corresponding to the thermal decomposition of organic components. Finally, a plateau region from 900 to 1000 °C for **1** (from 940 to 1000 °C for **2**) can be found in the TG curves. The final black residues were about 51.16% (calcd. 51.76%) and 45.84 (calcd. 45.94%) of the initial total weight

for 1 and 2, respectively, which may be Cu<sub>2</sub>O.

## References

1 M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, *Crystal-Explorer17*, University of Western Australia, Perth, Australia, 2017.

2 V. A. Blatov, IUCr CompComm Newsletter, 2006, 7, 4-38.

3 Rigaku Oxford Diffraction. CrysAlisPro Software System, Version 1.171.40.25a, Rigaku Corporation: Oxford, UK, 2018.

4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. *Appl. Crystallogr.*, 2009, **42**, 339–341.

5 G. M. Sheldrick, Acta. Crystallogr. Sect. A, 2015, 71, 3-8.

6 G. M. Sheldrick, Acta. Crystallogr. Sect. C, 2015, 71, 3-8.

7 A. L. Spek, Acta. Crystallogr. Sect. D, 2009, 65, 148–155.

8 R. Y. Li, H. T. Liu, C. C. Zhou, Z. T. Chu, J. Lu, S. N. Wang, J. Jin, W. F. Yan, *Inorg. Chem. Front.*, 2020, **7**, 1880-1891.

| MOF                                          | 1                                                             | 2                                                      |
|----------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|
| Empirical formula                            | $C_{12}H_{30}Cu_{12}O_{21}S_{12}$                             | $C_{18}H_{56}Cu_{12}O_{28}S_{12}$                      |
| Formula weight                               | 1657.56                                                       | 1867.82                                                |
| Temperature/K                                | 298.15                                                        | 298.15                                                 |
| Crystal system                               | monoclinic                                                    | triclinic                                              |
| Space group                                  | $P2_{1}/c$                                                    | <i>P</i> -1                                            |
| a/Å                                          | 11.8921(4)                                                    | 12.4249(7)                                             |
| <i>b</i> /Å                                  | 17.7132(6)                                                    | 12.5351(9)                                             |
| $c/{ m \AA}$                                 | 18.9516(7)                                                    | 19.7599(9)                                             |
| α/°                                          | 90                                                            | 72.310(5)                                              |
| $\beta/^{\circ}$                             | 96.951(3)                                                     | 82.128(4)                                              |
| $\gamma/^{\circ}$                            | 90                                                            | 60.367(7)                                              |
| Volume/Å <sup>3</sup>                        | 3962.8(2)                                                     | 2548.2(3)                                              |
| Ζ                                            | 4                                                             | 2                                                      |
| $ ho_{\rm calc}/{ m g~cm^{-3}}$              | 2.778                                                         | 2.434                                                  |
| $\mu/\mathrm{mm}^{-1}$                       | 7.004                                                         | 5.470                                                  |
| <i>F</i> (000)                               | 3240.0                                                        | 1856.0                                                 |
| Crystal size/mm <sup>3</sup>                 | $0.25\times0.2\times0.15$                                     | $0.25 \times 0.2 \times 0.15$                          |
| Radiation                                    | Mo Ka ( $\lambda = 0.71073$ )                                 | Mo Ka ( $\lambda = 0.71073$ )                          |
| $2\Theta$ range for data collection/°        | 4.904 to 50.194                                               | 5.03 to 50.198                                         |
| Index ranges                                 | $-14 \le h \le 14, -21 \le k \le 20, -22 \le l \le 22$        | $-14 \le h \le 14, -14 \le k \le 14, -23 \le l \le 23$ |
| Reflections collected                        | 16906                                                         | 14516                                                  |
| Independent reflections                      | 7036 [ $R_{\text{int}} = 0.0249, R_{\text{sigma}} = 0.0296$ ] | 9038 [ $R_{int} = 0.0188, R_{sigma} = 0.0283$ ]        |
| Data/restraints/parameters                   | 7036/11/554                                                   | 9038/18/665                                            |
| Goodness-of-fit on $F^2$                     | 1.047                                                         | 1.022                                                  |
| Final <i>R</i> indexes [ $I >= 2\sigma(I)$ ] | $R_1 = 0.0317, wR_2 = 0.0746$                                 | $R_1 = 0.0337, wR_2 = 0.0841$                          |
| Final R indexes [all data]                   | $R_1 = 0.0421, wR_2 = 0.0787$                                 | $R_1 = 0.0420, wR_2 = 0.0884$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup>  | 0.844/-1.387                                                  | 1.721/-1.418                                           |

Table S1 Crystal data and structure refinement for 1-2<sup>a</sup>

<sup>a</sup>  $R_1 = \Sigma //F_o / - |F_c| / \Sigma /F_o /, wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$ 

Table S2. Selected bond lengths (Å) for 1

| Bond                     | Length     | Bond                    | Length     | Bond                    | Length     |
|--------------------------|------------|-------------------------|------------|-------------------------|------------|
| Cu12-Cu7 <sup>i</sup>    | 2.8304(8)  | Cu7-O9                  | 2.159(3)   | Cu1-O12 <sup>x</sup>    | 2.247(3)   |
| Cu12-Cu1 <sup>ii</sup>   | 2.8781(9)  | Cu6-Cu5 <sup>xi</sup>   | 2.8723(9)  | Cu1-O1                  | 2.211(4)   |
| Cu12-Cu11 <sup>iii</sup> | 2.9545(9)  | Cu6-S4 <sup>xi</sup>    | 2.2510(12) | Cu5-Cu9 <sup>xvi</sup>  | 2.7887(9)  |
| Cu12-Cu <sup>iv</sup>    | 2.8429(12) | Cu6-S2 <sup>viii</sup>  | 2.2898(12) | Cu5-Cu4                 | 2.7965(12) |
| Cu12-S11 <sup>iii</sup>  | 2.2348(12) | Cu6-O20 <sup>xiii</sup> | 2.273(3)   | Cu5-S2 <sup>xvii</sup>  | 2.2508(12) |
| Cu12-S4 <sup>iv</sup>    | 2.2524(12) | Cu6-O10                 | 2.198(3)   | Cu5-S5                  | 2.3205(13) |
| Cu12-O18                 | 2.120(3)   | Cu1-Cu8 <sup>xiv</sup>  | 2.7681(9)  | Cu5-O19 <sup>xii</sup>  | 2.280(4)   |
| Cu3-Cu2 <sup>v</sup>     | 2.9258(9)  | Cu1-S11 <sup>xv</sup>   | 2.2947(12) | Cu5-O8                  | 2.123(4)   |
| Cu3-Cu5 <sup>vi</sup>    | 2.8716(9)  | Cu1-S9 <sup>xiv</sup>   | 2.2536(12) | Cu11-Cu9 <sup>vii</sup> | 2.9162(9)  |
| Cu3-Cu9 <sup>vii</sup>   | 2.8324(9)  | Cu7-O11                 | 2.180(4)   | Cu11-S11                | 2.2165(12) |
| Cu3-Cu10 <sup>vii</sup>  | 2.9661(9)  | Cu8-O13                 | 2.140(4)   | Cu11-S5 <sup>vi</sup>   | 2.2568(13) |
| Cu3-S2 <sup>v</sup>      | 2.2404(12) | Cu9-S5 <sup>xviii</sup> | 2.2103(13) | Cu11-O16                | 2.023(4)   |
| Cu3-S8 <sup>vii</sup>    | 2.2499(13) | Cu9-S8                  | 2.2090(13) | Cu8-Cu9                 | 2.9425(10) |
| Cu3-O5                   | 2.029(6)   | Cu9-O14                 | 2.075(4)   | Cu8-Cu10                | 2.9339(9)  |
| Cu3-O5A                  | 2.091(11)  | Cu10-S9                 | 2.2202(13) | Cu8-S11 <sup>xii</sup>  | 2.2630(12) |
| Cu2-Cu7 <sup>viii</sup>  | 2.9581(9)  | Cu10-S8                 | 2.1949(13) | Cu8-S8                  | 2.3118(13) |
| Cu2-Cu6 <sup>viii</sup>  | 2.9687(9)  | Cu10-O15                | 2.013(5)   | Cu8-O2 <sup>xvii</sup>  | 2.246(4)   |
| Cu2-Cu10 <sup>ix</sup>   | 2.8887(9)  | Cu4-S4                  | 2.2166(14) | C3-S3                   | 1.775(9)   |
| Cu2-S2                   | 2.2169(12) | Cu4-S5                  | 2.2039(14) | S3-O4                   | 1.464(10)  |
| Cu2-S9 <sup>ix</sup>     | 2.2589(13) | Cu4-07                  | 2.002(4)   | S3-O5                   | 1.468(7)   |
| Cu2-O4                   | 2.107(12)  | S11-C11                 | 1.842(5)   | S3-O6                   | 1.446(7)   |
| Cu2-O4A                  | 1.96(2)    | S4-C4                   | 1.840(8)   | S8-C8                   | 1.837(5)   |
| Cu7-Cu6                  | 2.8790(9)  | S4-C4A                  | 1.857(14)  | S5-C5                   | 1.834(5)   |
| Cu7-Cu1 <sup>x</sup>     | 2.8294(9)  | S2-C2                   | 1.844(5)   | S10-O18                 | 1.456(3)   |
| Cu7-S4 <sup>xi</sup>     | 2.2828(13) | S9-C9                   | 1.833(5)   | S10-O16                 | 1.464(4)   |
| Cu7-S9 <sup>xii</sup>    | 2.2751(13) | S6-O10                  | 1.478(4)   | S10-O17                 | 1.425(5)   |
| S7-C7                    | 1.777(5)   | S6-O9                   | 1.461(4)   | S10-C10                 | 1.793(6)   |
| S12-O20                  | 1.457(4)   | S6-O8                   | 1.453(4)   | S1-O2                   | 1.473(4)   |
| S12-O21                  | 1.457(4)   | S6-C6                   | 1.777(5)   | S1-O3                   | 1.460(4)   |
| S12-O19                  | 1.470(4)   | S7-O12                  | 1.472(4)   | S1-O1                   | 1.466(4)   |
| S7-O13                   | 1.455(4)   | S12-C12                 | 1.779(5)   | S1-C1                   | 1.779(5)   |

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y, z+1; (iii) -x+1, -y, -z+2; (iv) x+1, -y+1/2, z+1/2; (v) -x, -y, -z+1; (vi) -x, y-1/2, -z+3/2; (vii) -x+1, y-1/2, -z+3/2; (viii) -x, -y+1, -z+1; (ix) x-1, -y+1/2, z-1/2; (x) -x+1, -y+1, -z+1; (xi) -x, y+1/2, -z+3/2; (xii) -x+1, y+1/2, -z+3/2; (xiii) x-1, y+1, z; (xiv) x, -y+1/2, z-1/2; (xv) -x+1, -y, -z+1; (xvi) x-1, y, z; (xvii) x, -y+1/2, z+1/2; (xviii) x+1, y, z.

 Table S3. Selected bond angles (°) for 1

| Bond angle                                  | Degree                | Bond angle                                  | Degree     | Bond angle                                   | Degree     |
|---------------------------------------------|-----------------------|---------------------------------------------|------------|----------------------------------------------|------------|
| Cu7 <sup>i</sup> -Cu12-Cu1 <sup>ii</sup>    | 59.42(2)              | O2 <sup>xviii</sup> -Cu8-S8                 | 112.86(10) | O5-Cu3-Cu5 <sup>vii</sup>                    | 128.71(18) |
| Cu7 <sup>i</sup> -Cu12-Cu11 <sup>iii</sup>  | 128.41(3)             | O13-Cu8-Cu1 <sup>xviii</sup>                | 161.33(10) | S8-Cu10-S9                                   | 131.05(5)  |
| Cu7 <sup>i</sup> -Cu12-Cu4 <sup>iv</sup>    | 94.52(3)              | O13-Cu8-Cu9                                 | 76.69(12)  | S9-Cu10-Cu2 <sup>iv</sup>                    | 50.43(3)   |
| Cu1 <sup>ii</sup> -Cu12-Cu11 <sup>iii</sup> | <sup>i</sup> 92.82(2) | O13-Cu8-Cu10                                | 133.15(10) | S9-Cu10-Cu8                                  | 100.14(4)  |
| $Cu4^{iv}$ - $Cu12$ - $Cu1^{ii}$            | 128.56(3)             | O13-Cu8-S11 <sup>xii</sup>                  | 111.46(10) | S8-Cu10-Cu3 <sup>xii</sup>                   | 48.94(3)   |
| Cu4 <sup>iv</sup> -Cu12-Cu11 <sup>ii</sup>  | <sup>i</sup> 68.59(2) | O13-Cu8-S8                                  | 91.31(11)  | S8-Cu10-Cu2 <sup>iv</sup>                    | 105.16(4)  |
| S11 <sup>iii</sup> -Cu12-Cu7 <sup>i</sup>   | 108.58(4)             | O13-Cu8-O2 <sup>xviii</sup>                 | 91.43(15)  | S8-Cu10-Cu8                                  | 51.14(3)   |
| S11 <sup>iii</sup> -Cu12-Cu1 <sup>ii</sup>  | 51.48(3)              | Cu3 <sup>xii</sup> -Cu9-Cu11 <sup>xii</sup> | 135.57(3)  | S8 <sup>vi</sup> -Cu3-Cu2 <sup>v</sup>       | 102.54(4)  |
| S11 <sup>3</sup> Cu12Cu11 <sup>3</sup>      | 48.15(3)              | Cu3 <sup>xii</sup> -Cu9-Cu8                 | 94.34(3)   | S8 <sup>v</sup> -Cu3-Cu5 <sup>vii</sup>      | 104.72(4)  |
| $S11^{iii}$ -Cu12-Cu4 <sup>iv</sup>         | 113.78(4)             | Cu5 <sup>xix</sup> -Cu9-Cu3 <sup>xii</sup>  | 61.44(2)   | S8 <sup>vi</sup> -Cu3-Cu9 <sup>vi</sup>      | 49.93(3)   |
| S11 <sup>iii</sup> -Cu12-S4 <sup>iv</sup>   | 143.83(5)             | Cu5 <sup>xix</sup> -Cu9-Cu11 <sup>xii</sup> | 96.42(3)   | S8 <sup>vi</sup> -Cu3-Cu10 <sup>vi</sup>     | 47.35(3)   |
| S4 <sup>iv</sup> -Cu12-Cu7 <sup>i</sup>     | 51.87(3)              | Cu5 <sup>xix</sup> -Cu9-Cu8                 | 122.95(3)  | O5-Cu3-Cu2 <sup>v</sup>                      | 130.50(18) |
| S4 <sup>iv</sup> -Cu12-Cu1 <sup>ii</sup>    | 108.99(4)             | Cu11 <sup>xii</sup> -Cu9-Cu8                | 64.50(2)   | O14-Cu9-S8                                   | 106.54(13) |
| $S4^{iv}$ -Cu12-Cu11 $^{iii}$               | 115.36(4)             | S5 <sup>xix</sup> -Cu9-Cu3 <sup>xii</sup>   | 114.11(4)  | Cu2 <sup>iv</sup> -Cu10-Cu3 <sup>xii</sup>   | 59.94(2)   |
| S4 <sup>iv</sup> -Cu12-Cu4 <sup>iv</sup>    | 49.94(4)              | S5 <sup>xix</sup> -Cu9-Cu5 <sup>xix</sup>   | 53.82(3)   | Cu2 <sup>iv</sup> -Cu10-Cu8                  | 120.02(3)  |
| O18-Cu12-Cu7 <sup>i</sup>                   | 127.32(9)             | S5 <sup>xix</sup> -Cu9-Cu11 <sup>xii</sup>  | 49.94(3)   | Cu8-Cu10-Cu3 <sup>xii</sup>                  | 91.77(3)   |
| O18-Cu12-Cu1 <sup>ii</sup>                  | 125.33(11)            | S5 <sup>xix</sup> -Cu9-Cu8                  | 109.79(4)  | S9-Cu10-Cu3 <sup>xii</sup>                   | 105.20(4)  |
| O18-Cu12-Cu11 <sup>iii</sup>                | 104.27(9)             | S8-Cu9-Cu3 <sup>xii</sup>                   | 51.20(3)   | S2 <sup>v</sup> -Cu3-Cu2 <sup>v</sup>        | 48.63(3)   |
| O18-Cu12-Cu4 <sup>iv</sup>                  | 105.92(11)            | S8-Cu9-Cu5 <sup>xix</sup>                   | 108.63(4)  | S2 <sup>v</sup> -Cu3-Cu5 <sup>vii</sup>      | 50.41(3)   |
| O18-Cu12-S11 <sup>iii</sup>                 | 106.38(11)            | S8-Cu9-Cu11 <sup>xii</sup>                  | 114.56(4)  | S2 <sup>v</sup> -Cu3-Cu9 <sup>vi</sup>       | 105.80(4)  |
| O18-Cu12-S4 <sup>iv</sup>                   | 109.28(11)            | S8-Cu9-Cu8                                  | 50.93(3)   | S2 <sup>v</sup> -Cu3-Cu10 <sup>vi</sup>      | 104.86(4)  |
| Cu2 <sup>v</sup> -Cu3-Cu10 <sup>vi</sup>    | 58.72(2)              | S8-Cu9-S5 <sup>xix</sup>                    | 145.68(5)  | S2 <sup>v</sup> -Cu3-S8 <sup>vi</sup>        | 135.16(5)  |
| Cu5 <sup>vii</sup> -Cu3-Cu2 <sup>v</sup>    | 87.29(2)              | O14-Cu9-Cu3 <sup>xii</sup>                  | 111.51(13) | O14-Cu9-Cu8                                  | 119.10(11) |
| Cu5 <sup>vii</sup> -Cu3-Cu10 <sup>vi</sup>  | 116.27(3)             | O14-Cu9-Cu5 <sup>xix</sup>                  | 117.84(11) | O14-Cu9-S5 <sup>ix</sup>                     | 107.77(13) |
| Cu9 <sup>vi</sup> -Cu3-Cu2 <sup>v</sup>     | 115.26(3)             | O14-Cu9-Cu11 <sup>xii</sup>                 | 112.91(13) | Cu9 <sup>vi</sup> -Cu3-Cu5 <sup>vii</sup>    | 58.53(2)   |
| O5-Cu3-Cu5 <sup>vii</sup>                   | 128.71(18)            | S8-Cu10-S9                                  | 131.05(5)  | Cu9 <sup>vi</sup> -Cu3-Cu10 <sup>vi</sup>    | 87.60(2)   |
| O5-Cu3-Cu9 <sup>vi</sup>                    | 112.85(18)            | O15-Cu10-Cu3 <sup>xii</sup>                 | 115.77(19) | O5-Cu3-S2 <sup>v</sup>                       | 125.6(2)   |
| O5-Cu3-Cu10 <sup>vi</sup>                   | 113.40(18)            | O15-Cu10-Cu2 <sup>iv</sup>                  | 109.8(2)   | O15-Cu10-Cu8                                 | 130.1(2)   |
| O5-Cu3-S8 <sup>vi</sup>                     | 99.3(2)               | O15-Cu10-S9                                 | 110.31(16) | Cu3 <sup>v</sup> -Cu2-Cu7 <sup>viii</sup>    | 115.96(3)  |
| O15-Cu10-S8                                 | 118.36(16)            | Cu3 <sup>v</sup> -Cu2-Cu6 <sup>viii</sup>   | 91.21(2)   | Cu7 <sup>viii</sup> -Cu2-Cu6 <sup>viii</sup> | 58.12(2)   |
| S4-Cu4-Cu12 <sup>ix</sup>                   | 51.05(4)              | Cu10 <sup>ix</sup> -Cu2-Cu3 <sup>v</sup>    | 61.34(2)   | Cu5-Cu4-Cu12 <sup>ix</sup>                   | 108.70(3)  |
| Cu10 <sup>ix</sup> -Cu2-Cu6 <sup>viii</sup> | 124.62(3)             | S5-Cu4-Cu5                                  | 53.73(4)   | S2-Cu2-Cu3 <sup>v</sup>                      | 49.32(3)   |
| S5-Cu4-S4                                   | 128.04(6)             | S2-Cu2-Cu7 <sup>viii</sup>                  | 102.70(4)  | O7-Cu4-Cu12 <sup>ix</sup>                    | 117.72(16) |

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y, z+1; (iii) -x+1, -y, -z+2; (iv) x+1, -y+1/2, z+1/2; (v) -x, -y, -z+1; (vi) -x, y-1/2, -z+3/2; (vii) -x+1, y-1/2, -z+3/2; (viii) -x, -y+1, -z+1; (ix) x-1, -y+1/2, z-1/2; (x) -x+1, -y+1, -z+1; (xi) -x, y+1/2, -z+3/2; (xii) -x+1, y+1/2, -z+3/2; (xiii) x-1, y+1, z; (xiv) x, -y+1/2, z-1/2; (xv) -x+1, -y, -z+1; (xvi) x-1, y, z; (xvii) x, -y+1/2, z+1/2; (xviii) x+1, y, z; (xix) x, y, z-1; (xx) x+1, y-1, z.

| D-H···A                          | D-H  | H···A | D····A     | D-H···A |
|----------------------------------|------|-------|------------|---------|
| O7-H7B…O17 <sup>ix</sup>         | 0.94 | 2.04  | 2.822 (7)  | 140     |
| O7-H7A····O21 <sup>ix</sup>      | 0.94 | 2.03  | 2.849(7)   | 145     |
| O15-H15B····O3 <sup>xii</sup>    | 0.91 | 1.90  | 2.805 (7)  | 169     |
| O15-H15A····O3 <sup>xvii</sup>   | 0.90 | 2.40  | 3.118 (8)  | 136     |
| O14-H14A····O10 <sup>xviii</sup> | 0.87 | 2.01  | 2.857 (5)  | 165     |
| C6-H6A····O4 <sup>viii</sup>     | 0.97 | 2.37  | 3.279 (13) | 155     |
| C6-H6B····O19 <sup>xii</sup>     | 0.97 | 2.43  | 3.233 (6)  | 140     |
| $C7-H7C\cdots O18^{i}$           | 0.97 | 2.51  | 3.418 (6)  | 156     |
| $C7-H7D\cdots O15^{i}$           | 0.97 | 2.65  | 3.445 (7)  | 139     |
| C12-H12A…O17                     | 0.97 | 2.44  | 3.314 (7)  | 149     |
| C12-H12B····O2 <sup>xv</sup>     | 0.97 | 2.41  | 3.359 (6)  | 166     |
| C5-H5A····O21 <sup>ix</sup>      | 0.97 | 2.50  | 3.306 (6)  | 140     |
| $C5-H5B\cdots O14^{xvi}$         | 0.97 | 2.73  | 3.407 (7)  | 128     |
| C8-H8A····O3 <sup>xii</sup>      | 0.97 | 2.42  | 3.250 (6)  | 143     |
| C8-H8BO14                        | 0.97 | 2.74  | 3.412 (7)  | 127     |
| C11-H11B····O12 <sup>xix</sup>   | 0.97 | 2.65  | 3.387 (6)  | 133     |
| $C1-H1B\cdots O20^{xv}$          | 0.97 | 2.28  | 3.242 (6)  | 171     |
| C10H10A····O13 <sup>vii</sup>    | 0.97 | 2.44  | 3.406 (7)  | 172     |
| C10-H10B····O1 <sup>xvii</sup>   | 0.97 | 2.56  | 3.320 (7)  | 136     |
| C3-H3A····O8 <sup>vi</sup>       | 0.97 | 2.45  | 3.395 (15) | 164     |
| C3-H3B····O20 <sup>xii</sup>     | 0.97 | 2.78  | 3.473 (9)  | 129     |
| C9-H9A····O9 <sup>vii</sup>      | 0.97 | 2.67  | 3.322 (7)  | 125     |
| C4-H4A···O11 <sup>vi</sup>       | 0.97 | 2.63  | 3.315 (14) | 128     |

Table S4 Hydrogen-bond geometry (Å, °) for 1

Symmetry codes: (i) -x+1, -y+1, -z+2; (vi) -x, y-1/2, -z+3/2; (vii) -x+1, y-1/2, -z+3/2; (viii) -x, -y+1, -z+1; (ix) x-1, -y+1/2, z-1/2; (xii) -x+1, y+1/2, -z+3/2; (xv) -x+1, -y, -z+1; (xvi) x-1, y, z; (xvii) x, -y+1/2, z+1/2; (xviii) x+1, y, z; (xix) x, y-1, z

Table S5. Selected bond lengths (Å) for 2

| Bond                    | Length    | Bond                   | Length     | Bond                    | Length    |
|-------------------------|-----------|------------------------|------------|-------------------------|-----------|
| Cu10-Cu11 <sup>i</sup>  | 2.6968(6) | Cu1-S1                 | 2.2577(9)  | Cu8-S1 <sup>viii</sup>  | 2.2789(9) |
| Cu10-Cu8 <sup>ii</sup>  | 2.7851(6) | Cu1-S7 <sup>xi</sup>   | 2.2549(10) | Cu8-O21                 | 2.093(2)  |
| Cu10-Cu2 <sup>iii</sup> | 2.6660(6) | Cu1-O12 <sup>vi</sup>  | 2.262(2)   | Cu8-O16                 | 2.260(2)  |
| Cu10-S5 <sup>ii</sup>   | 2.2223(8) | Cu1-O19                | 2.065(3)   | Cu2-Cu12 <sup>ix</sup>  | 2.6838(6) |
| Cu10-S7                 | 2.2041(8) | S9-C13                 | 1.818(3)   | Cu2-S1                  | 2.2111(9) |
| Cu10-O13                | 2.121(2)  | S11C16                 | 1.831(3)   | Cu2-S7 <sup>iii</sup>   | 2.2371(9) |
| Cu3-Cu7 <sup>iii</sup>  | 2.7396(6) | S5-C7                  | 1.835(3)   | Cu2-O18viii             | 2.241(3)  |
| Cu3-Cu4                 | 2.6376(6) | S3-C4                  | 1.831(3)   | Cu12-S5vii              | 2.2456(9) |
| Cu3-Cu9                 | 2.6619(6) | S6-O7                  | 1.462(2)   | Cu12-S7 <sup>x</sup>    | 2.2552(9) |
| Cu3-S11                 | 2.2458(8) | S6-O8                  | 1.454(2)   | Cu12-O17 <sup>vii</sup> | 2.285(13) |
| Cu3-S3 <sup>vi</sup>    | 2.1966(8) | S6-O9                  | 1.450(3)   | Cu12-O10                | 2.114(2)  |
| Cu3-O2                  | 2.113(2)  | S6-C9                  | 1.757(3)   | Cu5-S9 <sup>iii</sup>   | 2.2785(9) |
| Cu7-Cu9                 | 2.7177(6) | S1-C1                  | 1.821(4)   | Cu5-S3 <sup>v</sup>     | 2.2268(9) |
| Cu7-Cu6                 | 2.6703(6) | S7-C10                 | 1.838(3)   | Cu5-O4                  | 2.213(2)  |
| Cu7-S9                  | 2.2023(8) | S10-O13                | 1.465(2)   | Cu5-O20                 | 2.074(3)  |
| Cu7-S3 <sup>v</sup>     | 2.2617(9) | S10-O15                | 1.451(3)   | Cu8-Cu1 <sup>viii</sup> | 3.0276(7) |
| Cu7-O7                  | 2.086(2)  | S10-O14                | 1.438(3)   | Cu8-S5                  | 2.2432(9) |
| Cu4-S9 <sup>iii</sup>   | 2.2525(9) | S10-C15                | 1.753(3)   | Cu11-S5 <sup>vii</sup>  | 2.2758(8) |
| Cu4-S11                 | 2.2855(8) | S4-O5                  | 1.456(2)   | Cu11-S1 <sup>vi</sup>   | 2.2429(9) |
| Cu4-O5                  | 2.132(2)  | S4-O4                  | 1.455(2)   | Cu11-O11                | 2.184(2)  |
| Cu4-O1                  | 2.150(3)  | S4-O6                  | 1.456(2)   | Cu11-O15 <sup>iv</sup>  | 2.213(3)  |
| Cu9-Cu5 <sup>iii</sup>  | 2.7691(6) | S4-C6                  | 1.761(3)   | Cu8-Cu2 <sup>viii</sup> | 2.6679(6) |
| Cu9-S9                  | 2.2339(9) | S8-O11                 | 1.459(2)   | S12-O18                 | 1.475(4)  |
| Cu9-S11                 | 2.2209(9) | S8-O12                 | 1.458(2)   | S12-O17                 | 1.467(6)  |
| Cu9-O22                 | 2.055(2)  | S8-O10                 | 1.459(2)   | S12-O16                 | 1.454(2)  |
| Cu6-S11                 | 2.2509(9) | S8-C12                 | 1.765(3)   | S12-C18                 | 1.752(9)  |
| Cu6-S3 <sup>v</sup>     | 2.2799(9) | S2-O2                  | 1.466(3)   | S2-O1                   | 1.433(3)  |
| Cu6-O8                  | 2.205(2)  | S2-O3                  | 1.422(3)   | S2-C3                   | 1.740(5)  |
| Cu6-O6                  | 2.112(2)  | Cu11-Cu2 <sup>vi</sup> | 2.8777(6)  | Cu11-Cu12               | 3.0323(7) |

Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z; (v) -x+1, -y, -z+1; (vi) -x+1, -y+2, -z+1; (vii) -x+1, -y+2, -z; (viii) -x, -y+1, -z+1; (ix) x-1, y-1, z+1; (x) -x+2, -y+2, -z; (xi) x-1, y, z+1; (xii) x+1, y+1, z-1; (xiii) x+1, y, z-1.

Table S6. Selected bond angles (°) for 2

| Bond angle                                 | Degree      | Bond angle                                 | Degree     | Bond angle                                 | Degree     |
|--------------------------------------------|-------------|--------------------------------------------|------------|--------------------------------------------|------------|
| Cu11 <sup>i</sup> -Cu10-Cu8 <sup>ii</sup>  | 99.414(19)  | S3 <sup>v</sup> -Cu5-Cu9 <sup>iii</sup>    | 97.44(3)   | C13-S9-Cu9                                 | 112.66(12) |
| Cu2 <sup>iii</sup> -Cu10-Cu11 <sup>i</sup> | 64.902(16)  | S3 <sup>v</sup> -Cu5-S9 <sup>iii</sup>     | 125.23(3)  | C13-S9-Cu5 <sup>iii</sup>                  | 107.72(13) |
| Cu2 <sup>iii</sup> -Cu10-Cu8 <sup>ii</sup> | 118.04(2)   | O4-Cu5-Cu9 <sup>iii</sup>                  | 149.88(7)  | Cu3-S11-Cu4                                | 71.19(3)   |
| S5 <sup>ii</sup> -Cu10-Cu11 <sup>i</sup>   | 54.08(2)    | O4-Cu5-S9 <sup>iii</sup>                   | 102.27(7)  | Cu3-S11-Cu6                                | 133.26(4)  |
| S5 <sup>ii</sup> -Cu10-Cu8 <sup>ii</sup>   | 51.75(2)    | O4-Cu5-S3 <sup>v</sup>                     | 111.39(7)  | Cu9-S11-Cu3                                | 73.16(3)   |
| S5 <sup>ii</sup> -Cu10-Cu2 <sup>iii</sup>  | 109.75(3)   | O20-Cu5-Cu9 <sup>iii</sup>                 | 91.59(9)   | Cu9-S11-Cu4                                | 132.67(4)  |
| S7-Cu10-Cu11 <sup>i</sup>                  | 118.34(3)   | O20-Cu5-S9 <sup>iii</sup>                  | 111.55(12) | Cu9-S11-Cu6                                | 93.08(3)   |
| S7-Cu10-Cu8 <sup>ii</sup>                  | 103.82(3)   | O20Cu5S3 <sup>5</sup>                      | 113.15(13) | Cu6-S11-Cu4                                | 89.37(3)   |
| S7-Cu10-Cu2 <sup>iii</sup>                 | 53.68(2)    | O20-Cu5-O4                                 | 85.15(11)  | C16-S11-Cu3                                | 112.19(12) |
| S7-Cu10-S5 <sup>ii</sup>                   | 143.81(3)   | S1-Cu1-Cu8 <sup>vii</sup>                  | 48.43(2)   | C1-S1-Cu2                                  | 110.7(2)   |
| O13-Cu10-Cu11 <sup>i</sup>                 | 93.81(7)    | S1Cu1O12 <sup>6</sup>                      | 104.06(7)  | C1-S1-Cu1                                  | 116.4(2)   |
| O13-Cu10-Cu8 <sup>ii</sup>                 | 131.04(6)   | S7 <sup>xii</sup> -Cu1-Cu8 <sup>vii</sup>  | 95.45(3)   | O19-Cu1-S7 <sup>xii</sup>                  | 109.08(13) |
| O13-Cu10-Cu2 <sup>iii</sup>                | 110.30(6)   | S7 <sup>xii</sup> -Cu1-S1                  | 120.08(3)  | O19-Cu1-O12vi                              | 86.18(12)  |
| O13-Cu10-S5 <sup>ii</sup>                  | 105.33(7)   | S7 <sup>xii</sup> -Cu1-O12 <sup>vi</sup>   | 112.55(7)  | Cu7-S9-Cu4 <sup>iii</sup>                  | 88.32(3)   |
| O13-Cu10-S7                                | 110.64(7)   | O12 <sup>vi</sup> -Cu1-Cu8 <sup>viii</sup> | 149.39(7)  | Cu7-S9-Cu9                                 | 75.55(3)   |
| Cu4-Cu3-Cu7 <sup>iii</sup>                 | 70.478(16)  | O19-Cu1-Cu8viii                            | 96.46(10)  | Cu7-S9-Cu5 <sup>iii</sup>                  | 133.98(4)  |
| Cu4-Cu3-Cu9                                | 102.311(19) | O19-Cu1-S1                                 | 119.38(12) | Cu4 <sup>iii</sup> -S9-Cu5 <sup>iii</sup>  | 88.53(3)   |
| Cu9-Cu3-Cu7 <sup>iii</sup>                 | 122.02(2)   | O2-Cu3-S3 <sup>iv</sup>                    | 112.30(7)  | Cu9-S9-Cu4 <sup>iii</sup>                  | 136.55(4)  |
| S11-Cu3-Cu7 <sup>iii</sup>                 | 116.38(3)   | Cu9-Cu7-Cu3 <sup>iii</sup>                 | 119.31(2)  | Cu9-S9-Cu5 <sup>iii</sup>                  | 75.70(3)   |
| S11-Cu3-Cu4                                | 55.11(2)    | Cu6-Cu7-Cu3 <sup>iii</sup>                 | 98.143(19) | C13-S9-Cu7                                 | 116.26(12) |
| S11-Cu3-Cu9                                | 52.99(2)    | Cu6-Cu7-Cu9                                | 74.087(17) | C13-S9-Cu4 <sup>iii</sup>                  | 110.67(12) |
| S3 <sup>iv</sup> -Cu3-Cu7 <sup>iii</sup>   | 53.17(2)    | S9-Cu7-Cu3 <sup>iii</sup>                  | 97.25(3)   | O2-Cu3-Cu4                                 | 91.12(7)   |
| S3 <sup>iv</sup> -Cu3-Cu4                  | 123.19(3)   | S9-Cu7-Cu9                                 | 52.75(2)   | O2-Cu3-Cu9                                 | 128.18(6)  |
| S3 <sup>iv</sup> -Cu3-Cu9                  | 101.41(3)   | S9-Cu7-Cu6                                 | 125.30(3)  | O2-Cu3-S11                                 | 102.24(7)  |
| S3 <sup>iv</sup> -Cu3-S11                  | 145.43(3)   | O8-Cu6-Cu7                                 | 83.03(6)   | O8-Cu6-S11                                 | 114.23(7)  |
| O2-Cu3-Cu7 <sup>iii</sup>                  | 109.70(6)   | $S1^{viii}$ -Cu8-Cu $2^{viii}$             | 52.38(2)   | $S1^{viii}$ -Cu8-Cu $1^{viii}$             | 47.83(2)   |
| S3 <sup>v</sup> -Cu7-Cu6                   | 54.30(2)    | Cu10 <sup>ii</sup> -S5-Cu11 <sup>vii</sup> | 73.66(3)   | O7-Cu7-Cu3 <sup>iii</sup>                  | 131.40(7)  |
| Cu10 <sup>ii</sup> -S5-Cu8                 | 77.17(3)    | O7-Cu7-Cu9                                 | 108.97(7)  | Cu10 <sup>ii</sup> -S5-Cu12 <sup>vii</sup> | 131.72(4)  |
| O7-Cu7-Cu6                                 | 89.38(6)    | Cu8-S5-Cu11vii                             | 135.44(4)  | O7-Cu7-S9                                  | 117.01(7)  |
| Cu8-S5-Cu12vii                             | 90.94(3)    | O7-Cu7-S3 <sup>v</sup>                     | 101.03(7)  | $Cu12^{vii}\text{-}S5\text{-}Cu11^{vii}$   | 84.23(3)   |
| S9 <sup>iii</sup> -Cu4-Cu3                 | 98.94(3)    | C7-S5-Cu10 <sup>ii</sup>                   | 117.52(12) | S9 <sup>iii</sup> -Cu4-S11                 | 126.84(3)  |
| C7-S5-Cu11vii                              | 105.87(11)  | S11-Cu4-Cu3                                | 53.70(2)   | C7-S5-Cu8                                  | 117.35(11) |
| O5-Cu4-Cu3                                 | 151.49(7)   | C7-S5-Cu12vii                              | 109.57(12) | O5-Cu4-S9 <sup>iii</sup>                   | 109.15(7)  |
| Cu3 <sup>i</sup> -S3Cu7 <sup>v</sup>       | 75.81(3)    | O5-Cu4-S11                                 | 103.19(7)  | O5-Cu4-O1                                  | 94.29(11)  |
| Cu3 <sup>i</sup> -S3-Cu5 <sup>v</sup>      | 89.01(3)    | O1-Cu4-Cu3                                 | 80.11(8)   | Cu7 <sup>v</sup> -S3-Cu6 <sup>v</sup>      | 72.03(3)   |

Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z; (v) -x+1, -y, -z+1; (vi) -x+1, -y+2, -z; (vii) -x, -y+1, -z+1; (ix) x-1, y-1, z+1; (x) -x+2, -y+2, -z; (xi) x-1, y, z+1; (xii) x+1, y+1, z-1; (xiii) x+1, y, z-1.

Table S7 Hydrogen-bond geometry (Å, °) for 2

| D-H···A                         | D-H  | H···A | D····A     | D-H···A |
|---------------------------------|------|-------|------------|---------|
| O19-H19A…O26 <sup>xv</sup>      | 0.85 | 2.04  | 2.889 (6)  | 179     |
| O19-H19B····O21 <sup>viii</sup> | 0.85 | 2.45  | 2.972 (5)  | 120     |
| O20-H20A····O23                 | 0.90 | 2.08  | 2.746 (4)  | 130     |
| O20-H20B····O22 <sup>iii</sup>  | 0.90 | 2.26  | 2.947 (5)  | 133     |
| O21-H21A····O24                 | 0.87 | 1.91  | 2.727 (6)  | 156     |
| O21-H21B····O23 <sup>v</sup>    | 0.82 | 1.91  | 2.717 (4)  | 166     |
| O22-H22A…O27                    | 0.85 | 1.82  | 2.666 (6)  | 174     |
| O22-H22B…O26                    | 0.85 | 1.90  | 2.664 (5)  | 148     |
| O23-H23A····O3 <sup>xiv</sup>   | 0.85 | 1.98  | 2.767 (5)  | 154     |
| O23-H23B····O8 <sup>v</sup>     | 0.85 | 2.15  | 2.966 (4)  | 161     |
| O24-H24A…O25                    | 0.85 | 1.90  | 2.723 (7)  | 161     |
| O24-H24B…O13 <sup>ii</sup>      | 0.85 | 2.13  | 2.887 (5)  | 149     |
| O25-H25A…O9                     | 0.85 | 1.93  | 2.762 (6)  | 167     |
| O26-H26A…O17                    | 0.85 | 2.05  | 2.835 (12) | 154     |
| O26-H26A…O17A                   | 0.85 | 2.24  | 3.01 (14)  | 151     |
| O26-H26B…O14                    | 0.85 | 2.09  | 2.707 (5)  | 129     |
| O27-H27A···O28                  | 0.85 | 1.86  | 2.688 (7)  | 166     |
| O27-H27B…O2                     | 0.85 | 2.17  | 2.914 (5)  | 147     |
| O28-H28A…O9 <sup>xvi</sup>      | 0.85 | 2.01  | 2.846 (6)  | 168     |
| O28-H28B····O12 <sup>xvii</sup> | 0.85 | 2.22  | 3.009 (6)  | 154     |
| C6-H6B····O3 <sup>viii</sup>    | 0.97 | 2.40  | 3.196 (6)  | 139     |

Symmetry codes: (ii) -x+1, -y+1, -z; (v) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1; (viii) -x, -y+1, -z+1; (xiv) x+1, y-1, z; (xv) -x, -y+2, -z+1; (xvi) x-1, y+1, z; (xvii) x-1, y, z.

| Materials                                                                              | Proton conductivity (S·cm <sup>-1</sup> ) | RH and Temperature (°C) | Ref.      |
|----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|-----------|
| Sr-SBBA                                                                                | 4.4×10 <sup>-5</sup>                      | 98% and 25              | 1         |
| $[Cd(L-tart)-(bpy)(H_2O)]_n \cdot 9n(H_2O)$                                            | 1.3×10 <sup>-6</sup>                      | 95% and 85              | 2         |
| $[Cd(D-tart)-(bpy)(H_2O)]_n \cdot 9n(H_2O)$                                            | 1.3×10 <sup>-6</sup>                      | 95% and 85              | 2         |
| $[Cd(DL-tart)-(bpy)(H_2O)]_n \cdot 6n(H_2O)$                                           | 4.5×10 <sup>-7</sup>                      | 95% and 85              | 2         |
| In-IA-2D-1                                                                             | 3.4×10 <sup>-3</sup>                      | 98% and 27              | 3         |
| In-IA-2D-2                                                                             | 4.2×10 <sup>-4</sup>                      | 98% and 27              | 3         |
| $\{[Gd(L)(Ox)(H_2O)]_n \cdot 3H_2O\}$                                                  | 4.7×10 <sup>-4</sup>                      | 95% and 80              | 4         |
| Tb-DSOA                                                                                | 4.0×10 <sup>-4</sup>                      | 98% and 53              | 5         |
| β-PCMOF2                                                                               | 1.8×10 <sup>-6</sup>                      | 85% and 50              | 6         |
| PCMOF2                                                                                 | 2.4×10 <sup>-5</sup>                      | 85% and 50              | 6         |
| HKUST-1                                                                                | 1.8×10 <sup>-8</sup>                      | 70% and 90              | 7         |
| NENU-3                                                                                 | 4.76×10 <sup>-5</sup>                     | 70% and 90              | 7         |
| PCMOF-3                                                                                | 3.5×10 <sup>-5</sup>                      | 98% and 25              | 8         |
| Sr-SBBA                                                                                | 4.4×10 <sup>-5</sup>                      | 98% and 25              | 9         |
| [La <sub>2</sub> (ox) <sub>3</sub> (H <sub>2</sub> O) <sub>6</sub> ] 4H <sub>2</sub> O | 3.35×10 <sup>-7</sup>                     | 100% and 95             | 10        |
| $[Zn_2(HCOO)(trz)_3]_n$                                                                | 7.95×10 <sup>-7</sup>                     | 98% and 50              | 11        |
| 1                                                                                      | 3.63×10 <sup>-5</sup>                     | 98% and 60              | This work |
| 2                                                                                      | 2.75×10 <sup>-5</sup>                     | 98% and 60              | This work |

Table S8. Summarized proton conductivities of some MOFs at high humidity (>80% RH)

#### References

1. Kundu, T.; Sahoo, S. C.; Banerjee, R. Chem. Commun. 2012, 48, 4998-5000.

2. Parshamoni, S.; Jena, H. S.; Sanda, S.; Konar, S. *Inorganic Chemistry Frontiers*, **2014**, *1*, 611-620.

3. Panda, T.; Kundu, T.; Banerjee, R. Chem. Commun. 2012, 48, 5464-5466.

4. Biswas, S.; Chakraborty, J.; Singh Parmar, V.; Bera, S. P.; Ganguli, N.; Konar, S. *Inorganic chemistry* **2017**, *56*, 4956-4965.

5. Dong, X. Y.; Wang, R.; Wang, J. Z.; Zang, S. Q.; Mak, T. C. *Journal of Materials Chemistry A*, **2015**, *3*, 641-647.

6. S. Kim, K. W.; Dawson, B. S.; Gelfand, Taylor, J. M.; Shimizu, G. K. *Journal of the American Chemical Society* **2013**, *135*, 963-966.

7. Liu, Y.; Yang, X.; Miao, J.; Tang, Q.; Liu, S.; Shi, Z.; Liu, S. *Chem. Commun.* **2014**, *50*, 10023-10026.

8. Shigematsu, A.; Yamada, T.; Kitagawa, H. *Journal of the American Chemical Society* **2011**, *133*, 2034-2036.

9. Taylor, J. M.; Mah, R. K.; Moudrakovski, I. L.; Ratcliffe, C. I.; Vaidhyanathan, R.; Shimizu, G. K. *Journal of the american chemical society* **2010**, *132*, 14055-14057.

10. Kundu, T.; Sahoo, S. C.; Banerjee, R. Chem. Commun. 2012, 48, 4998-5000.

11. Ishikawa, R.; Ueno, S.; Yagishita, S.; Kumagai, H.; Breedlove, B. K.; Kawata, S. *Dalton Trans* **2016**, *45*, 15399-15405.

12. Lu, J. N.; Zhou, S. F.; Zhang, S. J.; Zhang, C. X.; Wang, Q. L. European Journal of Inorganic Chemistry **2019**, 2019, 794-799.



Fig. S1 PXRD patterns of 1 (a), 2 (b), and (c) PXRD patterns of 1 and 2: The simulated ones from the single-crystal data, and as-synthesized.



Figure. S2 (a-f) TEM and elemental mapping images of MOFs 1 (left) and 2 (right).



Fig. S3 The IR spectra of 1 (a), 2 (b), Na<sub>2</sub>MPS (c), and Na<sub>2</sub>MES (d).



**Fig. S4** Sample crystal photographs of **1** (a) and **2** (b). Single-crystal photographs of **1** (c), **2** (d), and diaqua-bis(pyridine-4-carboxylate-N)-copper(II) monohydrate (e).



Fig. S5 The schematic view of the  $Cu_{12}S_6$  cluster and fourteen MES<sup>2-</sup> in 1.



**Fig. S6** The asymmetric unit of (a) for **1** and (b) for **2**. All H-atoms have been omitted for clarity, and all coordinated and free H<sub>2</sub>O also have been removed in 2.



Fig. S7 (a-f) The mode of  $Cu_{12}S_6$  cluster connected by  $MES^{2-}$  ligand in 1.



**Fig. S8** (a-d) The 1D [(Cu<sub>12</sub>S<sub>6</sub>)(MES)]<sub>n</sub> chain in **1**, involved in S-containing ligands abbreviated as S<sub>1-2</sub>, S<sub>5-6</sub>, S<sub>7-8</sub> and S<sub>11-12</sub>, respectively.



**Fig. S9** (a) The 2D [(Cu<sub>12</sub>S<sub>6</sub>)(MES)]<sub>n</sub> network in **1**, involved in S-containing ligands abbreviated as S<sub>3-4</sub>; (b) The MES<sup>2-</sup> linked three Cu<sub>12</sub>S<sub>6</sub> clusters was simplified as a 3-connected node; (c) The 2D [(Cu<sub>12</sub>S<sub>6</sub>)(MES)]<sub>n</sub> network was simplified as a uninodal 3-c Shubnikov plane topology with a point (Schlafli) symbol for net: {4·8<sup>2</sup>}.



Fig. S10 (a) The 2D [(Cu12S6)(MES)]<sup>n</sup> network in 1, involved in S-containing ligands abbreviated as S9-10; (b-c) The MES<sup>2-</sup> linked three Cu12S6 clusters was simplified as a 3-connected node; (d) The 2D [(Cu12S6)(MES)]<sup>n</sup> network was simplified as a uninodal 3-c Shubnikov plane topology with a point (Schlafli) symbol for net: {4·8<sup>2</sup>}.



**Fig. S11** The two 2D topologies assemble a 2-nodal 3,6-c ant/anatase net with a point symbol of  $\{4^2 \cdot 6\}_2 \{4^4 \cdot 6^2 \cdot 8^8 \cdot 10\}$ , involved in S-containing ligands abbreviated as S<sub>3-4</sub>



Fig. S12 (a-d) The diagram of the  $Cu_{12}S_6$  clusters was simplified as a 10-connected node in 1.



Fig. S13 The scheme of a  $Cu_{12}S_6$  cluster connected with twelve MES<sup>2-</sup> ligands in 2.



Fig. S14 (a-h) The schematic view of the  $Cu_{12}S_6$  cluster and twelve MES<sup>2-</sup> in 2.



**Fig. S15** (a-f) The 1D  $[(Cu_{12}S_6)(MPS)]_n$  chain in **2**, involved in S-containing ligands abbreviated as S<sub>1-2</sub>, S<sub>3-4</sub>, S<sub>5-6</sub>, S<sub>7-8</sub>, S<sub>9-10</sub> and S<sub>11-12</sub>, respectively.



Fig. S16 View of the 3D  $Cu_{12}S_6$  cluster based organic framework of 2 from *a* direction.



Fig. S17 View of a 6-connected pcu primitive cubic network with a Schläfli symbol  $\{4^{12}.6^3\}$  of 2.



Fig. S18 Hirshfeld surface of 1 with d<sub>i</sub> (a), d<sub>e</sub> (b) and d<sub>norm</sub> (c) mapped in colour; the Hirshfeld surface of 2 with d<sub>i</sub> (d), d<sub>e</sub> (e) and d<sub>norm</sub> (f) mapped in colour; in all cases, red represents the closest contacts, and blue represents the most distant contacts.



Fig. S19 (a, c) Hirshfeld surface of 1 with curvedness and shape index mapping; (b, d) the Hirshfeld surface of 2 with curvedness and shape index mapping.



Fig. S20 Relative contributions to Hirshfeld surface area for various intermolecular contacts in 1 and 2.



**Fig. S21** The surface of **1** (a-f) and **2** (g-l) calculated via 3V Volume Assessor program by rolling a virtual probe (0.8 Å) on the surface viewed along six different orientations.



Fig. S22 The conductivity 1/Nafion (a) and 2/Nafion (b) at different temperature.



Fig. S23 The TG curves for 1 and 2.