Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

A Highly Sensitive "ON-OFF-ON" Dual Optical Sensor for Cu(II) Ion

and Triazole Pesticides Based on Novel BODIPY-Substituted Cavitand

İpek Ömeroğlu,^a Süreyya Oğuz Tümay,^a Saad Makhseed,^b Ali Husain,^b and Mahmut

Durmuş*a

^aDepartment of Chemistry, Faculty of Basic Sciences, Gebze Technical University,

Kocaeli, Turkey

^bDepartment of Chemistry, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait

*Correspondence: durmus@gtu.edu.tr

1. Fluorescence Quantum Yield

Fluorescence quantum yield (Φ_F) is determined by the comparative method according to the Equation 1:

$$\Phi_F = \Phi_{FStd} \frac{F.A_{Std}.n^2}{F_{Std}.A.n_{Std}^2}$$
(1)

where F and F_{Std} are the areas under the fluorescence emission curves of cavitand **3** and the standard, respectively. A and A_{Std} are the respective absorbance of the cavitand **3** and standard at the excitation wavelengths, respectively. n² and n²_{std} are the refractive indices of solvents used for the sample and standard, respectively. Rhodamine 6G (in water) was employed as a standard compound ($\Phi_F = 0.95$) in this study. The absorbances of the studied cavitand **3** and the standard Rhodamine 6G were kept ca. 0.05 at the excitation wavelength.

Fig. S1 Full ¹¹B NMR spectra of (a) ethynyl-BODIPY **2** and (b) cavitand **3**; full ¹⁹F NMR spectra of (c) ethynyl-BODIPY **2** and (d) cavitand **3**.

Fig. S2 FT-IR spectra (3500-800 cm⁻¹) of (a) cavitand 1; (b) ethynyl-BODIPY 2 and (c) cavitand 3.

Fig. S3 MALDI-TOF spectrum of BODIPY functionalized resorcin[4]arene cavitand (3) (Matrix: DIT).

Fig. S4 MALDI-TOF spectrum of BODIPY functionalized resorcin[4]arene cavitand (**3**) after the addition of Cu²⁺ solution (Matrix: DIT).