Supporting information

Synthesis, Characterization and Theoretical Investigation of Ba₄GaS₄F₃: A New

Chalcohalide with 3D Network Structure

Hongbo Gao†^a, Ruijiao Chen†^b, Kewang Zhang^c, Ailijiang Abudurusuli^{d,e},

Kangrong Lai^{*a} and Junjie Li^{*d}

[a] Department of Physics, Changji University, Changji, Xinjiang 831100, China.

[b] College of Chemistry and Chemical Engineering, Xinjiang Normal University,

Urumqi, Xinjiang 830054, China.

[c] College of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.

[d] Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of physics & Chemistry of CAS, Urumqi, Xinjiang 830011, China.

[e] University of Chinese Academy of Science, Beijing 100049, China.

To whom correspondence should be addressed: <u>laikr0212@163.com</u>; lijunjie@ms.xjb.ac.cn

⁺ These authors contributed equally

Atom	x	У	Z	U(eq)
Ba1	7055.7(2)	6820.9(2)	9711.0(2)	11.33(8)
Ba2	4632.8(2)	6160.7(2)	5174.1(2)	11.98(8)
Ba3	3725.1(2)	2852.0(2)	7941.0(2)	11.02(7)
Ba4	2281.4(2)	5475.2(2)	9425.6(2)	11.89(8)
Ga1	4496.3(3)	5836.1(3)	8367.8(3)	10.70(12)
S1	5753.3(7)	5638.4(8)	8882.7(7)	15.7(3)
S2	4653.7(7)	6183.7(7)	7070.1(7)	12.2(3)
S3	6313.1(8)	8232.4(7)	8880.2(7)	16.5(3)
S4	3810.2(7)	4657.2(7)	8566.8(7)	15.1(3)
F1	4698.7(15)	1656.0(16)	8089.5(15)	13.5(6)
F2	1856.1(16)	5584.1(16)	7961.4(15)	15.2(6)
F3	4267.8(16)	4929.7(16)	4318.6(15)	14.7(6)

 $\begin{array}{ll} \mbox{Table S1} & \mbox{Atomic coordinates and equivalent isotropic displacement parameters of $Ba_4GaS_4F_3$}. \\ \mbox{U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.} \end{array}$

14010 52	by minetry, ser	ceteu bollu leligelis allu	ungles of bu ₄ u	1041 3.	
Ba(1)-S(1)#4	3.3862(19)	S(1)-Ba(1)-S(1)#4	134.55(4)	F(1)#3-Ba(3)-S(3)#12	137.10(6)
Ba(1)-S(1)	3.2514(15)	S(1)#11-Ba(3)-S(1)#8	96.53(3)	F(1)-Ba(3)-S(4)	131.68(6)
Ba(1)-S(2)#4	3.2084(15)	S(1)#11-Ba(3)-S(4)#11	65.30(3)	F(1)#13-Ba(3)-S(4)#11	125.89(6)
Ba(1)-S(3)	3.0101(14)	S(1)#8-Ba(3)-S(4)#11	82.02(4)	F(1)#3-Ba(3)-S(4)#11	67.29(6)
Ba(1)-F(1)#5	2.593(3)	S(1)-Ga(1)-S(2)	107.63(5)	F(1)-Ba(3)-S(4)#11	68.94(6)
Ba(1)-F(2)#3	2.616(3)	S(2)-Ba(2)-S(2)#2	81.45(3)	F(1)#13-Ba(3)-S(4)	69.38(6)
Ba(1)-F(3)#1	2.759(3)	S(2)#4-Ba(1)-S(1)	148.27(4)	F(1)#3-Ba(3)-S(4)	72.24(6)
Ba(2)-S(2)#9	3.2465(15)	S(2)#4-Ba(1)-S(1)#4	68.56(3)	F(1)#3-Ba(3)-F(1)#13	70.17(9)
Ba(2)-S(2)	3.250(2)	S(2)#5-Ba(4)-S3#15	79.13(3)	F(1)-Ba(3)-F(1)#3	73.04(9)
Ba(2)-S(2)#1	3.2795(15)	S(2)#5-Ba(4)-S(4)	142.03(3)	F(1)-Ba(3)-F(1)#13	67.83(10)
Ba(2)-S(3)#9	3.2315(18)	S(2)#5-Ba(4)-S(4)#5	73.09(3)	F(2)#3-Ba(1)-F(3)#2	70.49(8)
Ba(2)-F(2)#8	2.759(3)	S(2)#6-Ba(2)-S(2)	81.95(3)	F(2)-Ba(4)-S(2)#5	83.07(6)
Ba(2)-F(3)#6	2.718(3)	S(2)#6-Ba(2)-S(2)#2	87.84(3)	F(2)#5-Ba(4)-S(2)#5	116.29(6)
Ba(2)-F(3)	2.590(3)	S(3)-Ba(1)-S(1)#4	130.30(3)	F(2)-Ba(4)-S(3)#15	82.82(6)
Ba(3)-S(1)#8	3.3857(18)	S(3)-Ba(1)-S(1)	89.53(4)	F(2)#5-Ba(4)-S(3)#15	144.03(6)
Ba(3)-S(1)#10	3.3751(16)	S(3)-Ba(1)-S(2)#4	84.04(3)	F(2)#5-Ba(4)-S(4)#5	77.70(7)
Ba(3)-S(3)#11	3.2439(18)	S(3)#6-Ba(2)-S(2)#6	112.01(3)	F(2)-Ba(4)-S(4)	78.75(7)
Ba(3)-S(4)	3.1907(15)	S(3)#6-Ba(2)-S(2)#2	67.69(4)	F(2)-Ba(4)-S(4)#5	150.82(6)
Ba(3)-S(4)#10	3.4085(15)	S(3)#6-Ba(2)-S(2)	144.90(4)	F(2)#5-Ba(4)-S(4)	100.96(6)
Ba(3)-F(1)#12	2.757(3)	S(3)#12-Ba(3)-S(1)#11	116.18(3)	F(2)-Ba(4)-F(2)#5	129.16(7)
Ba(3)-F(1)	2.577(3)	S(3)#12-Ba(3)-S(1)#8	72.37(5)	F(2)-Ba(4)-F(3)#14	71.96(8)
Ba(3)-F(1)#3	2.620(3)	S(3)#12-Ba(3)-S(4)#11	154.38(3)	F(2)#5-Ba(4)-F(3)#14	69.30(8)
Ba(4)-S(2)#5	3.2289(15)	S(3)#15-Ga(1)-S(1)	119.85(6)	F(2)#3-Ba(1)-S(1)	86.20(6)
Ba(4)-S(3)#13	3.3098(16)	S(3)#15-Ga(1)-S(2)	105.85(5)	F(2)#3-Ba(1)-S(1)#4	73.78(6)
Ba(4)-S(4)#5	3.2728(19)	S(3)#15-Ga(1)-S(4)	103.57(5)	F(2)#3-Ba(1)-S(2)#4	80.65(6)
Ba(4)-S(4)	3.2372(15)	S(4)-Ba(3)-S(1)#11	74.89(3)	F(2)#3-Ba(1)-S(3)	142.95(6)
Ba(4)-F(2)#5	2.643(3)	S(4)-Ba(3)-S(1)#8	142.06(3)	F(2)#8-Ba(2)-S(2)#2	158.38(6)
Ba(4)-F(2)	2.614(3)	S(4)-Ba(3)-S(3)#12	78.55(4)	F(2)#8-Ba(2)-S(2)	80.52(6)
Ba(4)-F(3)#14	2.669(3)	S(4)-Ba(4)-S(3)#14	65.79(3)	F(2)#8-Ba(2)-S(2)#6	77.94(6)
Ga(1)-S(1)	2.2925(15)	S(4)#5-Ba(4)-S(3)#15	76.46(4)	F(2)#8-Ba(2)-S(3)#6	132.80(6)
Ga(1)-S(2)	2.3129(18)	S(4)-Ba(4)-S(4)#5	110.18(3)	F(3)#2-Ba(1)-S(1)#4	129.64(7)
Ga(1)-S(3)#13	2.2321(14)	S(4)-Ba(3)-S(4)#11	123.99(3)	F(3)#2-Ba(1)-S(2)#4	71.57(6)
Ga(1)-S(4)	2.2936(15)	S(4)-Ga(1)-S(2)	114.39(5)	F(3)-Ba(2)-S(2)#2	132.35(6)
		F(1)#5-Ba(1)-S(1)#4	86.02(7)	F(3)#10-Ba(2)-S(2)#6	149.30(6)
		F(1)#5-Ba(1)-S(1)	83.25(6)	F(3)-Ba(2)-S2#6	130.15(6)

Table S2 Symmetry, selected bond lengths and angles of Ba₄GaS₄F₃.

	F(1)#5-Ba(1)-S(2)#4	124.80(6)	F(3)-Ba(2)-S(2)	125.30(6)	
	F(1)#5-Ba(1)-S(3)	76.52(7)	F(3)#10-Ba(2)-S(2)#2	73.68(6)	
	F(1)#5-Ba(1)-F(2)#3	139.03(8)	F(3)-Ba(2)-F(2)#8	68.66(8)	
	F(1)#5-Ba(1)-F(3)#2	143.19(8)	F(3)#10-Ba(2)-F(2)#8	111.28(8)	
	F(1)-Ba(3)-S(3)#12	106.68(6)	F(3)-Ba(2)-F(3)#10	79.13(9)	
	F(1)-Ba(3)-S(1)#8	80.79(6)	F(3)#10-Ba(2)-S(2)	71.39(6)	
	F(1)-Ba(3)-S(1)#11	134.06(6)	F(3)#10-Ba(2)-S(3)#6	83.81(6)	
	F(1)#13-Ba(3)-S(1)#8	120.51(6)	F(3)-Ba(2)-S(3)#6	71.13(7)	
	F(1)#3-Ba(3)-S(1)#8	145.05(6)	F(3)#14-Ba(4)-S(2)#5	75.15(6)	
	F(1)#3-Ba(3)-S(1)#11	85.83(7)	F(3)#14-Ba(4)-S(3)#15	145.69(6)	
	F(1)#13-Ba(3)-S(1)#11	141.48(6)	F(3)#14-Ba(4)-S(4)	128.37(6)	
	F(1)#13-Ba(3)-S(3)#12	70.47(6)	F(3)#14-Ba(4)-S(4)#5	116.20(6)	
^{#1} 1-X,1-Y,2-Z; ^{#2} 5/4-Y,1/4+X,5/4-Z; ^{#3} 1/4+Y,3/4-X,7/4-Z; ^{#4} 1/4+Y,5/4-X,1/4+Z; ^{#5} 3/4-Y,1/4+X,1/4+Z; ^{#6} -1/4+Y,5/4-X,5/4-Z; ^{#7} -1/2+X,+Y,3/2-					
Z; #8-1/4+Y,3/4-X,-1/4+Z; #91/2-X,1-Y,-1/2+Z; #101-X,1-Y,1-Z; #113/4-Y,-1/4+X,7/4-Z; #125/4-Y,-1/4+X,-1/4+Z; #131-X,1/2-Y,+Z; #141/2-X,1-					
Y,1/2+Z; ^{#15} 1-X,3/2-Y,+Z					

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ba1	10.05(15)	12.37(16)	11.56(14)	-0.22(12)	-0.30(11)	1.40(11)
Ba2	11.34(16)	12.14(16)	12.47(15)	-2.67(11)	0.95(12)	-0.25(11)
Ba3	12.24(16)	10.74(15)	10.09(15)	0.03(11)	-1.12(11)	-0.22(11)
Ba4	12.33(16)	13.15(16)	10.18(14)	1.32(12)	-0.68(12)	-0.54(12)
Ga1	11.6(3)	10.8(3)	9.7(3)	-1.3(2)	0.2(2)	1.3(2)
S1	12.1(6)	17.9(7)	17.1(6)	-3.6(5)	-3.3(5)	-0.6(5)
S2	12.1(6)	13.8(7)	10.7(6)	0.0(5)	0.9(5)	0.4(5)
\$3	23.0(7)	12.8(7)	13.6(6)	0.1(5)	-4.6(5)	6.0(5)
S4	16.4(7)	9.4(6)	19.5(7)	0.3(5)	-1.8(5)	0.9(5)
F1	14.7(15)	13.3(15)	12.6(14)	-1.0(12)	0.7(12)	2.0(11)
F2	13.6(15)	18.2(16)	13.9(15)	0.4(12)	-0.8(12)	-0.4(12)
F3	14.7(15)	14.2(15)	15.1(15)	-0.7(12)	-0.2(12)	1.0(12)

Table S3 Anisotropic displacement parameters of Ba₄GaS₄F₃.

Figure S1 Experimental (black circles) and calculated (red line) PXRD patterns and the difference (blue line) for the PXRD Rietveld refinement of $Ba_4GaS_4F_3$.

Figure S2 (a) The PXRD results of the obtained products under different raw materials ratios and (b) The PXRD results of the obtained products under different temperatures to synthesize the $Ba_4GaS_4F_3$ pure phase powders. The theoretical XRD pattern of $Ba_4GaS_4F_3$ is used as the reference.

Figure S3 The structural contrast between $Ba_4GaS_4F_3$ and Ba_3GaS_4X (X = Cl, Br, I) along the *c*-axis. The 3D channel-like structure in $Ba_4GaS_4F_3$ (a), The pseudolayer structures in Ba_3GaS_4I (b), Ba_3GaS_4Cl (c) and Ba_3GaS_4Br (d).