Supporting Information

An Anionic Potassium-Organic Framework for Selective Removal of

Uranyl Ions

Qianqian Yang,^a Yijie Wang,^a Jianjian Yang,^a Jianbo Yin,^a Di Liu,^a Ning Liu,^a *Rongming Wang*,^{*,a,b} *Daofeng Sun*,^{*,a,b} *Xiyou Li*,^{a,b} and *Jianzhuang Jiang*^{*,c}

^aSchool of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China

^bState Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China

^cBeijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China

*To whom correspondence should be addressed.

E-mail: dfsun@upc.edu.cn, rmwang@upc.edu.cn, jianzhuang@ustb.edu.cn.

amninical formula	
	$C_{56}\Pi_{42}NO_8K$
formula weight	896.03
temperature (K)	293(2)
crystal system	Orthorhombic
space group	<i>C222(1)</i>
<i>a</i> (Å)	10.2471 (2)
<i>b</i> (Å)	43.0335 (8)
<i>c</i> (Å)	10.3618 (2)
α (deg)	90
β (deg)	90
γ (deg)	90
volume (Å ³)	4569.23(15)
Ζ	4
pcalc (g/cm ³)	1.302
$\mu (\mathrm{mm}^{-1})$	1.494
F (000)	1872
Data/ restraints/parameters	4351/31/318
GOF on F^2	1.035
Independent reflections	$4351 [R_{int} = 0.0236, R_{sigma} = 0.0195]$
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0424, WR_2 = 0.1232$
Final R indexes [all data]	$R_1 = 0.0449, wR_2 = 0.1274$
Flack parameter	0.013(5)
Nref	4351

Table S1. Crystallographic data of UPC-K1.

Fig. S1 The simulated (black) and as-synthesized (red) PXRD patterns of UPC-K1.

Fig. S2 TGA curve of UPC-K1.

Fig. S3 IR spectra of H₄tcbpe and UPC-K1.

Fig. S4 The fluorescent spectra of H_4 tcbpe and UPC-K1 in the solid state at room temperature.

Fig. S5 The linear relation between the peak intensities of fluorescent spectra and the related pH values of solutions after immersing 2 mg of UPC-K1 in 2 mL of different pH value aqueous solutions.

Scheme S1. Schematic molecular structures of cystal violet (CV), methylene blue (MB), malachite green (MG), rhodamine B (RB), acid fuchsin (AF) and bromophenol blue (BB).

Fig. S6 The PXRD patterns of UPC-K1 before (black) and after (red) adsorbing cystal violet (CV).

Fig. S7 The PXRD patterns of UPC-K1 before (black) and after (red) adsorbing methylene blue (MB).

Fig. S8 The PXRD patterns of UPC-K1 before (black) and after (red) adsorbing malachite green (MG).

Fig. S9 The UO_2^{2+} adsorption quantity (Q_t) in different times after immersing 30 mg of UPK-1 into 4 mL of 2.2 mmol/L Zn(UO₂)₂(CH₃OO)₆ aqueous solutions.

Fig. S10 The SEM images of UPC-K1 (30 mg) before (a) and after (b) adsorbing UO_2^{2+} in 4 mL of 2.2 mmol/L uranyl zinc acetate solution for 15 hours.

Fig. S11 The EDS spectra of UPC-K1 (30 mg) before (a) and after (b) adsorbing UO_2^{2+} in 4 mL of 2.2 mmol/L uranyl zinc acetate solution for 15 hours.

Fig. S12 The pH-dependent UO_2^{2+} adsorption of UPC-K1 detected by the UV-vis spectra. Note: 30 mg of crystals immersed in 4 mL of 2.2 mmol/L $Zn(UO_2)_2(CH_3OO)_6$ solution.

Fig. S13 UV-vis spectra of the filtered solutions after immersing 15 mg of slightly ground UPC-K1 in 4 mL of 2.2 mol/L $Zn(UO_2)_2(CH_3OO)_6$ solutions under stirring for 24 hours.

Fig. S14 PXRD patterns of UPC-K1 before and after immersing 15 mg of slightly ground UPC-K1 in 4 mL of 4.4 mmol/L $Zn(UO_2)_2(CH_3OO)_6$ ·7H₂O solutions under stirring for 5.5 hours.

Fig. S15 XPS spectra of UPC-K1 before and after immersing 15 mg of slightly ground UPC-K1 in 4 mL of 4.4 mmol/L $Zn(UO_2)_2(CH_3OO)_6 \cdot 7H_2O$ solutions under stirring for 5.5 hours.

Fig. S16 The SEM image and EDS spectrum of UPC-K1 after immersing 15 mg of slightly ground UPC-K1 in 4 mL of 4.4 mmol/L $Zn(UO_2)_2(CH_3OO)_6 \cdot 7H_2O$ solutions under stirring for 5.5

Fig. S17 UV-vis spectra of the filtered solutions after immersing 15 mg of slightly ground UPC-K1 in 16 mL of 1.1 mmol/L $Zn(UO_2)_2(CH_3OO)_6$ solutions under stirring for different times.

Fig. S18 UV-vis spectra of the filtered solutions after immersing 5 mg of as-synthesized UPC-K1 in 4 mL of 400 mg/L uranyl zinc acetate solutions at static state for 24 hours.

Fig. S19 UV-vis spectra of the filtered solutions after immersing 5 mg of as-synthesized UPC-K1 in 4 mL of 800 mg/L uranyl zinc acetate solutions at static state for 24 hours.

Fig. S20 UV-vis spectra of the filtered solutions after immersing 5 mg of as-synthesized UPC-K1 in 4 mL of 1200 mg/L uranyl zinc acetate solutions at static state for 24 hours.

Fig. S21 UV-vis spectra of the filtered solutions after immersing 5 mg of as-synthesized UPC-K1 in 4 mL of 1600 mg/L uranyl zinc acetate solutions at static state for 24 hours.

Fig. S22 UV-vis spectra of the filtered solutions after immersing 5 mg of as-synthesized UPC-K1 in 4 mL of 2000 mg/L uranyl zinc acetate solutions at static state for 24 hours.

Fig. S23 UV-vis spectra of the filtered solutions after immersing 5 mg of as-synthesized UPC-K1 in 4 mL of 2400 mg/L uranyl zinc acetate solutions at static state for 24 hours.

Fig. S24 UV-vis spectra of the filtered solutions after immersing 5 mg of as-synthesized UPC-K1 in 4 mL of 2800 mg/L uranyl zinc acetate solutions at static state for 24 hours.

Fig. S25 UV-vis spectra of the filtered solutions after immersing 5 mg of as-synthesized UPC-K1 in 4 mL of 3200 mg/L uranyl zinc acetate solutions at static state for 24 hours.

Fig. S26 UV-vis spectra of the filtered solutions after immersing 5 mg of as-synthesized UPC-K1 in 4 mL of 3600 mg/L uranyl zinc acetate solutions at static state for 24 hours.

Fig. S27 UV-vis spectra of the filtered solutions after immersing 5 mg of as-synthesized UPC-K1 in 4 mL of 4000 mg/L uranyl zinc acetate solutions at static state for 24 hours.

Materials	Adsorption capacity	pH range	Selectivity	Ref.
	(mg/g)			
δ -MnO ₂ @TpPa-1	1147.773	6.5	-	8
δ-MnO ₂	499.41	6.5	-	8
BSA–BT-NSs	487.805	5	$vs. Mn^{2+}, Cs^+, Co^{2+}, Sr^{2+}$	9
UPC-K1	486	3-10	vs. various metal ions	This work
GOANS	311.5	4	-	6
Fe@ZIF-8	277.77	4.5	<i>vs.</i> Ce ³⁺ , Na ⁺ , Fe ³⁺ , Cu ²⁺ , Ca ²⁺	11
FJSM-GAS-1	196	2.9-10.5	<i>vs.</i> Na ⁺ , Ca ²⁺	3
NU6CN	195.55	5	-	12
MoS ₂ -IP6 NRA/CC	183.3	5.5	<i>vs.</i> K ⁺ , Li ⁺ , Cr ³⁺ , Cu ²⁺ , Ca ²⁺	7
FJSM-GAS-2	144	2.9-10.5	<i>vs.</i> Na ⁺ , Ca ²⁺	3
CNFs	125	1-11	-	4
НСТС	96.99	5.5	-	5
MoS ₂ nanosheets	45.7	6	-	10

Table S2 Comparison of uranium adsorption data with the reported materials except for the data listed or described in Ref. 1.

Crystal hydrogel40.42.5-5.5vs. various metal ions	2
---	---

Reference

- 1 J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Haya and X. Wang, Chem. Soc. Rev., 2018, 47, 2322-2356.
- 2 F. Xiao, Y. Sun, W. Du, W. Shi, Y. Wu, S. Liao, Z. Wu and R. Yu, Adv. Funct. Mater., 2017, 27, 1702147.
- 3 M. Feng, D. Sarma, Y. Gao, X. Qi, W. Li, X. Huang and M. G. Kanatzidis, J. Am. Chem. Soc., 2016, 138, 12578-12585.

4 Y. Sun, Z. Wu, X. Wang, C. Ding, W. Cheng, S. Yu and X. Wang, *Environ. Sci. Technol.*, 2016, **50**, 4459-4467.

- 5 Z. Wang, Z. Liu, T. Ye, Y. Wang and L. Zhou, J. Radioanal. Nucl. Chem., 2020, 326, 1843-1852.
- 6 M. Gado, B. Atia and A. Morcy, Int. J. Environ. Anal. Chem., 2019, 99, 996-1015.
- 7 Y. Kou, L. Zhang, B. Liu, L. Zhu and T. Duan, J. Radioanal. Nucl. Chem., 2020, 323, 641-549.
- 8 X. Zhong, Z. Lu, W. Liang, X. Guo and B. Hu, Environ. Sci.: Nano, 2020, 7, 3303-3317.
- 9 J. Yu, X. Luo, B. Liu, J. Zhou, J. Feng, W. Zhu, S. Wang, Y. Zhang, X. Lina and P. Chen, J. Mater. Chem. A, 2018, 6, 15359-15370.
- 10 Y. Liu, C. Fang, S. Zhang, W. Zhong, Q. Wei, Y. Wang, Y. Dai, Y. Wang, Z. Zhang and Y. Liu, Surf. and Interfaces, 2020, 18, 100409.
- 11 X. Zhang, Y. Liu, Y. Jiao, Q. Gao, P. Wang and Y. Yang, Microp. Mesop. Mater., 2019, 277, 52-59.
- 12 Y. Xie, C. Chen, X. Ren, X.Tan, G. Song, D. Chen, A. Alsaedi and T. Hayat, J. Colloid Interf. Sci., 2019, 550, 117-127.