Mechanochromic luminescence properties of fluorosubstituted pinene-containing cyclometalated platinum(II) complexes with multiple triplet excited states

Qian-Ying Yang ^a, Hua-Hong Zhang ^a, Xiao-Wei Qi ^a, Shi-Shu Sun ^a, Da-Shuai Zhang ^a, Li-Zhi Han ^a, Xiao-Peng Zhang ^{a,*}, Zai-Feng Shi ^a

^a College of Chemistry and Chemical Engineering, Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, Hainan Normal University, Haikou 571158, P.R. China

Corresponding author: X.-P. Zhang

Email: zxp_inorganic@126.com

Materials and methods, synthesis, crystal structures, solution spectroscopic properties, TD-DFT calculation results, mechanochromic luminescence and references

Table of Contents

1. NMR spectra	2
2. Crystallographic data	7
3. Solution spectroscopic properties	11
4. TD-DFT calculation results	12
5. Mechanochromic luminescence	15
6. References	27

Fig. S2 ¹³C NMR of (–)-2

Fig. S3 ¹⁹F NMR of (-)-2

Fig. S4 ¹H NMR of (-)-3

Fig. S5 ¹³C NMR of (-)-3

Fig. S6 ¹⁹F NMR of (–)-3

Fig. S8 ¹³C NMR of (-)-4

Fig. S9 ¹⁹F NMR of (–)-4

2. Crystallographic data

Table S1 Crystallographic data of crystal forms (-)-2-Y-1, (-)-2-Y-2, (+)-2-O-1, (-)-

	()-2-Y-1	(⁻)-2-Y-2	(+) -2-O-1	(-)- 3- Y	()-4-0
Formula	$C_{23}H_{20}ClFN_2Pt_2$	$C_{23.94}H_{20.94}Cl_{3.81}F$	$C_{23}H_{20}ClFN_2Pt$	$C_{24}H_{22}Cl_3FN_2Pt$	$C_{23}H_{19}ClF_2N_2Pt$
		N ₂ Pt			
<i>Mr</i> /g mol ⁻¹	573.95	685.86	573.95	658.87	591.94
crystal system	Orthorhombic	Triclinic	Monoclinic	Triclinic	Monoclinic
Space group	$P2_{1}2_{1}2_{1}$	<i>P</i> 1	$P2_1$	<i>P</i> 1	$P2_1$
a/Å	10.0122(3)	9.3078(6)	7.1917(7)	7.1424(5)	7.1804(3)
b/Å	13.8750(4)	13.9840(10)	18.1841(17)	9.1357(9)	18.1579(8)
c/Å	27.4999(10)	20.3736(16)	14.8761(14)	18.4824(14)	14.8582(7)
lpha/ °	90.00	74.719(6)	90.00	96.097(8)	90.00
<i>β</i> / °	90.00	77.334(6)	99.525(5)	100.086(6)	97.719(2)
$\gamma/$ °	90.00	89.414(6)	90.00	92.237(7)	90.00
$V/Å^3$	3820.3(2)	2492.6(3)	1918.6(3)	1178.59(17)	1919.67(15)
Ζ	8	4	4	2	4
T/K	153(2)	153(2)	193(2)	298(2)	213(2)
Radiation, λ /Å	0.71073	0.71073	1.34139	0.71073	0.71073
D_{calcd} , g/cm ⁻³	1.996	1.828	1.987	1.857	2.048
μ/mm^{-1}	7.506	6.060	10.368	6.315	7.480
<i>F</i> (000)	2208	1322	1104	636	1136
θ range/°	2.085 to 27.102	2.692 to 29.762	3.367 to 57.299	2.394 to 25.027	1.781 to 25.351
Reflections	34734	22310	9945	8105	27737
Unique	8386	15837	3962	5762	7010
<i>R</i> _{int}	0.0533	0.0736	0.0655	0.0632	0.0539
Reflections with	7721	8614	3454	4761	6381
$F^2 > 2\sigma(F^2)$					
Number of	509	1129	510	492	528
parameters					
Goodness-of-fit	1.033	1.029	1.078	1.055	0.890
on F^2					
$R_1 [F^2 > 2\sigma(F^2)]$	0.0288	0.0657	0.0697	0.0792	0.0297
w R_2 (all data)	0.0517	0.1528	0.1927	0.2332	0.0702
$\Delta \rho_{\rm max,} \Delta \rho_{\rm min}/e{\rm \AA}^{-3}$	0.954, -1.002	2.461, -1.647	2.508, -1.595	2.259, -1.637	1.207, -0.762
Flack parameter	-0.016(5)	0.07(2)	0.11(4)	0.04(2)	0.185(10)
CCDC number	2066698	2066700	2066699	2066697	2066696.

3-Y and (–)-**4-O**

Table S2 Bond lengths of complexes (–)-2-Y-1, (–)-2-Y-2, (+)-2-O-1, (–)-3-Y and (–)-4-O determined by X-ray single crystal diffraction.

Bond Lengths	(-) -2- Y-1	(–) -2- Y - 2	(+) -2- O-1	(–) -3- Y	(-)- 4-O
--------------	-----------------------------	-----------------------------	--------------------	------------------	--------------------------

Pt1-C1	1.907(5)	1.95(4)	2.01(4)	1.873(9)	1.866(9)
Pt1-N1	2.035(4)	2.05(3)	2.05(3)	2.061(10)	2.024(7)
Pt1-N2	2.021(4)	2.03(3)	2.01(3)	2.109(10)	2.017(7)
Pt1-Cl1	2.4183(12)	2.440(11)	2.408(8)	2.420(11)	2.422(2)
Pt2-C2	1.911(5)	1.89(3)	1.83(4)	1.910(11)	1.921(10)
Pt2-N3	2.026(4)	1.98(3)	2.00(3)	2.075(10)	1.999(7)
Pt2-N4	2.026(4)	1.98(3)	2.06(3)	1.956(16)	2.029(8)
Pt2-Cl2	2.4239(13)	2.387(10)	2.435(9)	2.427(13)	2.416(2)
Pt3-C3		1.859(15)			
Pt3-N5		1.94(3)			
Pt3-N6		2.02(2)			
Pt3-Cl3		2.405(10)			
Pt4-C4		2.01(3)			
Pt4–N7		2.10(3)			
Pt4–N8		2.043(13)			
Pt4–Cl4		2.437(10)			

Table S3 Bond angles around Pt(II) nucleus of complexes (–)-2-Y-1, (–)-2-Y-2, (+)-2-O-1, (–)-3-Y and (–)-4-O.

Bond Angles	(–)-2-Y-1	(-)-2-Y-2	(+)-2-0-1	(-)- 3 -Y	(-)-4-0
C1-Pt1-N1	80.8(2)	86.6(13)	82.2(13)	86.8(4)	82.4(3)
C1-Pt1-N2	80.05(19)	79.4(13)	78.2(14)	74.1(3)	80.6(3)
C1-Pt1-Cl1	177.99(16)	174.0(9)	176.3(10)	172.0(5)	175.5(2)
N1-Pt1-N2	160.80(17)	166.0(11)	160.3(11)	160.7(5)	163.0(3)
N1-Pt1-Cl1	99.15(13)	96.6(8)	98.9(8)	96.1(4)	98.9(2)
N2-Pt1-Cl1	100.04(13)	97.4(9)	100.8(9)	103.2(4)	98.0(2)
C2-Pt2-N3	81.3(2)	79.9(13)	79.5(12)	76.0(4)	81.3(3)
C2-Pt2-N4	80.05(19)	80.7(14)	82.2(13)	85.7(6)	81.1(3)
C2-Pt2-Cl2	177.85(15)	178.4(10)	179.1(10)	178.2(5)	178.5(2)
N3-Pt2-N4	161.25(18)	160.5(11)	161.5(11)	161.6(7)	162.3(3)
N3-Pt2-Cl2	99.00(13)	100.0(9)	100.7(8)	103.1(5)	99.0(2)
N4-Pt2-Cl2	99.71(13)	99.5(8)	97.6(9)	95.3(7)	98.5(2)
C3-Pt3-N5		79.2(11)			
C3-Pt3-N6		80.0(11)			
C3-Pt3-Cl3		178.3(8)			
N5-Pt3-N6		159.2(11)			
N5-Pt3-Cl3		102.4(8)			
N6-Pt3-Cl3		98.5(8)			
C4-Pt4-N7		81.7(11)			
C4-Pt4-N8		82.2(10)			
C4-Pt4-Cl4		176.1(9)			

Fig. S10 The packing structure between the neighbouring columns of forms (–)-2-Y-1 with cyan dashed lines indicating C–H···X (F or Cl) contacts. The unit of bond length is Å.

Fig. S11 The packing structure between the neighbouring columns of forms (–)-2-Y-2 with cyan dashed lines indicating C–H···X (F or Cl) contacts. The unit of bond length is Å.

Fig. S12 The packing structure between the neighbouring columns of forms (+)-2-O-1 with cyan dashed lines indicating C–H···X (F or Cl) contacts. The unit of bond length is Å.

Fig. S13 Crystal packing structures of (–)-**3-Y** and (–)-**4-O** with red dashed lines indicating the Pt…Pt distances, green dashed lines indicating the π – π distances and blue dashed lines indicating the Pt– π distances. H atoms and solvent molecules are omitted for clarity. The unit of bond length is Å.

3. Solution spectroscopic properties

Fig. S14 Emission spectra ($\lambda_{ex} = 420 \text{ nm}$) of Pt(NCN)Cl complexes in CH₂Cl₂ (5×10⁻⁵ mol·L⁻¹) at 77 K.

Fig. S15 ECD spectra of Pt(NCN)Cl complexes in CH_2Cl_2 (5×10⁻⁵ mol·L⁻¹).

TD-DFT calculation results 4.

T1

 \mathbf{S}_1

T1

 S_1

T1

(-)-3

(-)-4

607.70

349.28

667.47

345.00

625.91

0.0000

0.1079

0.0000

0.0719

0.0000

and characters for $(-)-1$ to $(-)-4$.							
complex	excited	ΔΕ	f	description	percentage	character	
	state	(nm)					
(-)-1	\mathbf{S}_1	337.87	0.1100	HOMO→LUMO	84.2%	LC/MLCT/ILCT/LLCT	
				HOMO-1→LUMO	6.1%	LC/MLCT/ILCT	
	T1	667.01	0.0000	HOMO→LUMO	73.1%	LC/MLCT/ILCT/LLCT	
				HOMO-1→LUMO	16.0%	LC/MLCT/ILCT	
(-)-2	\mathbf{S}_1	334.05	0.0467	HOMO→LUMO	79.4%	LC/MLCT/ILCT/LLCT	

HOMO-1→LUMO

HOMO→LUMO

HOMO-1→LUMO

HOMO→LUMO

HOMO-1→LUMO

HOMO→LUMO

HOMO-1→LUMO

HOMO→LUMO

HOMO-1→LUMO

HOMO→LUMO

HOMO-1→LUMO

8.8%

56.8%

27.0%

87.1%

7.0%

72.5%

16.1%

81.1%

11.6%

54.6%

30.1%

LC/MLCT/ILCT

LC/MLCT/ILCT/LLCT

LC/MLCT/ILCT

LC/MLCT/ILCT/LLCT

LC/MLCT/ILCT

LC/MLCT/ILCT/LLCT

LC/MLCT/ILCT

LC/MLCT/ILCT/LLCT

LC/MLCT/ILCT

LC/MLCT/ILCT/LLCT

LC/MLCT/ILCT

Table S4 TDDFT-calculated electronic transitions, oscillator strength (f), description

complex	orbital	contribution
(-)-1	HOMO-1	Bz (37.7%), Py (13.4%), P-Py (23.7%), Pt (20.6%), Cl (0.5%)
	НОМО	Bz (41.4%), Py (5.0%), P-Py (7.7%), Pt (33.4%), Cl (11.6%)
	LUMO	Bz (32.5%), Py (57.3%), P-Py (4.9%), Pt (4.4%), Cl (0.2%)
(-)-2	HOMO-1	Bz (38.8%), Py (14.5%), P-Py (20.5%), Pt (19.8%), Cl (2.3%)
	НОМО	Bz (40.9%), Py (3.0%), P-Py (11.2%), Pt (31.6%), Cl (11.7%)
	LUMO	Bz (27.9%), Py (44.0%), P-Py (5.7%), Pt (6.6%), Cl (0.4%)
(-)-3	HOMO-1	Bz (39.3%), Py (12.8%), P-Py (24.6%), Pt (18.2%), Cl (0.7%)
	НОМО	Bz (41.6%), Py (5.5%), P-Py (8.2%), Pt (32.5%), Cl (11.4%)
	LUMO	Bz (25.0%), Py (64.3%), P-Py (4.0%), Pt (5.8%), Cl (0.3%)
(-)-4	HOMO-1	Bz (40.5%), Py (15.4%), P-Py (19.8%), Pt (17.7%), Cl (3.2%)
	НОМО	Bz (42.2%), Py (3.1%), P-Py (12.3%), Pt (30.1%), Cl (11.0%)
	LUMO	Bz (24.6%), Py (63.3%), P-Py (4.6%), Pt (6.5%), Cl (0.4%)

Table S5 DFT-calculated molecular orbital contribution of optimized ground-statestructures (in %)

Fig. S16 Frontier molecular orbitals of Frontier molecular orbitals of Pt(NCN)Cl complexes.

5. Mechanochromic luminescence

Fig. S17 XRD Patterns of (-)-1- Y_u in the reversible mechanochromic luminescence process.

Fig. S18 XRD Patterns of (-)-3-Y_u in the reversible mechanochromic luminescence process.

Fig. S19 XRD Patterns of (-)-2- O_{1u} in the grinding process.

Fig. S20 XRD Patterns of (-)-4- O_u in the grinding process.

Fig. S21 XRD Patterns of (-)-2- O_{2u} in the grinding process.

Fig. S22 Solid-state absorption spectra of (-)-2-Y_u in the mechanochromic process.

Fig. S23 Solid-state excitation spectra of (-)-**2**-**Y**_u in the mechanochromic process. The excitation spectra were monitored at the maximum emission peaks ($\lambda_{em} = 563$ nm for (-)-**2**-**Y**_u and (-)-**2**-**Y**_r; $\lambda_{em} = 623$ nm for (-)-**2**-**Y**_g).

Fig. S24 Solid-state emission spectra ($\lambda_{ex} = 420 \text{ nm}$) of (-)-**2-O**_{1u} in the grinding process at RT (solid line) and 77 K (dot line).

Fig. S25 Solid-state emission spectra ($\lambda_{ex} = 420 \text{ nm}$) of (-)-2-O_{2u} in the grinding process at RT (solid line) and 77 K (dot line).

Fig. S26 Solid-state absorption spectra of (-)-2- O_{1u} in the grinding process.

Fig. S27 Solid-state absorption spectra of (-)-2- O_{2u} in the grinding process.

Fig. S28 Solid-state excitation spectra of (-)-2- O_{1u} in the mechanochromic process. The excitation spectra were monitored at the maximum emission peaks ($\lambda_{em} = 626$ nm nm for (-)-2- O_{1u} and (-)-2- O_{1g}).

Fig. S29 Solid-state excitation spectra of (-)-**2**-**O**_{2u} in the mechanochromic process. The excitation spectra were monitored at the maximum emission peaks ($\lambda_{em} = 626$ nm nm for (-)-**2**-**O**_{2u} and (-)-**2**-**O**_{2g}).

Fig. S30 Mechanochromic luminescence of (-)-1-Y_u. The images were obtained under ambient light and UV radiation ($\lambda = 365$ nm).

Fig. S31 Mechanochromic luminescence of (-)-3-Y_u. The images were obtained under ambient light and UV radiation ($\lambda = 365$ nm).

Fig. S32 Solid-state emission spectra ($\lambda_{ex} = 420$ nm) of (-)-1-Y_u in the mechanochromic process at RT (solid line) and 77 K (dot line).

Fig. S33 Solid-state emission spectra ($\lambda_{ex} = 420$ nm) of (-)-**3-Y**_u in the mechanochromic process at RT (solid line) and 77 K (dot line).

Fig. S34 Solid-state absorption spectra of $(-)-1-Y_u$ in the mechanochromic process.

Fig. S35 Solid-state absorption spectra of (–)-3- Y_u in the mechanochromic process.

Fig. S36 Grinding process of (–)-**4-O**_u. The images were obtained under ambient light and UV radiation ($\lambda = 365$ nm).

Fig. S37 Solid-state emission spectra ($\lambda_{ex} = 420 \text{ nm}$) of (-)-4-O_u in the grinding process at RT (solid line) and 77 K (dot line).

Fig. S38 Solid-state absorption spectra of (-)-4- O_u in the grinding process.

	Color		Emission wavelength/ nm		Emission origin	
Complexes	unground	ground	unground	ground	unground	ground
	samples	samples	samples	samples	samples	samples
Pt(N^C^N)Cl liquid-	yellow	red	575	660	${}^{3}\pi,\pi^{*}$	excimer
crystalline [1]						
Pt(CH3-N^C^N)C1 [2]	yellow	orange	530	670	${}^{3}\pi,\pi^{*}$	excimer
Pt(CF ₃ -N^C^N)Cl ^[3]	yellow	red	550	750	$^{3}\pi,\pi^{*}$	³ MMLCT
Pt(amide-N^C^N)Cl ^[4]	green	orange	512	635	$^{3}\pi,\pi^{*}$	excimer
Pt(Pa-NCN)Cl ^[5]	red	orange	695	681	excimer	excimer
Pt(t-bu-NCN)Pa ^[6]	yellow	red	526	675	excimer	excimer
Pt(fluorenyl-NCN)Cl ^[7]	yellow	red	521	639	$^{3}\pi,\pi^{*/3}$ MLCT	³ MLCT

Table S6 Mechanochromic behaviors of cyclometalated Pt(NCN)Cl complexes

6. References

- [1] V. N. Kozhevnikov, B. Donnio and D. W. Bruce, *Angew. Chem. Int. Ed.*, 2008, 47, 6286-6289;
- [2] T. Abe, T. Itakura, N. Ikeda and K. Shinozaki, *Dalton Trans.*, 2009, 38, 711-715;
- [3] Y. Nishiuchi, A. Takayama, T. Suzuki and K. Shinozaki, *Eur. J. Inorg. Chem.*, 2011, **11**, 1815-1823;
- [4] S. J. Choi, J. Kuwabara, Y. Nishimura, T. Arai and T. Kanbara, *Chem. Lett.*, 2012, 41, 65-67;
- [5] C.-J. Lin, Y.-H. Liu, S.-M. Peng, T. Shinmyozu and J.-S. Yang, *Inorg. Chem.*, 2017, 56, 4978-4989;
- [6] C.-Y. Lien, Y.-F. Hsu, Y.-H. Liu, S.-M. Peng, T. Shinmyozu and J.-S. Yang, *Inorg. Chem.*, 2020, **59**, 11584-11594.
- [7] S.-Q Zhu, J.-Y. Hu, S.-L. Zhai, Y. Wang, Z. Xu, R. Liu and H. Zhu, *Inorg. Chem. Front.*, 2020, 7, 4677-4686.