Supplementary Information

One-step Synthesis of Amorphous Nickel Iron Phosphide Hierarchical Nanostructures for Water Electrolysis with Superb Stability at High Current Density

Xuefeng Yu, Xun He, Rong Li^{*}, Xinglong Gou^{*}

Chemical Synthesis and Pollution Control key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P. R. China

*E-mail address: lirong406b@126.com (R. Li); gouxlr@126.com (X.L. Gou)

Fig. S1 SEM images of Ni₂P/NF (a,b) and Fe₂P/FF (c,d).

Fig. S2 XRD patterns of the as-prepared samples.

Fig. S3 Comparison of the high resolution Ni 2p (a) and P 2p (b) XPS spectra in the NiFeP/NFF and Ni₂P/NF samples.

Fig. S4 Influence of the amount of NaH_2PO_2 (a), phosphidation temperature (b), phosphidation time (c) and heating rate (d) on the OER catalytic performance of the samples. NiFeP/NFF-L and NiFeP/NFF-H were obtained through the same procedure for preparation of NiFeP/NFF by adjusting the amount of NaH_2PO_2 to be 0.3 and 0.5 g, respectively.

Fig. S5 CV curves of the samples at various scan rates during OER process.

Fig. S6 ECSA-normalized LSV curves of different catalysts.

Fig. S7 TOF plots as a function of overpotential of different catalysts during OER process.

Fig. S8 CV curves of the samples at various scan rates during the HER process.

Fig. S9 TOF plots as a function of overpotential of different catalysts during HER process.

Fig. S10 Collection of oxygen (a) and hydrogen (b) evolved from water electrolysis at a current density of 30 mA cm⁻² by water drainage method.

Fig. S11 SEM image (a) and high resolution XPS spectra (b-d) of the NiFeP/NFF cathode after overall water splitting test over 1000 h.

Fig. S12 EDS mapping image (a), CV curves (b) and the non-Faradaic capacitive currents against the scan rates (c) of the NiFeP/NFF cathode after overall water splitting test over 1000 h.

Fig. S13 TEM images (a,b), EDS mapping image (c), CV curves (d) and the non-Faradaic capacitive currents against the scan rates (e) of the NiFeP/NFF anode after overall water splitting test over 1000 h.

 Table S1 Comparison of the OER performance of NiFeP/NFF with other reported non-precious

 electrocatalysts in 1 M KOH.

Catalyst	Substrate	η 20 (mV)	Tafel slope (mV dec ⁻¹)	Ref.
(Fe-Ni)P@CC@PC-E-15	graphite electrode	215	38	1
Ni-Fe-P/Ni/CS(f.1)	copper sheet	232	60	2
Fe _{0.5} Ni _{1.5} P/PC	glassy carbon	254	76	3
Co/Ce-Ni ₃ S ₂ /NF	Ni foam	286	71.7	4
NiFeP@NPC	glass carbon	398	78	5
3DOM Ni ₃ Fe-P	glassy carbon	248	40	6
NiFeP	carbon cloth	281	74	7
Ni _{0.9} Co _{0.1} P@NNCs	Cu	236	54	8
Ni ₂ P/(NiFe) ₂ P(O)NAs	Ni foam	181	60	9
NiFe LDH/Co _{1-x} S	Ni foam	267	41.67	10
Ni ₂ P-Fe ₂ P/NF	Ni foam	230	58	11
$Fe_{35}Ni_{35}Co_{10}P_{20}$	self- supported	302	38	12
hcp-NiFe@NC	carbon cloth	245	41	13
CoP-FeP/CC	carbon cloth	300	131	14
Mo-doped Ni ₂ P	glassy carbon	270	68.5	15
C-(Fe-Ni)P@PC/(Ni-Co)P@CC	graphite	266	56	16
FeNi-P/NF	Ni foam	257	72	17
FeP-Ni/NF	Ni foam	241	60	18
FeNiP-NP	Ni foam	199	76	19
Ni-Fe-P-B	glassy carbon	283	38	20
NiFeP/NFF	Ni-Fe foam	189	37.2	This work

Catalyst	Substrate	η 10 (mV)	Tafel slope (mV dec ⁻¹)	Ref.
NiFeP	glassy carbon	690	116	21
Cr-doped FeNi-P/NCN	glassy carbon	190	68.51	22
NiFeP@C	glassy carbon	160	75.8	23
Fe _{0.5} Ni _{1.5} P/PC	glassy carbon	200	\	3
FeCoNiP@NC	glassy carbon	187	52.2	24
NiFeP	glassy carbon	182	69	25
Ni-Fe-P-B	glassy carbon	220	63	20
Ni-Fe-P-300	Ni foam	192	142.2	26
NiFeOF	self-supported	253	96	27
NiFe LDH@NiCoP/NF	Ni foam	120	88.2	28
FeNiSe-NS/EG	graphene foil	187	65	29
NiCoP/rGO	carbon fiber paper	209	124.1	30
NiFe LDH@CoP/NiP ₃	Ni foam	151	74	31
Fe-Ni ₃ C-2%	glassy carbon	244	41.3	32
3DOM Ni ₃ Fe-P	glassy carbon	120	61	6
CoFe@NiFe-200/NF	Ni foam	240	88.88	33
Ni ₃ S ₂ /NF	Ni foam	189	89.3	34
Ni ₂ P-Fe ₂ P/NF	Ni foam	128	86	11
Fe _{1.0} Co _{1.1} Ni _{1.4} -NC	glassy carbon	175	168	35
CoFeN _x -500 HNAs/NF	Ni foam	200	66.04	36
NiFeP/NFF	Ni-Fe foam	155	67.8	This work

Table S2 Comparison of the HER performance of NiFeP/NFF with other reported non-preciouselectrocatalysts in 1 M KOH.

Catalyst	Substrate	Voltage at	Durability (h)	Ref.
		$\frac{J_{10}(v)}{1.50}$	$\frac{a}{50} \int (\mathbf{mA} \mathbf{cm}^2)$	
NISe ₂ /3DSNG/NF	Ni foam	1.59	50 @ 20	37
FeNi/PNGs	polyamide film	1.67	17 @ 10	38
Fe _{0.5} N _{11.5} P/PC	glassy carbon	1.63	16 @ 10	3
$MnCo_2O_4(a) Ni_2P$	Ni foam	1.63	30 @ 10	39
Ni/Ni(OH) ₂	carbon paper	1.59	20 @ 10	40
Fe _{0.29} Co _{0.71} P/NF	Ni foam	1.59	10 @ 180	41
NiFe LDH@CoP/NiP ₃	Ni foam	1.64	275 @ 100	31
NiFeSP/NF	Ni foam	1.58	20 @ 10	42
NiFe-NCNT@MoS ₂ -12	Ni foam	1.6	12 @ 10	43
Fe, Al-NiSe ₂ /rGO	Ni foam	1.7	22 @ 10	44
Ni ₂ P-Fe ₂ P/NF	Ni foam	1.561	43@ 500	11
C-(Fe-Ni)P@PC/(Ni-Co)P	graphite	1.63	24 @ 10	16
np-NiFeCoP	self-supported	1.62	20 @ 10	45
CoFeN _x -500 HNAs/NF	Ni foam	1.592	40 @ 10	36
Pt/NiO/Ni/CNT-3	carbon paper	1.61	10 @ 10	46
FeCoNiP@NC	Ni foam	1.73	10 @ 10	24
Co/CNFs(1000)	self-supported	1.69	10 @ 10	47
FeP-Ni/NF	Ni foam	1.62	28 @ 20	18
Co/β-Mo ₂ C@N-CNTs	Ni foam	1.64	24 @ 10	48
CoP/NCNHP	carbon paper	1.64	26 @ 20	49
Ni-Fe-P-B	CFP	1.58	12 @ 100	20
np-(Ni _{0.67} Fe _{0.33}) ₄ P ₅	self-supported	1.62	20 @ 10	50
NiCoP/rGO	CFP	1.59	75 @ 10	30
3DOM Ni ₃ Fe-P	glassy carbon	1.65	20 @ 10	6
NiFe NTAs-NF	Ni foam	1.62	20 @ 10	51
Ni _{1.85} Fe _{0.15} P NSAs/NF	Ni foam	1.61	22 @ 40	52
FeNi/N-doped graphene	graphite	1.701	10 @ 10	53
E-Mo–NiCoP-3	carbon cloth	1.61	12 @ 50	54
Ni _{0.7} Fe _{0.3} PS ₃ @MXene	Ni foam	1.65	50 @ 10	55
NiFeP/NFF	Ni-Fe foam	1.58	1000 @ 500	This wo

Table S3 Comparison of the overall water splitting performance of NiFeP/NFF with other reported bifunctional electrocatalysts in 1 M KOH.

References

- X. Zhang, L. Zhang, G. G. Zhu, Y. X. Zhu and S. Y. Lu, *ACS Appl. Mater. Interfaces*, 2020, 12, 7153.
- 2 G. B. Darband, M. Aliofkhazraei, S. Hyun and S. Shanmugam, *ACS Appl. Mater. Interfaces*, 2020, **12**, 53719.
- 3 J. Huo, Y. Chen, Y. Liu, J. Guo, L. Lu, W. Li, Y. Wang and H. Liu, *Sustain. Mater. Techno.*, 2019, **22**, e00117.
- 4 X. Wu, T. Zhang, J. Wei, P. Feng, X. Yan and Y. Tang, *Nano Res.*, 2020, 13, 2130.
- 5 J. Wang and F. Ciucci, Appl. Catal. B: Environ., 2019, 254, 292.
- 6 J. Wang, Y. Niu, X. Teng, S. Gong, J. Huang, M. Xu and Z. Chen, J. Mater. Chem. A, 2020, 8, 24572.
- 7 C. Liu, H. Zhu, Z. Zhang, J. Hao, Y. Wu, J. Guan, S. Lu, F. Duan, M. Zhang and M. Du, *Sustainable Energy Fuels*, 2019, **3**, 3518.
- 8 G. B. Darband, M. Aliofkhazraei, S. Hyun, A. S. Rouhaghdam and S. Shanmugam, J. Power Sources, 2019, 429, 156.
- 9 W. Xi, G. Yan, Z. Lang, Y. Ma, H. Tan, H. Zhu, Y. Wang and Y. Li, *Small*, 2018, 14, 1802204.
- 10 F. Du, X. Ling, Z. Wang, S. Guo, Y. Zhang, H. He, G. Li, C. Jiang, Y. Zhou and Z. Zou, J. Catal., 2020, 389, 132.
- 11 L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen and Z. Ren, Adv. Funct. Mater., 2021, 31, 2006484.
- 12 S. Jiang, L. Zhu, Z. Yang and Y. Wang, *Electrochim. Acta*, 2021, 368, 137618.
- 13 C. Wang, H. Yang, Y. Zhang and Q. Wang, Angew. Chem. Int. Ed., 2019, 58, 6099.
- 14 Z. Niu, C. Qiu, J. Jiang and L. Ai, ACS Sustainable Chem. Eng., 2019, 7, 2335.
- 15 Q. Wang, H. Zhao, F. Li, W. She, X. Wang, L. Xu and H. Jiao, J. Mater. Chem. A, 2019, 7, 7636.
- 16 C. N. Lv, L. Zhang, X. H. Huang, Y. X. Zhu, X. Zhang, J. S. Hu and S. Y. Lu, *Nano Energy*, 2019, 65, 103995.
- 17 Q. Yan, T. Wei, J. Wu, X. Yang, M. Zhu, K. Cheng, K. Ye, K. Zhu, J. Yan, D. Cao, G. Wang and Y. Pan, *ACS Sustainable Chem. Eng.*, 2018, **6**, 9640.
- 18 G. Liu, Y. Wu, R. Yao, F. Zhao, Q. Zhao and J. Li, *Green Energy Environ.*, DOI: 10.1016/j.gee.2020.05.009.
- 19 M. Qian, S. Cui, D. Jiang, L. Zhang and P. Du, Adv. Mater., 2018, 30, 1704075.
- 20 W. Tang, X. Liu, Y. Li, Y. Pu, Y. Lu, Z. Song, Q. Wang, R. Yu and J. Shui, *Nano Res.*, 2020, 13, 447.
- 21 H. W. Man, C. S. Tsang, M. M. J. Li, J. Mo, B. Huang, L. Y. S. Lee, Y. C. Leung, K. Y. Wong and S. C. E. Tsang, *Appl. Catal. B: Environ.*, 2019, **242**, 186.
- 22 Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang, S. Luo, C. Tian, M. Liu and X. Lu, *Adv. Mater.*, 2019, 31, 1900178.
- 23 Q. Kang, M. Li, J. Shi, Q. Lu and F. Gao, ACS Appl. Mater. Interfaces, 2020, 12, 19447.
- 24 J. Sun, S. Li, Q. Zhang and J. Guan, Sustainable Energy Fuels, 2020, 4, 4531.
- 25 Y. Du, Z. Li, Y. Liu, Y. Yang and L. Wang, Appl. Surf. Sci., 2018, 457, 1081.
- 26 X. Zhang, N. Chen, Y. Wang, G. Wu and X. Du, Int. J. Hydrogen Energy, 2020, 45, 22921.
- 27 K. Liang, L. Guo, K. Marcus, S. Zhang, Z. Yang, D. E. Perea, L. Zhou, Y. Du and Y. Yang, ACS

Catal., 2017, 7, 8406.

- 28 H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg and R. B. Wehrspohn, *Adv. Funct. Mater.*, 2018, 28, 1706847.
- 29 J. Yang, C. Lei, H. Wang, B. Yang, Z. Li, M. Qiu, X. Zhuang, C. Yuan, L. Lei, Y. Hou and X. Feng, *Nanoscale*, 2019, **11**, 17571.
- 30 J. Li, M. Yan, X. Zhou, Z. Q. Huang, Z. Xia, C. R. Chang, Y. Ma and Y. Qu, Adv. Funct. Mater., 2016, 26, 6785.
- 31 C. Song, Y. Liu, Y. Wang, S. Tang, W. Li, Q. Li, J. Zeng, L. Chen, H. Peng and Y. Lei, *Sci. China Mater.*, DOI: 10.1007/s40843-020-1566-6.
- 32 H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong and Q. Yan, *Angew. Chem. Int. Ed.*, 2017, **56**, 12566.
- 33 R. Yang, Y. Zhou, Y. Xing, D. Li, D. Jiang, M. Chen, W. Shi and S. Yuan, *Appl. Catal. B: Environ.*, 2019, **253**, 131.
- 34 L. Li, C. Sun, B. Shang, Q. Li, J. Lei, N. Li and F. Pan, J. Mater. Chem. A, 2019, 7, 18003.
- 35 M. Khalid, A. M. B. Honorato, G. T. Filho and H. Varela, J. Mater. Chem. A, 2020, 8, 9021.
- 36 D. Li, Y. Xing, R. Yang, T. Wen, D. Jiang, W. Shi and S. Yuan, ACS Appl. Mater. Interfaces, 2020, 12, 29253.
- 37 J. Zhou, Z. Wang, D. Yang, F. Qi, X. Hao, W. Zhang and Y. Chen, *Nanoscale*, 2020, 12, 9866.
- 38 H. Wang, X. Feng, M. Zhou, X. Bo and L. Guo, ACS Appl. Nano Mater., 2020, 3, 6336.
- 39 J. Ge, W. Zhang, J. Tu, T. Xia, S. Chen and G. Xie, *Small*, 2020, 16, 2001856.
- 40 L. Dai, Z. N. Chen, L. Li, P. Yin, Z. Liu and H. Zhang, Adv. Mater., 2020, 32, 1906915.
- 41 H. Feng, L. Tang, G. Zeng, J. Yu, Y. Deng, Y. Zhou, J. Wang, C. Feng, T. Luo and B. Shao, *Nano Energy*, 2020, **67**, 104174.
- 42 Y. Xin, X. Kan, L. Y. Gan and Z. Zhang, ACS Nano, 2017, 11, 10303.
- 43 T. Wang, X. Zhang, P. Yang and S. P. Jiang, Inorg. Chem. Front., 2020, 7, 3578.
- 44 L. Chen, H. Jang, M. G. Kim, Q. Qin, X. Liu and J. Cho, Nanoscale, 2020, 12, 13680.
- 45 Y. Pang, W. Xu, S. Zhu, Z. Cui, Y. Liang, Z. Li, S. Wu, C. Chang and S. Luo, *J. Mater. Sci. Technol.*, 2021, **82**, 96.
- 46 Y. Bian, H. Wang, Z. Gao, J. Hu, D. Liu and L. Dai, *Nanoscale*, 2020, **12**, 14615.
- 47 Z. Yang, C. Zhao, Y. Qu, H. Zhou, F, Zhou, J. Wang, Y. Wu and Y. Li, *Adv. Mater.*, 2019, **31**, 1808043.
- 48 T. Ouyang, Y. Q. Ye, C. Y. Wu, K. Xiao and Z. Q. Liu, Angew. Chem. Int. Ed., 2019, 58, 4923.
- 49 Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen and Y. Li, *J. Am. Chem. Soc.*, 2018, **140**, 2610.
- 50 W. Xu, S. Zhu, Y. Liang, Z. Cui, X. Yang and A. Inoue, J. Mater. Chem. A, 2018, 6, 5574.
- 51 L. Xu, F. T. Zhang, J. H. Chen, X. Z. Fu, R. Sun and C. P. Wong, *ACS Appl. Energy Mater.*, 2018, **1**, 1210.
- 52 P. Wang, Z. Pu, Y. Li, L. Wu, Z. Tu, M. Jiang, Z. Kou, I. S. Amiinu and S. Mu, *ACS Appl. Mater*. *Interfaces*, 2017, **9**, 26001.
- 53 L. Zhang, J. S. Hu, X. H. Huang, J. Song and S. Y. Lu, Nano Energy, 2018, 48, 489.
- 54 J. Lin, Y. Yan, C. Li, X. Si, H. Wang, J. Qi, J. Cao, Z. Zhong, W. Fei and J. Feng, *Nano-Micro Lett.*, 2019, 11, 55.
- 55 C. F. Du, K. N. Dinh, Q. Liang, Y. Zheng, Y. Luo, J. Zhang and Q. Yan, *Adv. Energy Mater.*, 2018, 8, 1801127.