Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Molecular engineering for optical properties of 5-substituted-1,10-phenanthroline-based Ru(II) complexes

Elodie ROUSSET Olivier MONGIN Juliette MOREAU Latévi Max LAWSON-DAKU Marc BELEY Philippe GROS Sylviane CHEVREUX Mireille BLANCHARD-DESCE Gilles LEMERCIER

Contents

S1 ¹ H NMR spectra of Ru(II) complexes recorded at 250.1 MHz	5
S2 Electrochemical measurements	12
S3 Jablonski diagram	18
$\begin{array}{l} {\bf S4\ Influence\ of\ the\ phen\ \rightarrow\ phen-X\ (C=CN,\ NH_2)\ substitution\ on\ the\ absorption\ spectrum of\ [Ru(phen)_3]^{2+} \end{array}$	1 19
S5 Influence of the solvent on the absorption and emission spectra of $[Ru(phen)_{3-x}(phen NH_2)_x](PF_6)_2$ $(x = 1, 2, 3)$	22
S6 Time-Correlated Single Photon Counting (TCSPC) data	23
S7 Computational results: [Ru(phen) ₃] ²⁺ S7.1 HOMO-LUMO gap	26 26 26 27
S8 Computational results: [Ru(phen) ₂ (phen-NH ₂)] ²⁺ S8.1 HOMO-LUMO gap	43 43 43 44
S9 Computational results: [Ru(phen-NH ₂) ₃] ²⁺ S9.1 HOMO-LUMO gap	61 61 61 62
S10Computational results: [Ru(phen) ₂ (phen-CN)] ²⁺ S10.1HOMO-LUMO gap	81 81 81 82
S11Computational results: [Ru(phen-CN) ₃] ²⁺ S11.1HOMO-LUMO gap	97 97 97 98
S12Comparison of the computational results obtained for the <i>mer</i> and <i>fac</i> stereoisomers of $[\mathbf{Ru}(\mathbf{phen-NH}_2)_3]^{2+}$ S12.1Frontier molecular orbitals	f 114 114 115

List of Figures

S1	¹ H NMR spectrum of $[Ru(phen)_2(phen-NH_2)](PF6)_2$ in $CD_3CO.$	5
S2	¹ H NMR spectrum of $[Ru(phen)_2(phen-epox)](PF6)_2$ in CD ₃ CO	6
S3	¹ H NMR spectrum of $[Ru(phen)_2(phen-CN)](PF6)_2$ in CD_3CO	7
S4	¹ H NMR spectrum of $[Ru(phen)(phen-NH_2)_2](PF6)_2$ in CD ₃ CO	8
S5	¹ H NMR spectrum of $[Ru(phen-NH_2)_3](PF6)_2$ in CD ₃ CO	9
S6	¹ H NMR spectrum of $[Ru(phen-CN)_3](PF6)_2$ in CD_3CO	0
S7	¹ H NMR spectrum of $[Ru(phen)_3](PF6)_2$ in CD ₃ CO	1
$\mathbf{S8}$	Cyclic voltammetry of complex $[Ru(phen)_3]^{2+}$	2
S9	Cyclic voltammetry of complex $[Ru(phen)_2(phen-CN)]^{2+}$.3
S10	Cyclic voltammetry of complex $[Ru(phen-CN)_3]^{2+}$	4
S11	Cyclic voltammetry of complex $[Ru(phen)_2(phen-epoxy)]^{2+}$	5
S12	Cyclic voltammetry of complex $[Ru(phen)_2(phen-NH_2)]^{2+}$.6
S13	Cyclic voltammetry of complex $[Ru(phen-NH_2)_3]^{2+}$	7
S14	Simplified Jablonski diagram for Ru(II) complexes 1	.8
S15	Evolution of the molar extinction coefficient of $[Ru(phen)_{3-n}(phen-NH_2)_n]^{2+}$ at 370 nm with	
	the number n of phen-NH ₂ ligand	9
S16	Calculated absorption spectra of $[Ru(phen)_3]^{2+}$, $[Ru(phen)_2(phen-NH_2)]^{2+}$ and $[Ru(phen-NH_2)]^{2+}$	
	$NH_2_3^{2+}$: (Top) comparison of the spectra, (Bottom) difference spectra with respect to the	
	one of the reference complex $[\operatorname{Ru}(\operatorname{phen})_3]^{2+}$	20
S17	Calculated absorption spectra of $[Ru(phen)_3]^{2+}$, $[Ru(phen)_2(phen-CN)]^{2+}$ and $[Ru(phen-CN)_3]^{2+}$:	
	(Top) comparison of the spectra, (Bottom) difference spectra with respect to the one of the	
	reference complex $[\operatorname{Ru}(\operatorname{phen})_3]^{2+}$	21
S18	Absorption and emission spectra ($\lambda_{\text{exc}} = 460 \text{ nm}$) in several solvents of [Ru(phen) ₂ (phen-	
	NH_2](PF ₆) ₂ (top), [Ru(phen)(phen-NH ₂) ₂](PF ₆) ₂ (middle) and [Ru(phen-NH ₂) ₃](PF ₆) ₂ (bot-	
	tom). Spectra recorded in CH ₂ Cl ₂ (black/grey), CH ₃ CN (red/light red) and in DMSO (blue/light	
	blue)	22
S19	TCSPC data for $[Ru(phen)_2(phen-NH_2)](PF6)_2$ in deaerated $CH_3CN.$	23
S20	TCSPC data for $[Ru(phen)_2(phen-CN)](PF6)_2$ in deaerated $CH_3CN.$	24
S21	TCSPC data for $[Ru(phen)(phen-NH_2)_2](PF6)_2$ in deaerated $CH_3CN.$	24
S22	TCSPC data for $[Ru(phen-NH_2)_3](PF6)_2$ in deaerated $CH_3CN.$	25
S23	TCSPC data for $[Ru(phen-CN)_3](PF6)_2$ in deaerated $CH_3CN.$	25
S24	Absorption spectrum of $[\operatorname{Ru}(\operatorname{phen})_3]^{2+}$ (C ₂ symmetry) obtained by convoluting the calcu-	
	lated oscillators strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm ⁻¹	
	(SAOP/TZ2P results).	26
S25	Absorption spectrum of $[Ru(phen)_2(phen-NH_2)]^{2+}$ obtained by convoluting the calculated os-	
	cillators strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm ⁻¹ (SAOP/TZ2P)	
	results)	13
S26	Absorption spectrum of $[Ru(phen-NH_2)_3]^{2+}$ obtained by convoluting the calculated oscillators	
	strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm ⁻¹ (SAOP/TZ2P	
	results). \ldots \ldots \ldots \ldots \ldots \ldots	<i>i</i> 1
S27	Absorption spectrum of $[Ru(phen)_2(phen-CN)]^{2+}$ obtained by convoluting the calculated oscil-	
	lators strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm^{-1} (SAOP/TZ2P	
	results)	31
S28	Absorption spectrum of $[Ru(phen-CN)_3]^{2+}$ obtained by convoluting the calculated oscillators	
	strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm ⁻¹ (SAOP/TZ2P	
	results).)7
S29	Comparison of the calculated absorption spectra of the <i>mer</i> and <i>fac</i> isomers of $[Ru(phen-$	
	$(\mathrm{NH}_2)_3 ^{2+}$: (Top) spectra obtained by convoluting the calculated oscillators strengths f with	
	Gaussian having a full-with-at-half-maximum of 2000 cm^{-1} , (Bottom) the difference absorption	
	spectrum (SAOP/TZ2P results)	15

List of Tables

S1	Features of the $S_0 \rightarrow S_n$ electronic transition in $[\operatorname{Ru}(\operatorname{phen})_3]^{2+}$ (C ₂ symmetry): transition
	wavelength λ , oscillator strength f , description in terms of natural transition orbitals (NTO)
	with the weights ω of the NTO \rightarrow NTO transitions (SAOP/TZ2P results)

S1 1 H NMR spectra of Ru(II) complexes recorded at 250.1 MHz

Figure S1: ¹H NMR spectrum of [Ru(phen)₂(phen-NH₂)](PF6)₂ in CD₃CO.

Figure S2: ¹H NMR spectrum of $[Ru(phen)_2(phen-epox)](PF6)_2$ in CD_3CO .

Figure S3: ¹H NMR spectrum of $[Ru(phen)_2(phen-CN)](PF6)_2$ in CD_3CO .

Figure S4: ¹H NMR spectrum of $[Ru(phen)(phen-NH_2)_2](PF6)_2$ in CD₃CO.

Figure S5: ¹H NMR spectrum of $[Ru(phen-NH_2)_3](PF6)_2$ in CD₃CO.

Figure S6: ¹H NMR spectrum of $[Ru(phen-CN)_3](PF6)_2$ in CD_3CO .

Figure S7: ¹H NMR spectrum of $[Ru(phen)_3](PF6)_2$ in CD_3CO .

Figure S8: Cyclic voltammetry of complex $[Ru(phen)_3]^{2+}$.

Figure S9: Cyclic voltammetry of complex $[Ru(phen)_2(phen-CN)]^{2+}$.

Figure S10: Cyclic voltammetry of complex $[Ru(phen-CN)_3]^{2+}$.

Figure S11: Cyclic voltammetry of complex $[Ru(phen)_2(phen-epoxy)]^{2+}$.

Figure S12: Cyclic voltammetry of complex $[Ru(phen)_2(phen-NH_2)]^{2+}$.

Figure S13: Cyclic voltammetry of complex $[Ru(phen-NH_2)_3]^{2+}$.

S3 Jablonski diagram

Figure S14: Simplified Jablonski diagram for $\operatorname{Ru}(\operatorname{II})$ complexes

S4 Influence of the phen \rightarrow phen-X (C = CN, NH₂) substitution on the absorption spectrum of [Ru(phen)₃]²⁺

Figure S15: Evolution of the molar extinction coefficient of $[\operatorname{Ru}(\operatorname{phen})_{3-n}(\operatorname{phen-NH}_2)_n]^{2+}$ at 370 nm with the number n of phen-NH₂ ligand.

Figure S16: Calculated absorption spectra of $[Ru(phen)_3]^{2+}$, $[Ru(phen)_2(phen-NH_2)]^{2+}$ and $[Ru(phen-NH_2)_3]^{2+}$: (Top) comparison of the spectra, (Bottom) difference spectra with respect to the one of the reference complex $[Ru(phen)_3]^{2+}$.

Figure S17: Calculated absorption spectra of $[Ru(phen)_3]^{2+}$, $[Ru(phen)_2(phen-CN)]^{2+}$ and $[Ru(phen-CN)_3]^{2+}$: (Top) comparison of the spectra, (Bottom) difference spectra with respect to the one of the reference complex $[Ru(phen)_3]^{2+}$.

S5 Influence of the solvent on the absorption and emission spectra of $[Ru(phen)_{3-x}(phen-NH_2)_x](PF_6)_2$ (x = 1, 2, 3)

Figure S18: Absorption and emission spectra ($\lambda_{exc} = 460 \text{ nm}$) in several solvents of $[\text{Ru}(\text{phen})_2(\text{phen-NH}_2)](\text{PF}_6)_2$ (top), $[\text{Ru}(\text{phen})(\text{phen-NH}_2)_2](\text{PF}_6)_2$ (middle) and $[\text{Ru}(\text{phen-NH}_2)_3](\text{PF}_6)_2$ (bottom). Spectra recorded in CH₂Cl₂ (black/grey), CH₃CN (red/light red) and in DMSO (blue/light blue).

S6 Time-Correlated Single Photon Counting (TCSPC) data

Figure S19: TCSPC data for $[Ru(phen)_2(phen-NH_2)](PF6)_2$ in deaerated CH_3CN .

Figure S20: TCSPC data for $[Ru(phen)_2(phen-CN)](PF6)_2$ in deaerated CH_3CN .

Figure S21: TCSPC data for [Ru(phen)(phen-NH₂)₂](PF6)₂ in deaerated CH₃CN.

Figure S22: TCSPC data for $[Ru(phen-NH_2)_3](PF6)_2$ in deaerated CH_3CN .

Figure S23: TCSPC data for [Ru(phen-CN)₃](PF6)₂ in deaerated CH₃CN.

S7 Computational results: $[Ru(phen)_3]^{2+}$

S7.1 HOMO-LUMO gap

S7.2 Calculated absorption spectrum

Figure S24: Absorption spectrum of $[\operatorname{Ru}(\operatorname{phen})_3]^{2+}$ (C_2 symmetry) obtained by convoluting the calculated oscillators strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm⁻¹ (SAOP/TZ2P results).

S7.3 Analysis of the electronic absorption spectrum

Table S1: Features of the $S_0 \rightarrow S_n$ electronic transition in $[Ru(phen)_3]^{2+}$ (C_2 symmetry): transition wavelength λ , oscillator strength f, description in terms of natural transition orbitals (NTO) with the weights ω of the NTO \rightarrow NTO transitions (SAOP/TZ2P results)

Nr	Symm.	λ (nm)	f			NTO	
	v	· · ·	v	(%)	occ.	\rightarrow	virt.
1	$1^1\mathrm{B}$	575	0.001	99			
2	$1^{1}A$	538	0.003	68			
				31			
3	$2^{1}B$	535	0.001	90			And the second
4	$2^1 A$	531	0.011	60			
				39			
5	3^1B	530	0.016	81			
				15			
6	$4^{1}B$	514	0.000	51			

$\frac{100}{Nr}$	$\frac{100000}{\text{Symm.}}$	$\frac{\lambda \text{ (nm)}}{\lambda \text{ (nm)}}$	f		NT	0
	v	~ /	v	(%)	occ.	\rightarrow virt.
				48		
7	$3^{1}A$	513	0.000	88		
8	5^1B	505	0.002	79		
				12		
9	$4^{1}A$	505	0.001	81		
				12		
10	6^1B	490	0.002	76		
				23		
11	$5^1 A$	486	0.000	81		
				18		

Tab	le S1 cont	tinued	2				
Nr	Symm.	$\lambda \ (nm)$	f	(%)]	\rightarrow OTN	virt
12	$6^{1}A$	483	0.000	50			
				50			
13	$7^{1}B$	466	0.133	46			
				39			
				14			
14	$7^{1}A$	466	0.001	62			
				36			
15	8^1 A	464	0.163	45			
				39			
				14			
To	be continu	ved					

Tab	le S1 cont	tinued					
\mathbf{Nr}	Symm.	$\lambda \ (\mathrm{nm})$	f	(07)]	NTO	t
16	8 ¹ B	463	0.008	52		→	
				44			
17	9^1B	458	0.032	60			
				36			
18	$9^1 \mathrm{A}$	420	0.000	39			
				38			
				11			
				10	中		
19	10^{1} A	384	0.001	92			
20	$10^{1}B$	382	0.001	79			
To	be continu	ved					

Tab	le S1 cont	tinued	C			NEO	
Nr	Symm.	$\lambda \ (nm)$	f	(%)	OCC.	$\xrightarrow{\text{NTO}}$	virt.
				20			
21	$11^{1}A$	381	0.000	76			
				13			
22	11^1B	373	0.003	94			
23	$12^1 \mathrm{A}$	373	0.006	78			
				21			
24	12^1B	371	0.001	73			
				26			
25	$13^{1}B$	368	0.001	96			
26	$14^{1}B$	360	0.002	78			
To	be continu	led					

$\frac{Tab}{Nr}$	Symm	$\frac{\lambda \text{ (nm)}}{\lambda \text{ (nm)}}$	f			NTO	
111	Oymm.	X (IIII)	J	(%)	occ.	\rightarrow	virt.
				11			
27	$13^{1}A$	360	0.001	70			
				27			
28	15^1B	359	0.003	76			
				14			
29	$14^{1}A$	355	0.001	82		1	
				15			
30	$16^{1}\mathrm{B}$	355	0.001	65			
				31			
31	$15^{1}A$	354	0.000	56			
To	be continu	led					

1ao Nn	le SI cont	$\frac{tinued}{(nm)}$	£			NTO	
111	Symm.	× (IIII)	J	(%)	occ.	\rightarrow	virt.
				37			
32	$17^{1}\mathrm{B}$	353	0.000	42			
				27			
				22			
33	$16^{1}A$	352	0.000	71			
				12			
34	$18^{1}B$	350	0.015	55			
				19			
				19			
35	17^{1} A	349	0.012	33			

$\frac{Tab}{Nr}$	$\frac{le S1 \ cont}{Symm}$	$\frac{tinued}{(nm)}$	f			NTO	
111	bymm.	х (шп)	J	(%)	occ.	\rightarrow	virt.
				23			
				20			
				11			
36	18 ¹ A	349	0.003	53			
				28			
37	$19^{1}\mathrm{B}$	344	0.000	82			
				12			
38	19^{1} A	343	0.000	71			
				18			
39	$20^1 B$	341	0.000	71			
T_{0}	he continu	ad					

Nr	Symm.	λ (nm)	f			NTO	
	~,,	// (IIII)	5	(%)	occ.	\rightarrow	virt.
				21			
40	20^{1} A	339	0.000	94			
41	21^1B	338	0.000	94			× ·
42	21^{1} A	335	0.000	75			
				22			
43	22^{1} A	335	0.000	58			
				41			
44	22^1B	334	0.001	72			
				25			
45	$23^{1}\mathrm{B}$	329	0.003	38			

Nr	Symm.	λ (nm)	f	NTO			
	5		2	(%)	occ.	\rightarrow	virt.
				34			
				11			
46	23^1 A	329	0.000	54			
				27			
				11			
47	$24^{1}B$	328	0.004	64			
				17			
48	25^1B	327	0.001	52			
				32			
49	$24^{1}\mathrm{A}$	324	0.002	59			
١r	Symm.	$\lambda \ (nm)$	f			NTO	
----	-----------	------------------	-------	-----	------	---------------	-------
		· · /	·	(%)	occ.	\rightarrow	virt.
				19			
				15			
50	26^1B	323	0.000	52			
				17			
				15			
51	$25^{1}A$	322	0.005	51			
				17			
				17			
52	$27^{1}B$	322	0.026	42			
				29			

Nr	Symm.	λ (nm)	f			NTO	
			5	(%)	occ.	\rightarrow	virt.
				14			
53	26^{1} A	322	0.024	34			
				32			
				20			
54	28^1B	321	0.000	65			
				30			
55	29^1B	319	0.003	55			
				44			
56	$27^{1}A$	319	0.003	82			
				16			

Tab	le S1 cont	tinued	C			NEO	
Nr	Symm.	$\lambda \ (nm)$	f	(%)	000	$\frac{\text{NTO}}{\rightarrow}$	virt
57	28^{1} A	312	0.000	43			
				34			
				14			
58	30^1B	295	0.012	39			
				22			
				18			
				12			
59	29^{1} A	295	0.017	35			
				17			
				15			

Nr	Symm.	$\lambda \ (nm)$	f			NTO	
	~	<u> </u>	*	(%)	occ.	\rightarrow	virt.
				12		r o	
30	30^{1} A	295	0.001	36		e 19	
				19		ł	
				16		а 1	
				15		а 1	
31	31^1B	293	0.030	75	英帝	а 14	
32	31^1 A	292	0.030	81	中学	а 1	
33	32^1 A	290	0.000	51		р 14	
				23			
				22		e 10	

Tab	le S1 cont	tinued					
Nr	Symm.	$\lambda \ (nm)$	f	(07)		NTO	
64	$32^{1}B$	287	0.023	62	OCC.	→	
				11			
65	$33^{1}A$	287	0.025	62			
				12		1 L	
66	$33^1\mathrm{B}$	285	0.031	72		ę	
				17			
67	$34^{1}A$	285	0.022	53		,	
				42		2	
68	$34^{1}B$	285	0.045	75			
				15		,	

S8 Computational results: $[Ru(phen)_2(phen-NH_2)]^{2+}$

S8.1 HOMO-LUMO gap

S8.2 Calculated absorption spectrum

Figure S25: Absorption spectrum of $[Ru(phen)_2(phen-NH_2)]^{2+}$ obtained by convoluting the calculated oscillators strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm⁻¹ (SAOP/TZ2P results).

S8.3 Analysis of the electronic absorption spectrum

Table S2: Features of the $S_0 \rightarrow S_n$ electronic transition in $[Ru(phen)_2(phen-NH_2)]^{2+}$: transition wavelength λ , oscillator strength f, description in terms of natural transition orbitals (NTO) with the weights ω of NTO \rightarrow NTO transitions (SAOP/TZ2P results)

\overline{n}	λ (nm)	f		NTO	
	~ /	Ū	ω (%)	occ. \rightarrow	virt.
1	609	0.004	99		
2	586	0.001	99		
3	578	0.000	99		
4	548	0.001	89		
5	546	0.000	51		
			28		
			21		
6	541	0.007	86		
7	537	0.002	52		
To	be contini	ied			

n	λ (nm)	f		Ν	TO	
			ω (%)	occ.	\rightarrow	virt.
			12		9	
12	512	0.015	83		9	
			11			
13	508	0.003	44			
			32			
			16			
14	485	0.001	51		1	
			29			
			17		;	
15	482	0.004	56		,	

Table S2:	con	tinued	
> /	``	0	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⊀ ₀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	≺ ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ ,
20 18 466 0.031 68	1
18 466 0.031 68	~ ,
	~ ,
23	~)
19 461 0.092 70	~)
14	٠
	~)

Table S2: *continued*

$\frac{1001}{n}$	$\frac{\lambda \text{ (nm)}}{\lambda \text{ (nm)}}$	f		NTO	
		•	ω (%)	occ. \rightarrow	virt.
21	452	0.031	87		
			10		
22	436	0.023	49		
			21		
			13		
23	420	0.038	76		
			13		
24	412	0.022	73		
			13		
25	382	0.001	39		
To h	e contin	ued			

n	$\lambda \ (nm)$	f		N	ITO	
			ω (%)	occ.	\rightarrow	virt.
			32			
			11			
26	378	0.001	52			
			22			
			14			A State
27	375	0.007	46			
			25			
28	369	0.002	61			A A A A A A A A A A A A A A A A A A A
			24			
29	369	0.005	69			

n	λ (nm)	f		NT	07
			ω (%)	occ.	\rightarrow virt.
			15		
			11		
30	367	0.004	70		
			17		
31	359	0.001	42		
			25		
			15		
32	356	0.001	48		A ST
			18		
			16		

Table S2: continuedn λ (nm)fNTO ω (%) occ. \rightarrow virt. 0.003 0.000 0.0010.005To be continued

$n \lambda \ (\text{nm}) \qquad f$				N	ГО	
			ω (%)	occ.	\rightarrow virt.	
			16			
37 ;	347	0.012	45			
			19			
			15			
8 :	344	0.008	56			
			12			
			10			
9	344	0.003	39			
			28			
			20	A STATE		

 Table S2:
 continued

	λ (nm)	f		NTO	
			ω (%)	occ. \rightarrow	virt.
40	343	0.001	51		
			18		
41	342	0.000	80		
			10		
42	340	0.001	66		
			24		
43	339	0.001	62		
			22		
44	336	0.003	86		

$\lambda \lambda \text{ (nm)}$	f		N	UTO	
		ω (%)	occ.	\rightarrow	virt.
		21			
6 333	0.003	35			
		31			
		16			
7 332	0.003	47			
		30			
		14			
8 331	0.001	38			
		26			
		12			

n	$\lambda \ (nm)$	f		Ν	OTI	
	. ,	-	ω (%)	occ.	\rightarrow	virt
			12			
49	330	0.002	39			
			30			
			14			
50	326	0.002	66			
			18			
			10			
51	325	0.003	67			
			14			

323 0.002 64

To be continued

52

n	λ (nm)	f		N	ГО
			ω (%)	occ.	\rightarrow virt.
			19		
53	322	0.007	50		
			27		
54	321	0.007	52		
			20		
			14		
55	320	0.012	36		
			34		
			14		
56	317	0.010	50		

$n \lambda \text{ (nm)}$	f	NTO				
		ω (%)	occ.	\rightarrow virt.		
		13				
66 295	0.068	62				
		15				
57 292	0.023	62				
38 <u>288</u>	0.023	38				
		17				
		11				
69 287	0.026	38				
		15				
		12				

Table S2: continued $n \ \lambda \ (nm)$ fNTO $\omega \ (\%)$ occ. \rightarrow virt.702860.01324 \checkmark 1919 \checkmark \checkmark \checkmark 15 \checkmark \checkmark \checkmark 13 \checkmark \checkmark \checkmark

S9 Computational results: $[Ru(phen-NH_2)_3]^{2+}$

S9.1 HOMO-LUMO gap

S9.2 Calculated absorption spectrum

Figure S26: Absorption spectrum of $[Ru(phen-NH_2)_3]^{2+}$ obtained by convoluting the calculated oscillators strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm⁻¹ (SAOP/TZ2P results).

S9.3 Analysis of the electronic absorption spectrum

Table S3: Features of the $S_0 \rightarrow S_n$ electronic transition in $[Ru(phen-NH_2)_3]^{2+}$: transition wavelength λ , oscillator strength f, description in terms of natural transition orbitals (NTO) with the weights ω of NTO \rightarrow NTO transitions (SAOP/TZ2P results)

Tab	ole S3: co	ntinued				
n	$\lambda \ (\mathrm{nm})$	f	(07)]	NTO	t
			ω (70)		\rightarrow	
7	555	0.013	66			
			33			
8	550	0.001	95		,	-11
9	549	0.001	94		,	
10	532	0.000	34			
			31			
			21			
			12			
11	526	0.026	81			
T	he continu	wod				ľ

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	λ (nm)	f		NTO		
12 524 0.022 80 40 40 40 40 40 40 40		、 /	v	ω (%)	occ.	\rightarrow	virt.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				10			
12 12 12 13 513 0.004 85 14 510 0.001 84 12 12 12 12 12 13 14 14 14 14 14 14 14 14	12	524	0.022	80			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				12			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	513	0.004	85			
12 12 15 508 0.004 66 18 18 66 66 66 66 66 66 66 6	14	510	0.001	84			
$15 508 0.004 66 \qquad $				12			
18	15	508	0.004	66			
16 507 0.002 57				18			
	16	507	0.002	57			

Tab	$\frac{10}{10}$ $\frac{53}{10}$ $\frac{10}{10}$	ntinued r		ب ر		
n	$\lambda \ (nm)$	f	(1) (%)	1		virt
			<u> </u>		, , , , , , , , , , , , , , , , , , ,	
			14			
20	491	0.002	69			
			17			
21	489	0.006	68			
			24			
22	488	0.013	80			
23	486	0.012	73			
			10	- Alexandre		
24	484	0.003	84			

$n \lambda \text{ (nm)}$	n) f		NTO	
		$\omega~(\%)$	occ.	\rightarrow virt.
		13		
25 462	0.042	49		
		41		
26 457	0.057	48		
		41		
27 446	0.003	61		
		36		
28 445	0.071	81		-
		12		
			17	1

$n \overline{\lambda}$ (nm	f		N	ТО
		ω (%)	occ.	\rightarrow virt.
29 444	0.056	85		
30 438	0.008	73		
		23		
31 438	0.009	58		
		38		
32 435	0.022	69		
		25		
33 418	0.074	32		
		28	at the second	

rabl	1000000000000000000000000000000000000	ntinued f			NTO	
n	λ (nm)	J	ω (%)	000	\rightarrow	virt
			25			
34	416	0.052	54	-		
			19			
			17			
35	416	0.052	53		, , ,	
			36			
36	402	0.024	37			
			33			
37	360	0.006	93	-		
To h	he contin	ned				

	$f^{}$	NTO		
		ω (%)	- OCC	\rightarrow virt.
38 359	0.009	91		
39 358	0.009	90		
40 350	0.000	92		
41 348	0.000	73		
		16		
42 348	0.001	69		
		12		
		11		
				and the

$\frac{1an}{n}$	$\frac{\lambda (nm)}{\lambda (nm)}$	f f	NTO					
		0	ω (%)	occ. \rightarrow	virt.			
			26					
44	340	0.001	53					
			41					
45	339	0.000	58					
			39					
46	338	0.002	63					
			35					
47	337	0.002	80					
			17					
To	To be continued							

Table S3: continuedn λ (nm)fNTO ω (%) occ. \rightarrow virt. 0.000 0.0000.004 0.006
n	$\lambda \ (nm)$	f		NTO	
			ω (%)	occ. –	\rightarrow virt.
52	332	0.025	74		
			18		A CONTRACTOR
53	331	0.028	82		
			11		
54	319	0.002	92		
55	318	0.003	74		
			22		-
56	315	0.000	47		
			30		

\overline{n}	$\lambda \text{ (nm)}$	f	NTO				
)	J	ω (%)	OCC.	\rightarrow virt.		
			18				
69	294	0.256	20				
			18				
			18				
			10				
70	293	0.002	92				
71	292	0.002	85				
			11				
72	290	0.000	56		1		

Tab	le S3: co	ntinued			-		
n	$\lambda \ (nm)$	f	(0%)	000	$\frac{\text{NTO}}{\text{occ.}} \rightarrow \text{virt.}$		
			ω (70)		_7	<u></u>	
			36				
73	289	0.003	77				
			11				
74	288	0.008	72				
			13				
75	287	0.007	70				
			19	-			
76	286	0.004	86		-		
77	285	0.003	76				
$\overline{T_{\alpha}}$	he contin	und		u j		~ I	

Tab	ole S3: cor	ntinued				
n	$\lambda \ (nm)$	f		NT	ГО	
			ω (%)	occ.	\rightarrow	virt.
78	285	0.003	69			

S10 Computational results: $[Ru(phen)_2(phen-CN)]^{2+}$

S10.1 HOMO-LUMO gap

S10.2 Calculated absorption spectrum

Figure S27: Absorption spectrum of $[Ru(phen)_2(phen-CN)]^{2+}$ obtained by convoluting the calculated oscillators strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm⁻¹ (SAOP/TZ2P results).

S10.3 Analysis of the electronic absorption spectrum

Table S4: Features of the $S_0 \rightarrow S_n$ electronic transition in $[Ru(phen)_2(phen-CN)]^{2+}$: transition wavelength λ , oscillator strength f, description in terms of natural transition orbitals (NTO) with the weights ω of NTO \rightarrow NTO transitions (SAOP/TZ2P results)

Nr	λ (nm)	f		N	ТО
		5	ω (%)	occ.	\rightarrow virt.
1	584	0.000	99		
2	573	0.001	92		
3	550	0.003	63		
			31	A A A	
4	543	0.005	97		
5	537	0.002	55		
			30		
			14		
6	526	0.001	72		A CONTRACTOR
			24		
7	522	0.021	55		

To be continued

Nr	$\lambda \ (nm)$	f		NTO	
			ω (%)	occ.	\rightarrow virt.
			42	A A A A A A A A A A A A A A A A A A A	A CONTRACTOR
8	519	0.026	64	A A A A A A A A A A A A A A A A A A A	
			35		
9	509	0.006	58	A A A A A A A A A A A A A A A A A A A	
			35		A CONTRACTOR
10	500	0.002	79	A A A A A A A A A A A A A A A A A A A	
			19		
11	496	0.000	62	A A A A A A A A A A A A A A A A A A A	- Ales
			32		
12	479	0.054	49		
			27	A CONTRACTOR	
			20		

Table S4 a	continued
------------	-----------

Nr	λ (nm)	f		NT	0
	. ,	•	ω (%)	occ.	\rightarrow virt.
13	475	0.005	49		
			43		
14	473	0.058	84		A A A A A A A A A A A A A A A A A A A
			15		
15	458	0.135	85		
			12		3 Ales
16	456	0.015	91		
17	452	0.032	77		
			18	A A	
18	422	0.013	40		A REAL PROPERTY AND A REAL
			22		
			12		
To b	e continu	ued			

Tabl	$\frac{1}{2} e S4 con}{2}$	finued		N	TO	
INT	λ (nm)	J	(v) (%)		$\frac{10}{\rightarrow}$	wirt
19	397	0.000	57			
			19			
20	396	0.001	49			
			26			
			13			, and the second
21	393	0.000	73			
			22			
22	391	0.003	79	Alle .		
			10			
23	380	0.000	54			
			20			

Nr	$\frac{\lambda (\text{nm})}{\lambda}$	f		N	ТО	
1,1	х (шп)	J	ω (%)	OCC.	\rightarrow	virt.
			14			
24	379	0.002	43			
			28			A BEAR
			20			
25	376	0.003	43			A BERT
			32			
			14			
26	376	0.005	71			
27	368	0.002	63			
			15			
28	365	0.004	23			

Nr	$\lambda \ (nm)$	f	NTO			
			ω (%)	occ	\rightarrow virt.	
			23			
			15			
29	364	0.001	47			
			25			
			15			
30	357	0.007	67			
			10		A A A A A A A A A A A A A A A A A A A	
31	357	0.001	51			
			17			
32	357	0.003	40			
			20			

	λ (nm) f		NTO (0/)				
			ω (%)	occ.	\rightarrow virt.		
			15				
33	356	0.004	37				
			15				
			11				
			11		A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PRO		
34	355	0.003	49				
			27				
5	354	0.003	45				
			23				
			20				
	353	0.001	30				

$\operatorname{Nr} \lambda$ (nm)	\overline{f}		N	TO	
			ω (%)	occ.	\rightarrow	virt.
			30			
			17			
			13			
37 3	51	0.000	42			
			34			
			13			
38 3	50	0.006	62			
			17			
39 3	49	0.003	51			
			21			-
				-AA-		

Nr	λ (nm)	f		N	ТО	
			ω (%)	occ.	\rightarrow	virt.
			21			
			10			
41	346	0.001	38			
			25			
			16			
42	339	0.043	30			
			19			
			17			
			13			
43	338	0.001	69			
			14			

Tab	le S4 con	tinued				
Nr	$\lambda \ (nm)$	f	(07)	N	VTO	virt
			ω (70)	 X	\rightarrow	
44	338	0.002	54			
			18			-
45	334	0.000	42			A A A
			17			
			16			
46	331	0.014	92			
47	330	0.005	92			
48	329	0.003	33			
			26			
			18			
49	328	0.004	46			
			14			

Nr	λ (nm)	$\frac{f}{f}$		ľ	NTO	
	. ,	•	ω (%)	occ.	\rightarrow	virt.
			13			A State
			12			
50	327	0.005	25			
			22			
			20			
			18			
51	323	0.001	42			
			21			
			20			
52	322	0.003	80			
53	321	0.001	45			A BAR
			40			

Tabl	le S4 con	tinued				
Nr	$\lambda \ (nm)$	f		N	ТО	• .
			ω (%)		\rightarrow	
54	319	0.018	56			
			18			
			10			
55	316	0.029	45			
			26			
			16			
56	313	0.010	43			
			29			
			14			
57	312	0.009	76			
58	309	0.014	85			
59	308	0.007	90			
To b	e continu	ıed				

	$\lambda \ (nm)$	f		NT	0	
	. ,	÷	ω (%)	occ.	\rightarrow virt.	
60	305	0.004	50			
			42			
61	301	0.025	51			
			12			
62	296	0.005	59			
			25		s.g.	
63	295	0.013	44			
			27			
			10			
64	290	0.004	28			
			22			
			16			

Nr	$\frac{\lambda (\text{nm})}{\lambda (\text{nm})}$	$\frac{timueu}{f}$		NT	0
			ω (%)	occ.	\rightarrow virt.
65	288	0.133	34		
			15		
			12		
66	287	0.063	44		
			28		
67	286	0.015	46		
			15		
			13	A Second	
			10		
68	285	0.065	70		, ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
69	284	0.037	59		
			21		
To	be continu	ιed			

Tab						
Nr	λ (nm)	f		NT	ГО	
			ω (%)	occ.	\rightarrow	virt.
70	282	0.063	40			
			20			
			18			A Contraction

S11 Computational results: $[Ru(phen-CN)_3]^{2+}$

S11.1 HOMO-LUMO gap

S11.2 Calculated absorption spectrum

Figure S28: Absorption spectrum of $[Ru(phen-CN)_3]^{2+}$ obtained by convoluting the calculated oscillators strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm⁻¹ (SAOP/TZ2P results).

S11.3 Analysis of the electronic absorption spectrum

Table S5: Features of the $S_0 \rightarrow S_n$ electronic transition in $[Ru(phen-CN_2)_3]^{2+}$: transition wavelength λ , oscillator strength f, description in terms of natural transition orbitals (NTO) with the weights ω of NTO \rightarrow NTO transitions (SAOP/TZ2P results).

n	λ (nm)	f		Ν	ITO
			ω (%)	occ.	\rightarrow virt.
1	575	0.000	99	A A A	
2	553	0.000	95	A A A A A A A A A A A A A A A A A A A	
3	547	0.000	86	A A A A A A A A A A A A A A A A A A A	
			14	A A A	
4	547	0.000	87	A A A	
			13		
5	535	0.001	79	A A	
			17		
6	534	0.001	77		THE REAL
10	ve contini	ieu			

Tab	le S5:	continued
Tab	le S5:	continued

n	λ (nm)	f		N	ГО	
			ω (%)	occ.	\rightarrow virt.	
11	516	0.009	73			to .
			23	A A A A A A A A A A A A A A A A A A A		-
12	511	0.000	59			a
			40	A A		
13	501	0.005	61	A A A A A A A A A A A A A A A A A A A		
			35	A A A		k.p
14	498	0.003	53			-
			43			L.
15	492	0.024	56	HAR A		
			39	A A A A A A A A A A A A A A A A A A A		r.
To	be continu	ued				

Table S5: *continued*

n	λ (nm)	f		NTO	
			ω (%)	occ. \rightarrow	virt.
16	472	0.133	53		
			42	A A A A A A A A A A A A A A A A A A A	
17	469	0.148	54		
			41		
18	430	0.001	39		
			38		
			10		2
19	399	0.000	94		
20	398	0.001	91		
21	397	0.000	89		
To	be continu	ıed		•	

Table S5: *continued*

\overline{n}	λ (nm)	f		NTO	
		5	ω (%)	occ. \rightarrow	virt.
22	393	0.002	93		
23	392	0.002	92		
24	391	0.002	90		
25	389	0.002	60		
			38		
26	389	0.002	64		
			30		
27	387	0.000	66		
			30		
28	385	0.006	83		
То	be continu	ued			

$\frac{1}{n}$	$\frac{\lambda (\text{nm})}{\lambda}$	$\frac{f}{f}$			
	. ,	•	ω (%)	occ. \rightarrow	virt.
			17		
29	385	0.006	87		
			11		
30	384	0.001	76		
			19		
31	379	0.001	92	A A A A A A A A A A A A A A A A A A A	
32	370	0.003	58		
			34		A A A A A A A A A A A A A A A A A A A
33	369	0.003	59		
			29		
To	be continu	ued			

n	$\lambda ~({ m nm})$	f	NTO				
			ω (%)	occ.	\rightarrow	virt.	
84	368	0.001	43				
			40			- Alle	
			10				
5	362	0.009	94				
86	362	0.009	94				
57	352	0.001	85	A A A A A A A A A A A A A A A A A A A		ALC: N	
88	351	0.000	82	A A A A			
89	347	0.014	76			A Contraction	
10	346	0.016	62				
			17				

n	λ (nm)	f	NTO				
			ω (%)	occ.	\rightarrow virt.		
41	344	0.029	29				
			27				
			17				
			13				
2	343	0.015	54				
			18				
			10				
3	342	0.007	51				
			24				
4	341	0.008	42				

Table S5: continuedn λ (nm)fNTO ω (%) occ. \rightarrow virt. 0.0340.009 0.0150.015To be continued

$n = \lambda (nn)$	n) <i>f</i>	NTO				
		ω (%)	occ.	\rightarrow	virt.	
		20				
		13				
49 337	0.003	55		, Š		
		27		Ŧ		
		11				
50 336	0.000	69		英	jes.	
		19				
51 335	0.000	73		Ŧ		
		13		. Sta		
52 334	0.011	55		2		

	, J		1,	NTO				
		ω (%)	occ.	\rightarrow	virt.			
		28						
53 333	0.005	51						
		25						
		11						
		10			A BASK			
54 333	0.014	35						
		26						
		21						
55 332	0.024	34						
		23						

Table S5: continued						
n	$\lambda \ (\mathrm{nm})$	f	$\frac{\text{NTO}}{(1, \binom{N}{2})} \xrightarrow{\text{OCC}} \frac{1}{(2, \frac{N}{2})} \xrightarrow{\text{virt}} $			
59	310	0.017	49			
			20			
			11			
60	309	0.003	43			
			18			
			16			
61	308	0.048	82			
62	307	0.050	85	A A A A A A A A A A A A A A A A A A A		
63	303	0.002	46	A A A A A A A A A A A A A A A A A A A		
			27			
To be continued						

n	λ (nm)	f	NTO			
			ω (%)	occ.	\rightarrow virt.	
			24			
64	299	0.016	63			
			21		state.	
65	299	0.022	55			
			21			
			11			
66	298	0.025	76			
			14			
67	298	0.010	65		Ale.	
			28			
$\overline{T_{\alpha}}$	he contin	ned			-	

Table S5: *continued*

$\frac{1}{n}$	$\frac{10 \text{ sol} \text{ ocl}}{\lambda \text{ (nm)}}$	$\frac{f}{f}$		NTO		
			ω (%)	occ. \rightarrow	virt.	
68	298	0.010	67			
			28	A A A A A A A A A A A A A A A A A A A		
69	291	0.055	79			
70	291	0.085	77	A See		
71	291	0.107	78			
72	288	0.001	100		A REAL PROPERTY AND A REAL	
73	288	0.001	100			
74	287	0.001	99			
75	285	0.094	18			
			17			
To be continued						

Tab	ole S5: cor	ntinued				
n	$\lambda \ (nm)$	f	NTO			
			ω (%)	occ.	\rightarrow	virt.
			12			
76	285	0.123	17			
			17			
77	285	0.088	26			
			12			
			12			
			11	A A A	1	

S12 Comparison of the computational results obtained for the *mer* and *fac* stereoisomers of $[Ru(phen-NH_2)_3]^{2+}$

The comparison of the computational results obtained for the frontiers orbitals (Section S12.1) and absorption spectra (Section S12.2) of the *mer* and *fac* stereoisomers of $[Ru(phen-NH_2)_3]^{2+}$ indicates that the mer/fac isomerism has a weak influence on the properties of the investigated the homoleptic complexes of substituted phen ligands.

S12.1 Frontier molecular orbitals

The frontiers MOs of the two stereoisomers are very similar and their HOMO-LUMO gaps are very close: $\Delta \varepsilon_{fac} = 2.039$ eV and $\Delta \varepsilon_{mer} = 2.018$ eV (SR-SAOP/TZ2P results).

S12.2 Calculated absorption spectra

Figure S29: Comparison of the calculated absorption spectra of the *mer* and *fac* isomers of $[Ru(phen-NH_2)_3]^{2+}$: (Top) spectra obtained by convoluting the calculated oscillators strengths f with Gaussian having a full-with-at-half-maximum of 2000 cm⁻¹, (Bottom) the difference absorption spectrum (SAOP/TZ2P results).