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Experimental section

Synthesis of materials

The chemicals in the experiment are of analytical level (A.R.) and directedly used
without further treatment (Table S1). The KCF sample is synthesized via a facile one-
pot solvothermal route. Firstly, 2.0 mmol CuCl>-:2H>O and 5.0 mmol KF-2H>O are
dissolved in 35 mL ethylene glycol (EG), the mixture is magnetically stirred and
dispersed thoroughly in an ultrasonic bath at 100 W for 30 minutes. Next, the resulting
mixture is transferred to a 50 mL reactor, placed in an oven at 180 °C for 12 h. Finally,
washed the yielded precipitates after absolute alcohol centrifugation and obtained
sample. (The above-mentioned chemicals, agents and materials are listed in the Table
S1.)

Characterizations

The phases and crystalline properties are determined by X-ray diffraction (XRD). The
surface chemical compositions and electronic structures are checked by X-ray
photoelectron spectra (XPS). The morphology and size of particles are analyzed by
scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
The crystalline microstructures are resolved by the highresolution TEM (HRTEM) and
selected area electron diffraction (SAED). The specific surface area, pore volume and
size distribution are examined by nitrogen sorption isothermals with Brunauer-Emmett-
Teller (BET) and Barrett-Joyner-Halenda (BJH) methods.

Electrochemical measurements

The electrodes are prepared by the following two steps: firstly, a well-dispersed mixture
of 70 wt% active materials (as-synthesized KCF) or commercial AC or 918 , 20 wt%
acetylene black (AB) conductive agent and 10 wt% polyvinylidene fluoride binder
(PVDF, which is dissolved in into the N-methyl-2-pyrrolidone (NMP)) are casted onto
the current collectors (Cu foil and carbon-coated Al foil are used for the collectors of
anode and cathode respectively.), and followed by drying in a vacuum oven at 110 °C
for 12 h; secondly, the electrodes are pounched into disks with diameter of 12 mm, and
the mass loading of active materials was about 1.2~2.5 mg cm. The electrochemical
performances are examined via CHI660E electrochemical working stations and
Neware-CT-4008 testers. Tests for electrodes (KCF, AC, 918) are conducted in half-
cells by using the type 2032 coin cells. Tests for LIC (KCF//AC) and Li-DIB (KCF//918)
are conducted via full-cells with type 2032 coin cells, with certain mass ratios of anode
and cathode active materials. (More detailed information can be seen in Table S2-3.)
The electrolytes used for KCF and AC electrodes, LIC are 1 M LiPFg dissolved in the
mixed solvents of ethylene carbonate (EC), ethylmethyl carbonate (EMC) and dimethyl
carbonate (DMC) (1:1:1 in volume) with 1% vinylene carbonate (VVC) additives (LBC-
305-01, CAPCHEM, marked A electrolytes). The electrolytes used for KCF and 918
electrodes, Li-DIB are 1 M LiPFg dissolving in the mixed solvents of ethylene
carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) (1:1:1 in
volume) with the main fluoroethylene carbonate (FEC) additives (LBC-3045I,
CAPCHEM, marked B electrolytes). All cell assemblies are performed in a high pure
Arfilled dry glovebox (MIKROUNA, O and H>0<0.1 ppm) and all tests are carried
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out at room temperature (about 25 °C). (The more detailed information of the above-
mentioned chemicals, agents and materials can be seen the Table S1; the calculations
for the m+/m_, Cm, Em and Pm can be seen in the Methods.)

Methods: calculations for Cm, Em, Pm

The specific capacity (Cm, mAh g), energy density (Em,1, Wh kg™!) for LIC, energy
density (Em2, Wh kg™!) for Li-DIB, and power density (Pm, kW kg™!) are calculated
according to the equations S(1)-S(4).

Cn=0n/3.6 S(1)
Em,1 (Capacitor) = 0.5 (Cm AV) S(2)
Enm, (Battery) = (Cm}) S@3)
Pn=3.6 Em/td S4)

Where m, Om, AV, V, and td refer to the mass of active materials (mg, for half cells, it
means the mass of active materials of anode or cathode; for LIC and Li-DIB full-cells,
it means the total masses of active materials of anode and cathode), specific charge or
discharge capacity (C g, for anode, it means the charge capacity; for cathode and full-
cells, it refers to the discharge part), potential window (V), potential of the discharging
plateaus (V), and discharging time (s), respectively.



Supplemental figures

Fig S1. The crystalline structure of KCF sample.
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Fig S2. Nitrogen sorption isotherms (a), pore volumes (b) and pore size distributions (c) of KCF

sample.
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Fig S3. GCD curves for the respective 5" cycle at 0.1-3.2 A g* of KCF electrode with A electrolytes.
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Sample ICCD-PDF Crystal Space group Cell(axbxc)/ A3
system
KCuFs 18-1005 Tetragonal P4mm (99) 4.1429>4.1429>3.926
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Fig S9. Crystalline structure information of KCuFs, Cu, CuF,, LiF and Li,CO3 phases.




Fig S10. The ex-situ TEM, HRTEM and SEAD pattern of KCF sample in the 1st discharge/charge
(0.1 A g) state with A electrolytes.
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Supplemental tables

Table S1. Materials, chemicals and reagents used in this study.

Chemials,
Agents and Type Company Characteristics
Materials
CuClL*2H;0 AR SinoPharm purity>99.0%
KF+2H,0 AR SinoPharm purity>99.0%
EG AR SinoPharm purity>99.0%
D50: ~10 pum;
AC YEC 8b FuZhou YiHuan Density:> 0.4 g cm™;
SSA:2000~2500 m? g!
D50: 17-20 um;
Graphite 918 BTR Tab: 0.95-1.2 g cm™;
SSA:3.0-4.0 m? g*!
acetylene black Battery grade # #
NMP AR Kermel purity>99.0%
PVDF Battery grade # #
A electrolytes LBC-305-01 CAPCHEM 1 M LiPF¢/EC:EMC:DMC (1:1:1) /1% VC
1 M LiPF¢/EC: EMC: DEC
B electrolytes LBC-3045I CAPCHEM
(1:1:1)/FEC, etc.
Li plate 15.6*%0.45 mm China Energy 15.6*%0.45 mm
. GuangZhou ) )
Cu foil 200*0.015 . Total thickness: 15 pm; weight: 87 g m™
JiaYuan
Carbon coated-Al GuagZhou .
. 222%0.015 Total thickness: 17 um; Strength: 192 Mpa
foil NaNuo
Diameter: 25 mm,;
Glass GF/D 2.7 pm; .
) Whatman Thickness: 675 um;
microfiber filters 1823-025 ]
weight: 121 g m*?
ShenZhen
Cell components CR-2032 . #
TianChenHe
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Table S2. Specific capacity and cycling stability of anode and cathode and m-+/m.
ratio for KCF//AC LIC and KCF//918 Li-DIB.

Specific capacity of electrodes / (mAh g™)

Current density Anode Anode Cathode Cathode
/ (Ag?) KCF KCF AC Graphite
(0.01-3.0V) 0.01-3.0V) (2.0-4.7V) 2.5-5.2V)
with A with B with A with B
electrolytes electrolytes electrolytes electrolytes
0.1 65.6 61.1 95.0 75.1
0.2 62.8 58.4 85.1 71.2
0.4 56.1 53.0 72.1 69.0
0.8 55.6 45.8 62.7 66.8
1.6 48.4 39.1 54.0 63.1
3.2 48.1 31.1 453 52.5
Cycling behavior
Retention% / 1 A g / 191% 97% 46% 81%
1000 cycles
m-+/m- ratio for
KCF//AC LIC 1:1.5
based on the Qm of
anode and cathode at 0.1
A g with A electrolytes
m-+/m- ratio for
KCF//918 Li-DIB 1:1.2

based on the Qn of
anode and cathode at 0.1
A g with B electrolytes
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Table S3. EIS parameters of KCF electrode before (a); 1% diacharging/charging and
after cycling (b).

a
EIS parameters (Before cycling)
Model R(QR)W(CR)
R, (2) 4.834
Q (S-sec") 1.885x107
n 0.8112
Ret (Q) 93.62
W (S-sec’S) 0.002383
Ca (F) 6.809x 10
R. (Q) 3.513%10°
x? 3.69x1073
b
EIS parameters
KCF 1% diacharging 1** charging After cycling
Model R(CR)(CR)(C(RW))C
Rs () 4.966 4.866 4.055
Ca,1(F) 1.604x10° 7.954x107° 1.65x107
RsEr (2) 39.71 26.49 12.29
Ca,2 (F) 6.896x107 1.984x10° 3.028x10°
Ret, 1 (€2) 36.08 14.12 5.417
Ca, 3 (F) 4.772x107® 6.589x10* 8.755x10
Ret,2 (€2) 0.1455 16.21 18.97
W (S-sec’d) 3.632x107"! 0.09549 0.0226
Cint (F) 0.4548 0.1779 0.009038

x2 1.675x1072 1.765x107 1.776x107
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Table S4. Performance summary of the KCF//AC LIC and KCF//918 Li-DIB in the

study.
Cycling behavior
Type Capacitor or | Working | Energy density | Power density / retention%,
Cell system voltage / Wh kg! / KW kg! repeated cycles,
IV current density
100%/1000/4 A g*!
38.4-343 0.7-1.4 100%/2000/4 A g*!
0.01-4.0 28.6-20.6 2.7-5.0 100%/3000/4 A g*!
11.2-7.0 8.6-19.3 93%/4000/4 A g’!
KCF//AC 89%/5000/4 A g!
LIC with A 91%/1000/4 A g!
electrolytes 55.7-49.2 0.7-1.5 84%/2000/4 A g'!
0.01-4.3 40.6-29.9 2.8-5.0 78%/3000/4 A g-!
20.5-13.7 10.0-19.7 71%/4000/4 A g-!
62%/5000/4 A g-!
85%/1000/4 A g’!
70.0-63.6 0.8-1.6 63%/2000/4 A g’!
0.01-4.5 54.7-41.8 3.1-5.7 60%/3000/4 A g’!
28.3-14.2 10.4-22.2 50%/4000/4 A g’!
48%/5000/4 A g!
Li- KCF//918 90%/200/4 A g*!
DIB with B 70.5-51.5 1.0-2.0 84%/300/4 A g!
electrolytes 1.5-5.2 38.1-22.3-6.4 3.9-7.1-9.2 78%/500/4 A g!
72%/1000/4 A ¢!
65%/2000/4 A g!
48%/5000/4 A g*
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Table SS. A comparison for the performance of the KCF//AC LIC in the study with
some reported LICs in literature.

Working Energy . Cycling behavior /
K Power density .
LICs voltage density /KW kel retention%, repeated Refs.
/'V / Wh kg! 5 cycles, current density
LiNio.sMn 504//AC 1.5-3.25 19-8 0.13-3.5 81%/3000/1 A g! 1
TiO, -B//CNT 0.0-2.8 23-7 0.14-2.8 73%/1200/1.5 A g! 2
F-Fe20s//AC 0-3 28 2.5 90%/5000/2.25 A g! 3
H-TiO2/PPy/SWCNTSs//AC 1.0-3.0 31.3-1.9 0.2-4.0 77.8%/3000/0.5 A g* 4
TiOy/graphene//AC 1.0-3.0 42-8.9 0.8-8 100%/6500/4 A g'! 5
T-Nb,Os/Graphene
0.5-3.0 47-15 0.39-18 93%/2000/0.25 A g! 6
paper//AC
TiS2/IAC 0-2.6 49 0.1 76%/2000/1 A ¢! 7
NBC//LiMn;04 0-2.3 50-17 0.57-6.9 88%/5000/3 A g 8
FeS»/C/IAC 0-3.2 63-5 0.15-4 100%/2500/2 A g'! 9
AC/TiO2@PCNF-12 0.0-3.0 67.4-27.5 0.075-5 85%/10000/10 A g*! 10
100%/1000/4 A g'!
38.4-34.3 0.7-1.4 100%/2000/4 A g'!
0.01-4.0 28.6-20.6 2.7-5.0 100%/3000/4 A g'!
11.2-7.0 8.6-19.3 93%/4000/4 A g!
89%/5000/4 A g!
91%/1000/4 A g!
55.7-49.2 0.7-1.5 84%/2000/4 A g! Thi
is
KCF//AC 0.01-4.3 40.6-29.9 2.8-5.0 78%/3000/4 A g! K
wor
20.5-13.7 10.0-19.7 71%/4000/4 A g!
62%/5000/4 A g!
85%/1000/4 A g!
70.0-63.6 0.8-1.6 63%/2000/4 A g!
0.01-4.5 54.7-41.8 3.1-5.7 60%/3000/4 A g!
28.3-14.2 10.4-22.2 50%/4000/4 A g!
48%/5000/4 A g!
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Table S6. A comparison for the performance of the KCF//918 Li-DIB in the study with
some reported Li/Na-DIBs in literature.

Working . Power Cycling behavior /
] Energy density . ]
Li/Na-DIBs voltage /' Wh ke-! density retention%, repeated Refs.
/'V . / KW kg1 cycles, current density
WS»//Graphite 0-4 36 # 59%/30/0.1 A g! 11
TiO,//Graphite 1.5-3.7 36 # 88%/50/0.1 A g! 12
Carbon-coated
) i 0.2-1.4 40.1 0.2577 87%/500/10 C 13
Nale(PO4)3//N1(OH)z

Ti3CoTx//Graphite 0-3.2 40 1.608 85%/200/0.33 A g! 14

Nb,Os//Graphite 1.5-3.5 52 # 84%/100/0.1 A g! 15

Si-compound//Graphite 0-3 54 # 53%/100/0.1 A g! 16

RGO//Graphite 0-4 70 1.33 74%/50/1.33 A g’! 17

90%/200/4 A g™
84%/300/4 A g!
1.5-5.2 70.5-51.5 1.0-2.0 78%/500/4 A g This
KCF//918
38.1-23.3-6.4 3.9-7.1-9.2 72%/1000/4 A g! work
65%/2000/4 A g!
48%/5000/4 A gt
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