Construction of hierarchical layered hydroxide grown in situ on carbon tube derived from metal-organic framework for asymmetric supercapacitors

Chunyan Li^a, Gaomin Zhang^b, Xin Li^b, Huiqin Wang^c, Pengwei Huo^{b,*}, Yan Yan ^{b,**}, Xinkun Wang^{a,***}

a Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, PR China

b School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China

c School of energy and power engineering, Jiangsu University, Zhenjiang 212013, PR China

*Corresponding author: Prof. Pengwei Huo

E-mail address: huopw@mail.ujs.edu.cn

Postal address: 301, Xuefu Road, Zhenjiang, Jiangsu Province, China

**Corresponding author: Prof. Yan Yan

E-mail address: yanyan.ujs@outlook.com (Yan Yan)

***Corresponding author: Prof. Xinkun Wang

E-mail address: wxk@ujs.edu.cn

Fig.S1 The SEM NiGa-LDH@CNT-100@CC, NiGa-LDH@CNT-200@CC, NiGa-LDH@CNT-300@CC and NiGa-LDH@CNT-800@CC.

Fig.S2 The EDS images of Fe₂O₃@C@Fe₂O₃.

Fig.S3. Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution of the as-prepared CNT, NiGa-LDH@CNT and NiGa-LDH electrode materials.

Fig.S4 The CV and GCD curves of (a) and (b) CNT@CC; (c) and (d) NiGa-LDH@CC.

Fig.S5 The CV and GCD curves of NiGa-LDH@CNT-x@CC.

Fig.S6 The CV and GCD curves of Ni-MOF derived carbon nanosheets.

Fig.S7 The EIS curves of ASCs device before and after cycles.

Table S1 EIS parameters obtained by fitting EIS spectra of CNT@CC, NiGa-LDH@CC and NiGa-LDH@CNT-500@CC to a suitable equivalent circuit.

Parameter	CNT@CC	NiGa-LDH@CC	NiGa-LDH@CNT-
			500@CC
R_s/Ω	0.44	1.23	1.117
R_{ct}/Ω	3.176	16.83	6.823

Electrodo motorials	Specific	Refs	
Electroue materials	capacitance	•	
CNT@NiMr O	915.6 F g ⁻¹ at 1 A	1	
$CINT(\underline{w}_1NIIVIII_2O_4)$	g ⁻¹	-	
CNT/N:O	713.9 F g ⁻¹ at 1 A	2	
CNT/NIO	g ⁻¹	-	
Eas /C/CNT	617.5 F g ⁻¹ at 1 A	3	
$\operatorname{res}_{X}/C/CNT$	g ⁻¹	5	
NiCa I DU@CNT	2046 F g ⁻¹ at 1 A g ⁻	4	
NICO-LDH@CN1	1		
NiCoAl-LDH–carbon	1188 F g ⁻¹ at 1 A g ⁻	5	
nanohybrids	1	5	
	980.5 F g ⁻¹ at 1 A	6	
$\text{NISe}_2(W \subset \mathbb{N})$	g ⁻¹	0	
NiCa I DU@CNT	2590 E et 1 A et	This	
	2380 F g ⁻ at 1 A g	wor	
500(WCC	•	k	

 Table S2 The electrochemical performance of NiGa-LDH@CNT-500@CC compared with other works

Reference

- 1. Y. Sun, X. Du, J. Zhang, N. Huang, L. Yang, X. Sun, J. Power Sources, 2020, 473, 228609.
- 2. Y. H. Lai, S. Gupta, C. H. Hsiao, C. Y. Lee, N. H. Tai, *Electrochim. Acta*, 2020, **354**, 136744.
- Y. Zhang, M. Xu, Y. Wang, S. Lin, L. Ji, X. Li, Y. Zhang, J. Zhao, J. Alloy. Compd., 2020, 834, 154916.
- X. Li, J. Shen, W. Sun, X. Hong, R. Wang, X. Zhao, X. Yan, J. Mater. Chem. A, 2015, 3, 13244-13253.
- 5. W. Yang, Z. Gao, J. Wang, J. Ma, M. Zhang, L. Liu, ACS Appl. Mater. Inter., 2013, 5, 5443-5454.
- Y. Zheng, Y. Tian, S. Sarwar, J. Luo, X. Zhang, J. Power Sources, 2020, 452, 227793.