Supporting Information

Multinuclear transition metal-containing polyoxometalates constructed from Nb/W mixed-addendum precursor: synthesis, structures and catalytic performance

Wanru Xiao,^{a,} Shujun Li,*^{a,} Yue Zhao,^a Yubin Ma,^a Na Li,^a Jie Zhang ^a and Xuenian Chen*^{a,b}

^a School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University

^b College of Chemistry and Molecular Engineering Zhengzhou University

1
1-2
2-3
4-6
7
8
9
10-16
17

SI-1 Materials and Methods

The precursor $K_8H[P_2W_{15}(NbO_2)_3O_{59}]\cdot 12H_2O$ was synthesized according to the procedure described in the literature.¹ All other reagents were obtained commercially and used without further purification. The FT-IR analysis in ATR mode was performed by a Perkin Elmer Spectrum 400 FT-IR/FT-FIR Spectrometer equipped with ATR objective lens in the range of 400-4000 cm⁻¹ at room temperature. Powder X-ray diffraction (PXRD) measurements were performed on a Panalytical X'Pert3 Powder diffractometer with graphite monochromatized Cu *Ka* radiation at 298 K. Thermal analyses were performed on a Netzsch 449C thermal analyzer. The sample was heated to 800 °C with a heating rate of 5 °C/min, under an N₂ atmosphere. Elemental analyses were determined with a PLASMASPEC (I) ICP atomic emission spectrometer. X-ray photoelectron spectroscopy (XPS) measurements were performed on Thermo Fisher Scientific ESCALAB250Xi X-ray photoelectron spectroscopy. GC analyses were performed using Agilent GC6890. ¹H NMR spectra were recorded on a Bruker AVANCE III HD 600MHZ spectrometer.

SI-2 Synthesis of the title compounds

Synthesis of H₁₉[Cu₄(H₂O)₁₅(P₂W₁₅Nb₃O₆₂)₃]·21H₂O (Cu-POM):

 $K_8H[P_2W_{15}(NbO_2)_3O_{59}]$ ·12H₂O (0.25 g, 0.05 mmol), NaHSO₃ (0.05 g, 0.48 mmol) and Cu(NO₃)₂·3H₂O (0.12 g, 0.5 mmol) were dispersed in a mixture of 7 mL H₂O and 3.5 mL ethanol in a 25-mL vial. Then, 2.5 mL formic acid was added. The tightly capped vial was placed in an oven at 100 °C for 3 days, and light green single crystals were obtained. Yield: 0.15 g (68.2% based on K₈H[P₂W₁₅(NbO₂)₃O₅₉]·12H₂O). Anal. Calcd (%): Cu 1.93, P 1.41, W 62.71, Nb 6.34; found Cu 1.95, P 1.39, W 63.12, Nb 6.30. IR (KBr disks): 1578 (m), 1462 (m), 1083 (vs), 1014 (m), 944 (m), 894 (m), 723 (vs), 595 (w), 561 (w), 515 (s), 456 (w).

Synthesis of H₁₉[Co₄(H₂O)₇(P₂W₁₅Nb₃O₆₂)₃]·15H₂O (Co-POM):

 $K_8H[P_2W_{15}(NbO_2)_3O_{59}]$ ·12H₂O (0.25 g, 0.05 mmol), NaHSO₃ (0.05 g, 0.48 mmol) and CoCl₂·6H₂O (0.12 g, 0.5 mmol) were dispersed in a mixture of 7 mL H₂O and 3.5 mL ethanol in a 25-mL vial. Then, 7 mL formic acid was added. The tightly capped vial was placed in an oven at 100 °C for 3 days, and light pink single crystals were obtained. Yield: 0.08 g (37.2% based on $K_8H[P_2W_{15}(NbO_2)_3O_{59}]$ ·12H₂O). Anal. Calcd (%): Co 1.82, P 1.44, W 64.02, Nb 6.47; found Co 1.81, P 1.43, W 64.57, Nb 6.45. IR (KBr disks): 1615 (m), 1466 (m), 1083 (vs), 1014 (m), 944 (m), 889 (m), 726 (vs), 596 (m), 562 (vw), 516 (s), 460 (w).

Synthesis of H₁₉[Mn₄(H₂O)₇(P₂W₁₅Nb₃O₆₂)₃]·6(HCOOH)·18H₂O (Mn-POM):

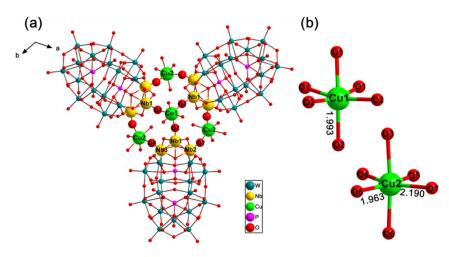
 $K_8H[P_2W_{15}(NbO_2)_3O_{59}]$ ·12H₂O (0.25 g, 0.05 mmol), NaHSO₃ (0.05 g, 0.48 mmol) and MnCl₂ (0.12 g, 0.9 mmol) were dispersed in a mixture of 7 mL H₂O and 3.5 mL ethanol in a 25-mL vial. Then, 4.5 mL formic acid was added. The tightly capped vial was placed in an oven at 100 °C for 3 days, and colorless single crystals were obtained. Yield: 0.13 g (58.9% based on $K_8H[P_2W_{15}(NbO_2)_3O_{59}]$ ·12H₂O). Anal. Calcd (%): Mn 1.66, P 1.40, W 62.50, Nb 6.32; found Mn 1.68, P 1.40, W 62.98, Nb 6.30. IR (KBr disks): 1579 (m), 1463 (m), 1083 (vs), 1014 (m), 944 (s), 910 (m), 740 (vs), 597 (w), 562 (w), 518 (s), 460 (w).

Synthesis of H₁₉[Zn₄(H₂O)₇(P₂W₁₅Nb₃O₆₂)₃]·23H₂O (Zn-POM):

 $K_8H[P_2W_{15}(NbO_2)_3O_{59}]$ ·12H₂O (0.25 g, 0.05 mmol), NaHSO₃ (0.05 g, 0.48 mmol) and Zn(NO₃)₂·6H₂O (0.30 g, 1.0 mmol) were dispersed in a mixture of 7 mL H₂O and 3.5 mL ethanol in a 25-mL vial. Then, 5 mL acetic acid was added. The tightly capped vial was placed in an oven

at 100 °C for 3 days, and colorless single crystals were obtained. Yield: 0.10 g (45.8% based on $K_8H[P_2W_{15}(NbO_2)_3O_{59}]$ ·12H₂O). Anal. Calcd (%): Zn 2.00, P 1.42, W 63.19, Nb 6.39; found Zn 1.99, P 1.41, W 63.60, Nb 6.42. IR (KBr disks): 1582 (s), 1463 (s), 1082 (vs), 1015 (s), 943 (m), 893 (s), 724 (vs), 596 (vw), 562 (vw), 516 (m), 459 (w).

SI-3 Single-crystal X-ray Crystallography


Single crystal XRD analysis of **Cu-POM**, **Co-POM**, **Mn-POM** and **Zn-POM** were recorded on a SuperNova Dual diffractometer using graphite-monochromated Cu $K\alpha$ radiation, $\lambda = 1.54184$ Å. The linear absorption coefficients, scattering factors for the atoms, and anomalous dispersion corrections were taken from the International Tables for X-Ray Crystallography. Empirical absorption corrections were applied. Structures were solved using direct methods (SHELXT)² and refined by full-matrix least-squares (SHELXL) interfaced with the programme OLEX2.³ Anisotropic thermal parameters were used to refine all non-hydrogen atoms, with the exception for a few oxygen atoms. Those hydrogen atoms attached to lattice water molecules were not located. Crystallization water molecules and guest molecules were estimated by thermogravimetry and only partial guest molecules were achieved with the X-ray structure analysis. The crystal data and structure refinement results are summarized in Table S1. Further details on the crystal structure investigations can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/ by quoting the depository numbers CCDC-2044367 (Cu-POM), CCDC-2044368 (Co-POM), CCDC-2044369 (Mn-POM), CCDC-2044370 (Zn-POM).

Compounds	Cu-POM	Со-РОМ	Mn-POM	Zn-POM
Formula	$H_{91}Cu_4O_{222}Nb_9P_6W_{45}$	$H_{63}Co_4O_{208}Nb_9P_6W_{45}$	$C_6H_{81}Mn_4O_{223}Nb_9P_6W_{45}$	H ₇₉ Zn ₄ O ₂₁₆ Nb ₉ P ₆ W
Formula weight (g·mol ⁻¹)	13192.57	12921.90	13236.12	13091.93
<i>T</i> (K)	293(2)	170.00(10)	150.00(10)	149.99(10)
Wavelength Cu-K (Å)	1.54184	1.54184	1.54184	1.54184
Crystal system	trigonal	trigonal	trigonal	trigonal
Space group	P-3	P-3	P-3	P-3
<i>a</i> (Å)	34.2443(4)	33.8321(5)	34.5750(3)	34.2369(4)
<i>b</i> (Å)	34.2443(4)	33.8321(5)	34.5750(3)	34.2369(4)
<i>c</i> (Å)	13.7584(2)	13.5769(3)	13.6491(2)	13.7551(2)
α (°)	90	90	90	90
β (°)	90	90	90	90
γ (°)	120	120	120	120
$V(Å^3)$	13972.5(4)	13458.3(5)	14130.5(3)	13963.1(4)
Ζ	6	2	2	2
D_{calc} (mg m ⁻³)	3.084	3.118	3.041	3.080
$\mu (\mathrm{mm}^{-1})$	37.494	40.378	38.144	37.557
F (000)	11234.0	10898.0	11206.0	11210.0
Crystalsize (mm)	$0.1\times0.05\times0.05$	$0.1\times0.05\times0.05$	$0.1 \times 0.05 \times 0.05$	$0.15 \times 0.05 \times 0.05$
Goodness-of-fit on F ²	1.062	1.023	1.062	1.045
Final R indices	$R_1 = 0.0805,$	$R_1 = 0.0647$	$R_1 = 0.0899$	$R_1 = 0.0877$
[<i>I</i> >2 <i>σ</i> (I)] ^[a]	$wR_2 = 0.2105$	$wR_2 = 0.1728$	$wR_2 = 0.2073$	$wR_2 = 0.2130$
<i>R</i> indices ^[a]	$R_1 = 0.0998,$	$R_1 = 0.0848$	$R_1 = 0.1223$	$R_1 = 0.1023$
(all data)	$wR_2 = 0.2266$	$wR_2 = 0.1876$	$wR_2 = 0.2226$	$wR_2 = 0.2234$

Table S1. Crystal data and structural refinements.

 $[a] R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|; wR_2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}$

SI-4 Structure figures

Figure S1. Ball-and-stick representation of connection between Cu ion and POM in **Cu-POM** (a), and the coordination environment of Cu1 and Cu2 ion (b).

Figure S2. The structure of bowl-shape in Cu-POM.

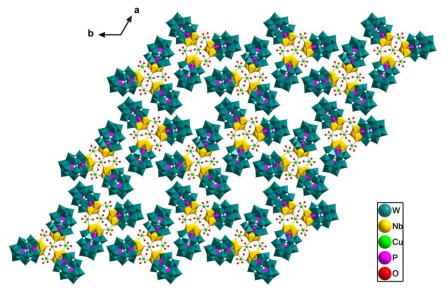
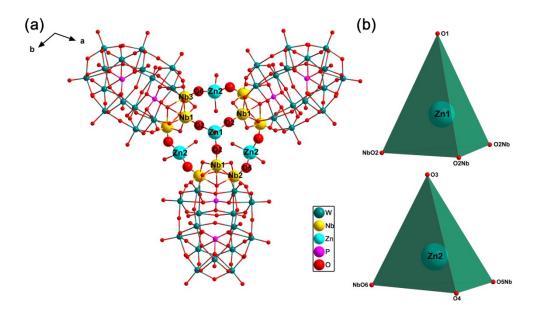



Figure S3. The packing structure of Cu-POM viewing along the *c* axis.

Figure S4. Ball-and-stick representation of connection between Zn ion and POM in **Zn-POM** (a); and the coordination environment of Zn1 and Zn2 ion (b).

Atom	Bond	Distance / Å	Bond Valence
01	O1-Cu1	1.973	0.452
O3	O3-Cu2	2.146	0.283
O4	O4-Cu2	2.024	0.394
O5	O5-Cu2	1.957	0.472
O6	O6-Cu2	2.093	0.327
01	O1-Co1	2.111	0.322
O3	O3-Co2	2.090	0.341
O4	O4-Co2	2.078	0.352
01	O1-Mn1	2.101	0.431
O3	O3-Mn2	2.133	0.369
O4	O4-Mn2	2.087	0.448
01	O1-Zn1	2.129	0.317
O3	O3-Zn2	2.097	0.346
O4	O4-Zn2	2.081	0.361

Table S2. Bond valence calculations of select O atoms of four compounds.

Atom	Bond	Distance / Å	Bond Valence	Bond Valence Sum (BVS)
Cu1	Cu1-O1(1)	1.973	0.365	
	Cu1-O1(2)	1.973	0.365	
	Cu1-O1(3)	1.973	0.365	• 100
	Cu1-O2(1)	1.994	0.345	2.130
	Cu1-O2(2)	1.994	0.345	
	Cu1-O2(3)	1.994	0.345	
	Cu2-O3	2.146	0.229	
	Cu2-O4	2.024	0.318	
	Cu2-O5	1.957	0.381	1.771
Cu2	Cu2-O6	2.093	0.264	1.771
	Cu2-O7	2.187	0.205	
	Cu2-O8	1.964	0.374	
	Co1-O1	2.111	0.322	
0.1	Co1-O2(1)	1.945	0.505	1.027
Col	Co1-O2(2)	1.945	0.505	1.837
	Co1-O2(3)	1.945	0.505	
Co2	Co2-O3	2.090	0.341	1.626
	Co2-O4	2.078	0.344	
	Co2-O5	1.956	0.490	
	Co2-O6	1.987	0.451	
	Mn1-O1	2.101	0.431	
M., 1	Mn1-O2(1)	1.921	0.702	2 5 2 7
Mn1	Mn1-O2(2)	1.921	0.702	2.537
	Mn1-O2(3)	1.921	0.702	
	Mn2-O3	2.133	0.396	
Ma	Mn2-O4	2.087	0.448	2 2 (2
Mn2	Mn2-O5	1.918	0.708	2.263
	Mn2-O6	1.916	0.711	
7.1	Zn1-O1	2.129	0.317	
	Zn1-O2(1)	1.951	0.513	1.856
Zn1	Zn1-O2(2)	1.951	0.513	
	Zn1-O2(3)	1.951	0.513	
Zn2	Zn2-O3	2.097	0.346	
	Zn2-O4	2.081	0.361	1.660
	Zn2-O5	2.001	0.448	1.669
	Zn2-O6	1.950	0.514	

Table S3. Bond valence sum calculations of Cu, Co, Mn and Zn ions of four compounds.

SI-5 Powder X-ray diffraction patterns

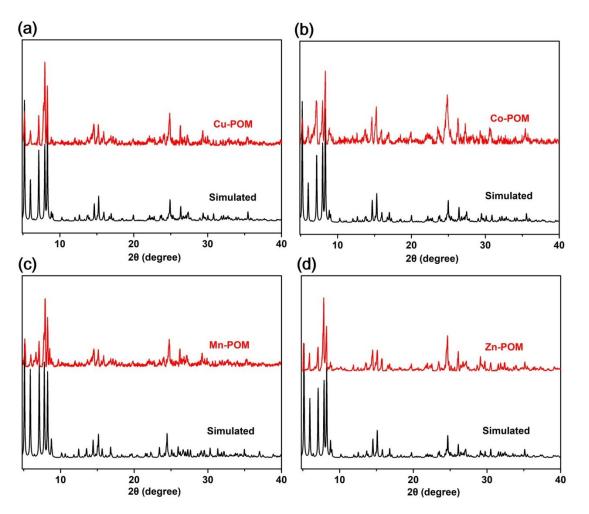


Figure S5. Simulated (black) and experimental (red) PXRD patterns of four compounds.

SI-6 FTIR Spectroscopy

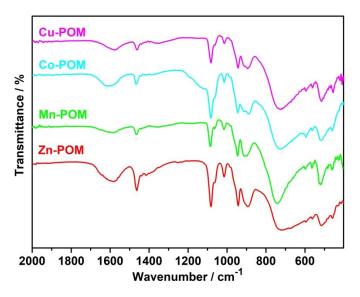


Figure S6. IR spectra of the four compounds.

The four compounds exhibit similar characteristic peak. The signals at 1083 cm⁻¹ and 1014 cm⁻¹ are attributed to vibrations of P-O_a; the absorption peaks at the range of 946-943 cm⁻¹, 892-889 cm⁻¹, 740-728 cm⁻¹ are attributed to the W-O_t, W-O_b-W, W-O_c-W vibrations in the Dawson framework of four compounds.

SI-7 Thermal analyses

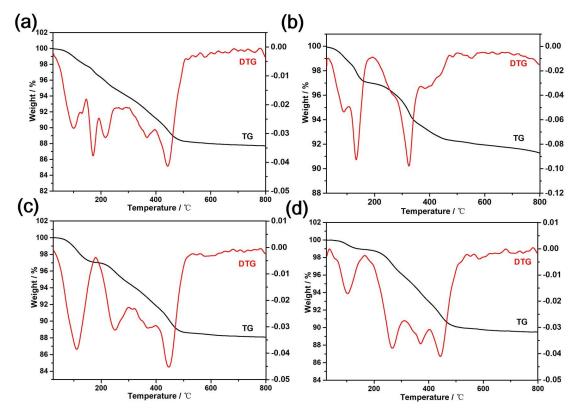
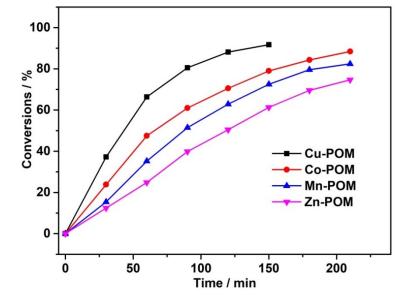



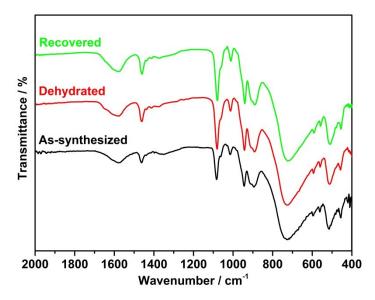
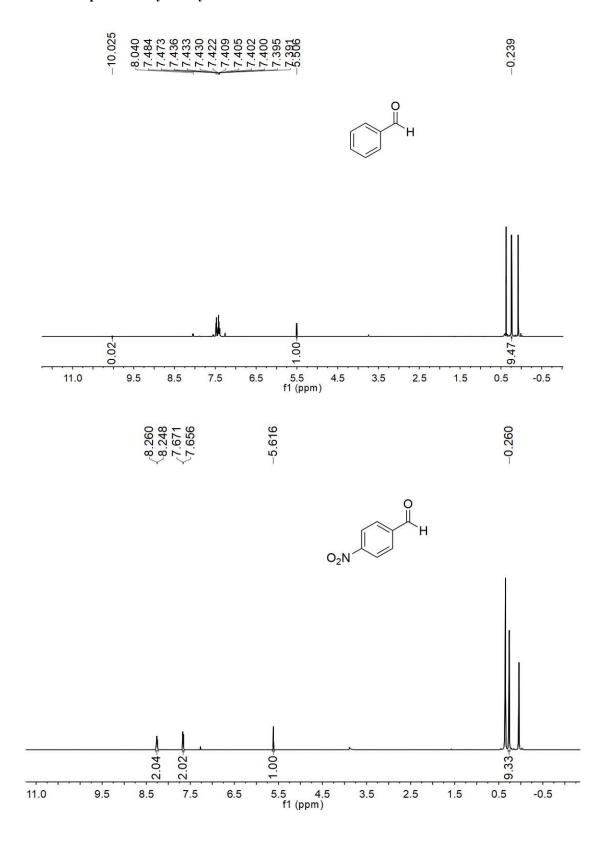
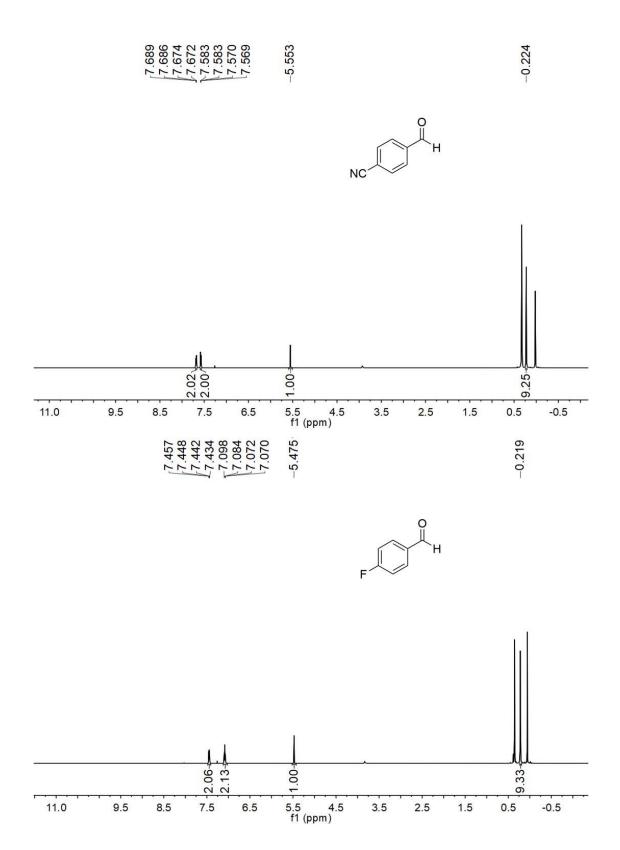
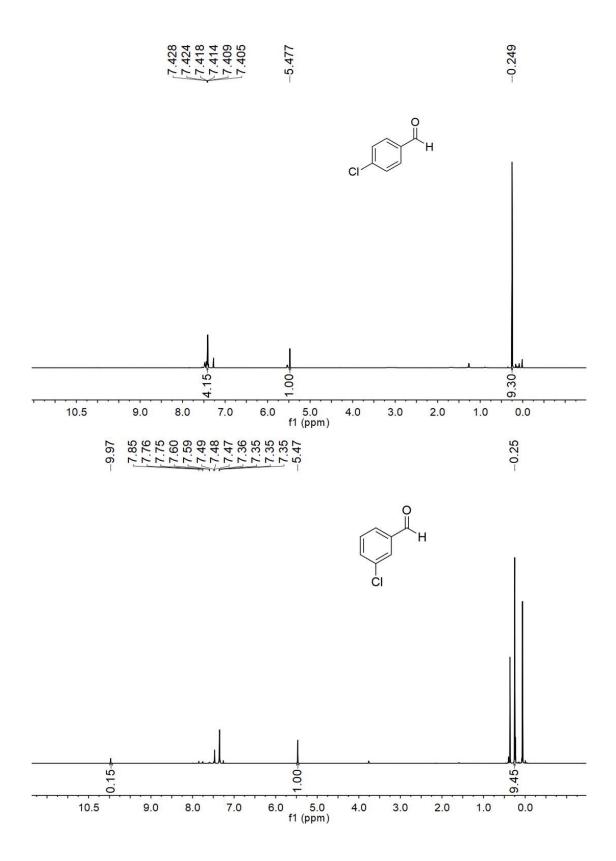
Figure S7. Thermogravimetric curves of Cu-POM (a), Co-POM (b), Mn-POM (c) and Zn-POM (d).

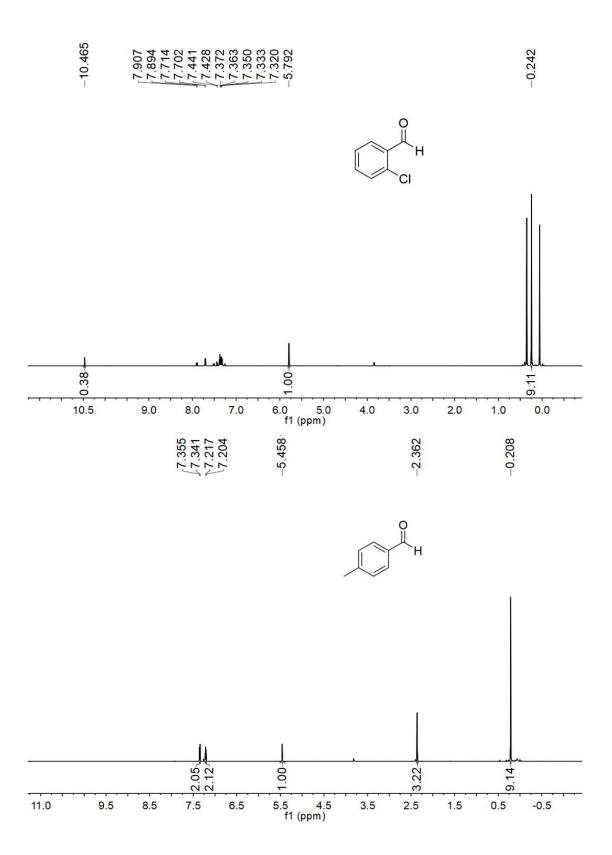
The thermal behavior of four compounds has been investigated under nitrogen atmospheres between 25 and 800 °C by thermogravimetric analysis (TGA) and the first derivative of the thermogravimetric (DTG). The TG curve of four compounds exhibits similar continuous weight loss process. For **Cu-POM**, the weight loss of 4.89% (4.91% calculated) from 25 to 243 °C is attributed to the loss of 21 lattice water molecules and 15 coordinated water molecules. The weight loss of 3.00% (3.06% calculated) from 25 to 185 °C for **Co-POM** is attributed to the loss of 15 lattice water molecules and 7 coordinated water molecules. The weight loss of 5.48% (5.49% calculated) from 25 to 301 °C for **Mn-POM** is attributed to the loss of 4.18% (4.13% calculated) from 25 to 311 °C for **Zn-POM** is attributed to the loss of 23 lattice water molecules and 7 coordinated water molecules. The weight loss of 4.18% (4.13% calculated) for **Z5** to 311 °C for **Zn-POM** is attributed to the loss of 23 lattice water molecules. The rest weight losses before 800 °C of four compounds e.g. 6.92% (5.82% calculated) for **Cu-POM**, 5.05% (5.94% calculated) for **Co-POM**, 6.04% (5.75% calculated) for **Mn-POM**, and 5.93% (5.86% calculated) for **Zn-POM** can be ascribed to the dehydration of protons and the partial decomposition of polyoxoanions.⁴

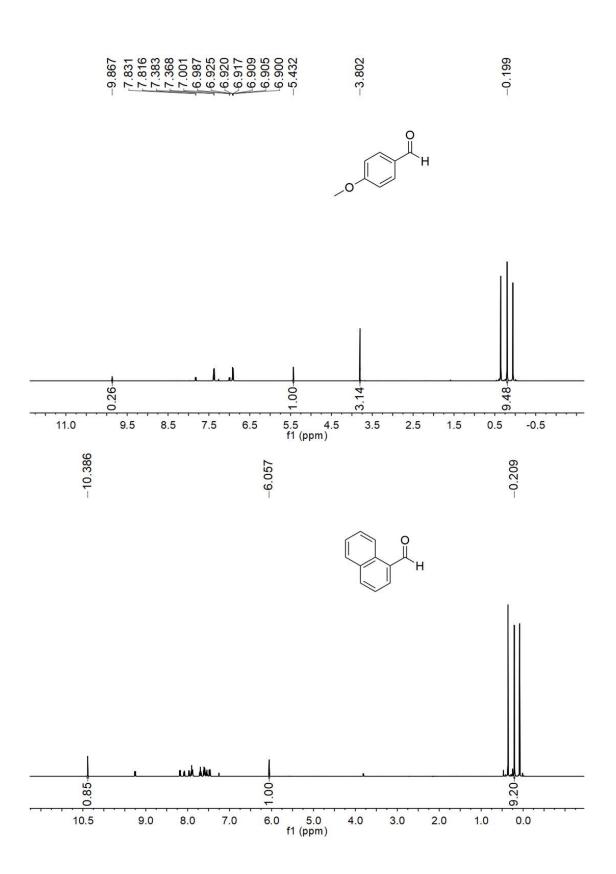
SI-8 Cyanosilylation reaction

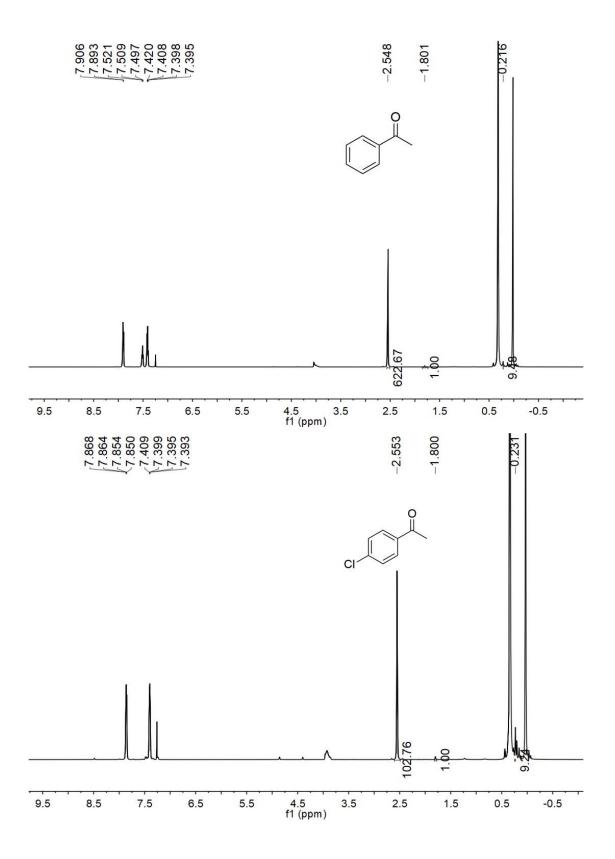
A typical procedure for cyanosilylation reaction was performed as follows: 1.5 mmol TMSCN, 0.5 mmol aldehydes/ketones, and 0.5 mol% catalysts were added to a 10 mL Schlenk tube in the absence of solvent. The reaction mixture was stirred at 25 °C under nitrogen atmosphere. The progress of the reaction of the aldehydes or ketones with TMSCN was qualitatively analyzed by GC analyses. Yields were determined using ¹H NMR by tracing the change of characteristic hydrogen resonance of in substrate aldehydes/ketones and products using CDCl₃ as solvent. Before the catalytic test, the catalysts were activated at 100 °C under vacuum conditions to expose coordination unsaturated active sites .^{5,6} After the reaction was completed, the catalysts were recovered by centrifugation and purified by washing with ethanol and then air-dried for the next cycle.

Figure S8. Conversions curves of cyanosilylation reaction of benzaldehyde catalyzed by four compounds.


Figure S9. The IR spectra of Cu-POM before and after catalysis.


¹H NMR Spectra of Cyanosilylation Products⁷⁻⁹



SI-9 References

- 1 J. Gong, Y. G. Chen, L. Y. Qu and Q. Liu, Polyhedron, 1996, 15, 2273–2277.
- 2 G. M. Sheldrick, Acta Cryst. A., 2008, 64, 112-122.
- 3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- 4 J. Wang, P. Ma, S. Li, Q. Xu, Y. Li, J. Niu and J. Wang, Inorg. Chem., 2019, 58, 57-60.
- 5 T.-P. Hu, Y.-Q. Zhao, Z. Jagličić, K. Yu, X.-P. Wang and D. Sun, *Inorg. Chem.*, 2015, 54, 7415-7423.
- 6 X.-N. Zhang, L. Liu, Z.-B. Han, M.-L. Gao and D.-Q. Yuan, RSC Adv., 2015, 5, 10119-10124.
- 7 W. Wang, M. Luo, W. Yao, M. Ma, S. A. Pullarkat, L. Xu and P.-H. Leung, *ACS Sustain. Chem. Eng.*, 2019, **7**, 1718-1722.
- 8 C. Zhu, Q. Xia, X. Chen, Y. Liu, X. Du and Y. Cui, ACS Catal., 2016, 6, 7590-7596.
- 9 S. Rawat, M. Bhandari, B. Prashanth and S. Singh, ChemCatChem, 2020, 12, 2407-2411.