Amino acid-templated zinc phosphites: low-dimensional structures, fluorescence, and nonlinear optical properties

Yumei Mao, ${ }^{a}$ Xuehua Dong, ${ }^{a}$ Yuandan Deng, ${ }^{a}$ Jing Li, ${ }^{*}$ a Ling Huang, ${ }^{\text {b }}$ Hongmei

Zeng, ${ }^{\text {a }}$ Guohong Zou ${ }^{\text {a }}$ and Zhien Lin ${ }^{*}{ }^{a}$
${ }^{\text {a }}$ College of Chemistry, Sichuan University, Chengdu 610064, China
${ }^{\mathrm{b}}$ College of Chemistry and Materials Science, Sichuan Normal University, Chengdu
610068, China

* To whom correspondence should be addressed. Tel: +86-28-85412284. E-mail:
jingli@scu.edu.cn (J. Li); zhienlin@scu.edu.cn (Z. Lin)

Physical measurements:

Powder X-ray diffraction (PXRD) data were obtained using a Rigaku D/MAX-rA diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.5418 \AA$). IR spectra (KBr pellets) were recorded on a Nicolet Impact 410 FTIR spectrometer. The thermogravimetric analyses were performed on a Netzsch STA 449c analyzer in a flow of N_{2} with a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. Diffuse reflectance spectra were recorded at room temperature on a Shimadzu UV-2600 UV-vis spectrophotometer in the wavelength range of $200-800 \mathrm{~nm} . \mathrm{BaSO}_{4}$ powder was used as 100% reflectance reference.The fluorescent spectrum was collected on a FS5 Spectrofluorometer (Edinburgh instruments) equipped with a 150 W CW Ozone-free xenon arc lamp. Single crystal X-ray diffraction data were collected on a New Gemini, Dual, Cu at zero, EosS2 diffractometer at room temperature. The crystal structures were solved by direct methods. The structures were refined on F^{2} by full-matrix least-squares methods using the SHELXTL program package. ${ }^{1}$

Theoretical Calculations:

The first principles calculations for $\mathrm{Zn}\left(\mathrm{HPO}_{3}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}\right)$ were carried out using the CASTEP suite of program to understand the relationship between structures and properties of it. ${ }^{2}$ The band structures, density of states (DOS)/partial DOS (PDOS) and Electron-density difference (EDD) were calculated by Materials Studio (MS), under the Norm conserving pseudopotentials. ${ }^{3}$ The kinetic cutoff energy set as 830 eV and the k-point ${ }^{4}$ sampling in the Brilliouin zone was performed using $2 \times 2 \times 5$. The Perdew-Burke-Ernzerhof (PBE) functional with generalized gradient approximation (GGA) was adopted for all calculations. ${ }^{5}$ The rest parameters used in the calculations were set by the default values of the CASTEP.

Reference

1. G. M. Sheldrick, Acta Cryst., Sect. A, 2008, 64, 112.
2. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953.
3. K. Kobayashi, Comp. Mater. Sci., 1999, 14, 72.
4. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188.
5. D. Vanderhilt, Phys. Rev. B, 1990, 15, 7892.

Fig. S1. Experimental and simulated PXRD patterns of SCU-6.

Fig. S2. Experimental and simulated PXRD patterns of SCU-15.

Fig. S3. The TGA curve of SCU-6.

Fig. S4. The TGA curve of SCU-15.

Fig. S5. The CIE coordinates for the powder sample of SCU-6.

Fig. S6. The CIE coordinates for the powder sample of SCU-15.

Fig. S7. Solid-state UV-vis diffuse reflectance spectrum of SCU-6.

Fig. S8 (a) and (b) Electron-density difference maps of SCU-6.

Fig. S9. Photos of SCU-6 under exposure of portable UV lamp.

Fig. S10. Photos of SCU-15 under exposure of portable UV lamp.

Fig. S11. ORTEP plot of the asymmetric unit of SCU-6L, showing the labeling scheme and the 50% probability displacement ellipsoid.

Fig. S12. ORTEP plot of the asymmetric unit of SCU-6D, showing the labeling scheme and the 50% probability displacement ellipsoid.

Fig. S13. ORTEP plot of the asymmetric unit of SCU-15, showing the labeling scheme and the 50% probability displacement ellipsoid.

Fig. S14. Ball-and-stick representation the chiral structures of SCU-6L and SCU-6D with opposite handedness.

