Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supplementary Information for

High Catalytic Methane Oxidation Activity of Monocationic µ–Nitrido-Bridged Iron Phthalocyanine Dimer with Sixteen Peripheral Methyl Groups

Yasuyuki Yamada,^{1,2,3}* Jyunichi Kura,¹ Yuka Toyoda,²

and Kentaro Tanaka1*

¹Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku,

Nagoya 464-8602, Japan

²Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

³JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

*E-mail: yy@chem.nagoya-u.ac.jp, kentaro@chem.nagoya-u.ac.jp

Figure S1. ¹H-NMR spectrum of 1,2-dicyano-4,5-dimethylbenzene **5** in CDCl₃.

Figure S2. MALDI-TOF spectrum of **6**. Inset: Comparison of the calculated and observed isotopic distribution patterns of **[6]**⁺.

Figure S3. MALDI-TOF spectrum of $4^+ \cdot l^-$. Inset: Comparison of the calculated and observed isotopic distribution patterns of $[4]^+$.

Table S1. Amounts of the oxidized products observed in the reactions under methane (1.0 MPa) or N₂ (1.0 MPa) atmosphere using μ -nitrido-bridged iron phthalocyanine dimer-based catalysts on silica supports.

Entry	Catalyst	Reaction Time / h	Gas	Additive	[CH ₃ OH] / mM	[HCHO] / mM	[HCOOH] / mM	TTN(CH4) or TTN(N2)	TTN _{eff}	MCN _{eff}
1	$4^{+} \cdot I^{-}/SiO_2$	4	CH4 (1.0 MPa)	•••	0.19	0.36	0.50	44	36	16
2	$4 + I - SiO_2$	8	CH4 (1.0 MPa)	•••	0.21	0.68	1.41	104	86	32
3	$4 + I - SiO_2$	12	CH4 (1.0 MPa)	•••	0.19	0.75	2.15	147	135	51
4	$4^+ \cdot I^-/SiO_2$	16	CH4 (1.0 MPa)	•••	0.21	0.72	2.25	151	147	55
5	$4^+ \cdot I^-/SiO_2$	4	N2 (1.0 MPa)	•••	0.02	0.06	0.10	8		•••
6	$4^+ \cdot I^-/SiO_2$	8	N2 (1.0 MPa)	•••	0.05	0.36	0.09	19		•••
7	$4 + I - SiO_2$	12	N2 (1.0 MPa)		0	0.07	0.19	12		
8	$4 + I - SiO_2$	16	N2 (1.0 MPa)	•••	0	0.06	0.04	5		•••
9	$4^+ \cdot I^-/SiO_2$	4	CH4 (1.0 MPa)	10 mM Na ₂ SO ₃	0.27	0.82	0.31	51	27	14
10	$4 \cdot I - SiO_2$	4	N2 (1.0 MPa)	10 mM Na ₂ SO ₃	0.10	0.34	0.19	24		
11	$1 - I - SiO_2$	4	CH4 (1.0 MPa)	•••	0.51	0.29	0.67	57	5	2
12	1+·I-/SiO ₂	4	N2 (1.0 MPa)	•••	0.47	0.30	0.60	52	•••	•••

All reactions were performed in the absence of methane (under N₂ (1.0 MPa)), H₂O₂ (189 mM), and TFA (51 mM) in H₂O (3.0 mL) containing a silica-supported catalyst (55 μ M as **4**⁺ or **1**⁺). Concentrations of the oxidized products observed in the presence of methane are the mean values of three different reactions. The TTN_{eff}, TTN, and MCN_{eff} values were calculated using equations (i) - (iv) in the main text.

Figure S4. Comparison of the pictures of the reaction mixtures before and after methane oxidation reaction by (a) $3^+ \cdot l^-/SiO_2$ or (b) $4^+ \cdot l^-/SiO_2$.

Figure S5. Time dependence of the concentration of HCOOH during the oxidation reaction of HCOOH (3.51 mM (initial concentration) in 3.0 mL of H₂O) by $4^{+}\cdot l^{-}/SiO_{2}$ in the presence of 51 mM TFA and 189 mM H₂O₂ under N₂ atmosphere at 60 °C.