# **Supporting Information**

## Crystal transformation in Mn(II) metal-organic frameworks based

on a one-dimensional chain precursor

Yansong Jiang, Rui Liu, Yiran Gong, Yong Fan, Li Wang\*, Jianing Xu\*

State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China

E-mail: lwang99@jlu.edu.cn; xujn@jlu.edu.cn.

### **Table of Contents**

| Experimental Section                                                                               | S3         |
|----------------------------------------------------------------------------------------------------|------------|
| Fig. S1 Simplify of the structure of 1.                                                            | S4         |
| Fig. S2 Simplify of the structure of 2.                                                            | S4         |
| <b>Fig. S3</b> (a) The disordered ligand in <b>3</b> , (b) simplify of the structure of <b>3</b> . | S4         |
| Fig. S4 The conformation of the organic ligand.                                                    | S5         |
| Fig. S5 PXRD pattern of 1.                                                                         | S5         |
| Fig. S6 PXRD pattern of 2.                                                                         | <b>S</b> 6 |
| Fig. S7 PXRD pattern of the mixture of 3 and 4.                                                    | S6         |
| Fig. S8 PXRD pattern of 3.                                                                         | S7         |
| Fig. S9 PXRD pattern of 4.                                                                         | S7         |
| Fig. S10 PXRD patterns of the product of 3 after 7 d transformation.                               | S7         |
| Fig. S11 FT-IR spectra.                                                                            | <b>S</b> 8 |
| Fig. S12 TG curves.                                                                                | <b>S</b> 8 |
| Fig. S13 PXRD patterns of the product after TGA.                                                   | S9         |
| Fig. S14 $N_2$ adsorption/desorption isomers.                                                      | S9         |
| Fig. S15 PXRD patterns of 1 after catalysis.                                                       | S10        |
| Fig. S16 PXRD patterns of 2 after catalysis.                                                       | S10        |
| Fig. S17 PXRD patterns of 3 after catalysis.                                                       | S11        |
| Table S1 Crystal data and structure refinement for 1-3.                                            | S12        |
| Table S2 The selected bond lengths and angles for 1.                                               | S13        |
| Table S3 The selected bond lengths and angles for 2.                                               | S14        |
| Table S4 The selected bond lengths and angles for 3                                                | S15        |
| Table S5 Specified hydrogen bonds for 1.                                                           | S16        |

#### **Experimental Section**

#### **Materials and Methods**

All analytic reagents and chemical materials are commercially available and used directly without any further purification. Powder X-ray diffraction (PXRD) data were acquired via a Shimadzu XRD-6000 powder diffractometer equipped with Cu-K $\alpha$  radiation tube ( $\lambda$ = 1.5418 Å), in the 20 range of 4–40° with a speed of 6° min<sup>-1</sup> at 40 kV and 30 mA. Elemental analysis (C, H, and N) was conducted on an Elementary Vario EL cube CHNOS elemental analyzer. Fourier transform infrared (FT-IR) spectra were recorded in the range of 4000–400 cm-1 on a Bruker Nicolet IS5 spectrometer using the KBr pellet method. Thermogravimetric analysis (TGA) was carried out using a NETZSCH STA499F3 QMS403D thermogravimetric analyzer from 50 to 800 °C at a ramp heating rate of 10 °C min<sup>-1</sup> in an air atmosphere. <sup>1</sup>H NMR spectra were measured on Bruker Avance III 400 console at a frequency of 400 MHz. Inductively coupled plasma optical emission spectrometer (ICP-OES) analysis was performed on an Agilent 725 instrument. N<sub>2</sub> adsorption isotherms were measured using a Micromeritics ASAP 2020 surface area analyzer at 77 K

### **Determination of Crystal Structure**

The crystallographic data of 1-3 were acquired using a Bruker D8 VENTURE diffractometer with graphite-monochromated Mo-K $\alpha$  ( $\lambda$ = 0.71073 Å) sealed tube radiation at room temperature. No obvious decay was discovered during the data collection. The structure was solved by the direct method and refined by the full-matrix least-squares method on  $F^2$ values using OLEX-2 equipped with SHELXTL-2014 program.<sup>1</sup> The assignment of space groups were done with the XPREP program. All of the non-hydrogen atoms were located in the Fourier maps and refined with anisotropic displacement parameters. The Mn atom was first located in the Fourier maps and other atoms were located, subsequently. All the ordered non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms connected to the C and O atoms were generated geometrically and their positions were calculated using a riding model. The contribution of the electron density connected with the disordered solvent molecules was removed through the SQUEEZE program in PLATON software.<sup>2</sup> The final empirical formula was determined by combined crystallographic data, elemental and thermogravimetric analysis. The selected crystallographic data and refinement details of 1-3 are listed in Table S1, and selected bond lengths and angles data are presented in Table S2-S4. CCDC 2062075-2062077 contain the supplementary crystallographic data for this paper.

(1) G. M. Sheldrick, SHELXL-2014: Program for Structure Solution; University of Göttingen, Göttingen, Germany, 2014.

(2) A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.



Fig. S1 Simplify of the structure of 1.



Fig. S2 Simplify of the structure of 2.



Fig. S3 (a) The disordered ligand in 3, (b) simplify of the structure of 3.



Fig. S4 The conformation of the ligand.



Fig. S5 PXRD pattern of 1.



Fig. S6 PXRD pattern of 2.



Fig. S7 PXRD pattern of the mixture of 3 and 4.



Fig. S8 PXRD pattern of 3.



Fig. S9 PXRD pattern of 4.



Fig. S10 PXRD patterns of the product of 3 after 7 d transformation.



Fig. S11 FT-IR spectra.



Fig. S12 TG curves.



Fig. S13 PXRD patterns of the product after TGA.



Fig. S14  $N_{\rm 2}$  adsorption/desorption isomers.



Fig. S15 PXRD patterns of 1 after catalysis.



Fig. S16 PXRD patterns of 2 after catalysis.



Fig. S17 PXRD patterns of 3 after catalysis.

|                                                     | 1                                  | 2                                    | 3                                   |
|-----------------------------------------------------|------------------------------------|--------------------------------------|-------------------------------------|
| Empirical formula                                   | $C_{32}H_{26}MnN_8O_{12}$          | $C_{52}H_{34}Mn_3N_{12}O_{10}$       | $C_{32}H_{26}Mn_3N_8O_{14}$         |
| Formula weight                                      | 769.55                             | 1151.73                              | 911.43                              |
| Temperature/K                                       | 293                                | 293(2)                               | 296.99                              |
| Crystal system                                      | triclinic                          | monoclinic                           | monoclinic                          |
| Space group                                         | <i>P</i> -1                        | $C_2/c$                              | $P2_{1}/c$                          |
| a/Å                                                 | 6.3618(5)                          | 22.729(2)                            | 14.0220(10)                         |
| b/Å                                                 | 8.4580(5)                          | 15.5808(13)                          | 18.2487(13)                         |
| c/Å                                                 | 15.5130(10)                        | 16.1471(10)                          | 8.2913(5)                           |
| $\alpha/^{\circ}$                                   | 102.196(5)                         | 90.00                                | 90.00                               |
| β/°                                                 | 93.997(6)                          | 93.157(7)                            | 96.976(2)                           |
| $\gamma/^{\circ}$                                   | 99.130(6)                          | 90.00                                | 90.00                               |
| Volume/Å <sup>3</sup>                               | 800.93(9)                          | 5709.5(8)                            | 2105.9(2)                           |
| Ζ                                                   | 1                                  | 4                                    | 2                                   |
| $\rho_{calc}g/cm^3$                                 | 1.595                              | 1.340                                | 1.437                               |
| µ/mm <sup>-1</sup>                                  | 0.493                              | 0.717                                | 0.955                               |
| F(000)                                              | 395.0                              | 2340.0                               | 922.0                               |
| Crystal size/mm <sup>3</sup>                        | $0.4 \times 0.2 \times 0.2$        | $0.4 \times 0.1 \times 0.1$          | $0.4\times0.3\times0.3$             |
| Radiation                                           | MoKa ( $\lambda = 0.71073$ )       | Mo K $\alpha$ ( $\lambda$ = 0.71073) | MoK $\alpha$ ( $\lambda$ = 0.71073) |
| 2\Overlap range for data collection/°               | 6.78 to 58.38                      | 6.76 to 59                           | 5.86 to 50                          |
|                                                     | $-8 \le h \le 7$ ,                 | $-28 \le h \le 20$ ,                 | $-16 \le h \le 16$ ,                |
| Index ranges                                        | $-11 \le k \le 9$ ,                | $-20 \le k \le 16$ ,                 | $-18 \le k \le 21$ ,                |
|                                                     | $-21 \le l \le 20$                 | $-16 \le l \le 21$                   | $-7 \le l \le 9$                    |
| Reflections collected                               | 5923                               | 12645                                | 13354                               |
| Independent reflections                             | $3636 [R_{int} = 0.0228,$          | $6610 [R_{int} = 0.0531,$            | 3582 [Rint = 0.0321,                |
|                                                     | $R_{sigma} = 0.0482$               | $R_{sigma} = 0.0916$ ]               | Rsigma = 0.0344]                    |
| Data/restraints/parameters                          | 3636/4/252                         | 6610/0/348                           | 3582/48/301                         |
| Goodness-of-fit on F <sup>2</sup>                   | 1.019                              | 0.955                                | 1.067                               |
| Final R indexes $[1 \ge 2\sigma]$                   | $R_1 = 0.0409,$                    | $R_1 = 0.0584$ ,                     | RI = 0.0485,                        |
| (1)]                                                | $WK_2 = 0.0937$                    | $WK_2 = 0.1251$<br>D = 0.0048        | WKZ = 0.1318<br>D1 = 0.0568         |
| Final R indexes [all data]                          | $R_1 = 0.0532,$<br>$wR_2 = 0.1067$ | $R_1 = 0.0948,$<br>$wR_2 = 0.1442$   | R1 = 0.0568,<br>R2 = 0.1363         |
| Largest diff. peak/hole / e ${\rm \AA}^{\text{-}3}$ | 0.34/-0.41                         | 0.82/-0.50                           | 0.87/-0.32                          |

Table S1 The crystal data and structure refinement details for 1-3.

| Atom | Atom              | Length/Å   | Atom            | Atom | Atom            | Angle/°    |
|------|-------------------|------------|-----------------|------|-----------------|------------|
| Mn01 | O1 <sup>1</sup>   | 2.1033(14) | O1 <sup>1</sup> | Mn01 | 01              | 180.00(8)  |
| Mn01 | 01                | 2.1033(14) | 01              | Mn01 | $O2^1$          | 88.71(6)   |
| Mn01 | $O2^1$            | 2.2180(14) | 01              | Mn01 | 02              | 91.29(6)   |
| Mn01 | O2                | 2.2180(14) | O11             | Mn01 | $O2^1$          | 91.29(6)   |
| Mn01 | N2 <sup>2</sup>   | 2.3323(16) | O1 <sup>1</sup> | Mn01 | O2              | 88.71(6)   |
| Mn01 | N2 <sup>3</sup>   | 2.3323(16) | 01              | Mn01 | N2 <sup>2</sup> | 93.10(6)   |
| N2   | Mn01 <sup>4</sup> | 2.3323(16) | 01              | Mn01 | N2 <sup>3</sup> | 86.90(6)   |
|      |                   |            | O1 <sup>1</sup> | Mn01 | N2 <sup>3</sup> | 93.10(6)   |
|      |                   |            | O1 <sup>1</sup> | Mn01 | N2 <sup>2</sup> | 86.90(6)   |
|      |                   |            | $O2^1$          | Mn01 | O2              | 180.000(1) |
|      |                   |            | $O2^1$          | Mn01 | N2 <sup>2</sup> | 84.60(6)   |
|      |                   |            | 02              | Mn01 | N2 <sup>3</sup> | 84.60(6)   |
|      |                   |            | $O2^1$          | Mn01 | N2 <sup>3</sup> | 95.40(5)   |
|      |                   |            | 02              | Mn01 | N2 <sup>2</sup> | 95.40(5)   |

 Table S2 The selected bond lengths and angles for 1.

<sup>1</sup>2-X,2-Y,2-Z; <sup>2</sup>1-X,2-Y,1-Z; <sup>3</sup>1+X,+Y,1+Z; <sup>4</sup>-1+X,+Y,-1+Z

| Atom | Atom              | Length/Å   | Atom              | Atom | Atom              | Angle/°    |
|------|-------------------|------------|-------------------|------|-------------------|------------|
| Mn01 | O0031             | 2.175(2)   | O0031             | Mn01 | O003 <sup>2</sup> | 173.97(12) |
| Mn01 | O003 <sup>2</sup> | 2.175(2)   | O0031             | Mn01 | N009 <sup>3</sup> | 88.47(9)   |
| Mn01 | O004              | 2.169(2)   | O003 <sup>1</sup> | Mn01 | N0094             | 87.81(9)   |
| Mn01 | O004 <sup>3</sup> | 2.169(2)   | O003 <sup>2</sup> | Mn01 | N009 <sup>3</sup> | 87.81(9)   |
| Mn01 | N009 <sup>4</sup> | 2.252(3)   | O003 <sup>2</sup> | Mn01 | N0094             | 88.47(9)   |
| Mn01 | N009 <sup>5</sup> | 2.252(3)   | O004 <sup>5</sup> | Mn01 | O003 <sup>1</sup> | 103.42(8)  |
| Mn02 | O004 <sup>6</sup> | 2.438(2)   | O004              | Mn01 | O003 <sup>1</sup> | 80.95(8)   |
| Mn02 | O005              | 2.1272(19) | O004 <sup>5</sup> | Mn01 | O003 <sup>2</sup> | 80.95(8)   |
| Mn02 | O006 <sup>6</sup> | 2.243(2)   | O004              | Mn01 | O003 <sup>2</sup> | 103.42(8)  |
| Mn02 | N008 <sup>7</sup> | 2.230(3)   | O004              | Mn01 | O004 <sup>5</sup> | 89.30(11)  |
| Mn02 | N00A              | 2.246(3)   | O004              | Mn01 | N009 <sup>3</sup> | 84.74(9)   |
| Mn02 | N00B              | 2.273(3)   | O004 <sup>5</sup> | Mn01 | N009 <sup>3</sup> | 165.72(9)  |
| O003 | Mn01 <sup>2</sup> | 2.175(2)   | O004              | Mn01 | N0094             | 165.72(9)  |
| O003 | C00I              | 1.257(4)   | O004 <sup>5</sup> | Mn01 | N0094             | 84.74(9)   |
| O004 | $Mn02^1$          | 2.438(2)   | N009 <sup>3</sup> | Mn01 | N0094             | 103.86(14) |
| O004 | C00H              | 1.274(3)   | O005              | Mn02 | O004 <sup>6</sup> | 83.67(8)   |
| O005 | C00I              | 1.262(4)   | O005              | Mn02 | O0066             | 114.83(9)  |
| O006 | $Mn02^1$          | 2.243(2)   | O005              | Mn02 | N0087             | 133.39(9)  |
| O006 | C00H              | 1.261(3)   | O005              | Mn02 | N00A              | 100.80(9)  |
| O007 | C00J              | 1.368(4)   | O005              | Mn02 | N00B              | 86.23(9)   |
| O007 | C00R              | 1.430(4)   | O006 <sup>6</sup> | Mn02 | O004 <sup>6</sup> | 55.77(7)   |
| N008 | Mn02 <sup>8</sup> | 2.230(3)   | O0066             | Mn02 | N00A              | 86.66(9)   |
| N008 | N009              | 1.349(3)   | O006 <sup>6</sup> | Mn02 | N00B              | 153.04(9)  |
| N008 | C00M              | 1.341(4)   | N0087             | Mn02 | O0046             | 79.75(8)   |
| N009 | Mn019             | 2.252(3)   | N008 <sup>7</sup> | Mn02 | O0066             | 90.62(9)   |
| N00B | C00T              | 1.338(4)   | N008 <sup>7</sup> | Mn02 | N00A              | 119.98(10) |
|      |                   |            | N0087             | Mn02 | N00B              | 85.71(10)  |
|      |                   |            | N00A              | Mn02 | O0046             | 139.11(9)  |
|      |                   |            | N00A              | Mn02 | N00B              | 72.34(11)  |

Table S3 The selected bond lengths and angles for 2.

 ${}^{1}+X,1-Y,-1/2+Z; \ {}^{2}1-X,1-Y,1-Z; \ {}^{3}1-X,+Y,1/2-Z; \ {}^{4}3/2-X,1/2+Y,1/2-Z; \ {}^{5}-1/2+X,1/2+Y,+Z; \ {}^{6}+X,1-Y,1/2+Z; \ {}^{7}-1/2+X,1/2+Y,1/2-Z; \ {}^{9}1/2+Z; \ {}^{9}1/2+Z; \ {}^{9}1/2+Z, \ {$ 

| Atom | Atom             | Length/Å | Atom            | Atom | Atom            | Angle/°    |
|------|------------------|----------|-----------------|------|-----------------|------------|
| Mn1  | O41              | 2.185(2) | O41             | Mn1  | O4 <sup>2</sup> | 180.00(9)  |
| Mn1  | O4 <sup>2</sup>  | 2.185(2) | O4 <sup>2</sup> | Mn1  | N3 <sup>3</sup> | 94.50(11)  |
| Mn1  | O2               | 2.122(2) | $O4^1$          | Mn1  | N3 <sup>3</sup> | 85.50(11)  |
| Mn1  | O2 <sup>3</sup>  | 2.122(2) | O4 <sup>2</sup> | Mn1  | N3 <sup>4</sup> | 85.50(11)  |
| Mn1  | N3 <sup>4</sup>  | 2.284(3) | $O4^1$          | Mn1  | N3 <sup>4</sup> | 94.50(11)  |
| Mn1  | N3 <sup>5</sup>  | 2.284(3) | O2 <sup>5</sup> | Mn1  | O4 <sup>2</sup> | 87.38(10)  |
| Mn2  | O4 <sup>2</sup>  | 2.372(2) | O2              | Mn1  | O4 <sup>2</sup> | 92.62(10)  |
| Mn2  | 01               | 2.088(3) | O2 <sup>5</sup> | Mn1  | O41             | 92.62(10)  |
| Mn2  | O3 <sup>2</sup>  | 2.217(2) | O2              | Mn1  | O41             | 87.38(10)  |
| Mn2  | N4 <sup>5</sup>  | 2.241(3) | O2 <sup>5</sup> | Mn1  | O2              | 180.0      |
| Mn2  | O6               | 2.193(4) | O2              | Mn1  | N3 <sup>3</sup> | 92.70(11)  |
| Mn2  | O7               | 2.130(3) | O2 <sup>5</sup> | Mn1  | N3 <sup>4</sup> | 92.70(11)  |
| O4   | Mn1 <sup>6</sup> | 2.185(2) | O2 <sup>5</sup> | Mn1  | N3 <sup>3</sup> | 87.30(11)  |
| O4   | Mn2 <sup>6</sup> | 2.372(2) | O2              | Mn1  | N3 <sup>4</sup> | 87.30(11)  |
| O4   | C5               | 1.272(4) | N3 <sup>3</sup> | Mn1  | N3 <sup>4</sup> | 180.00(15) |
| O2   | C1               | 1.250(4) | 01              | Mn2  | O41             | 101.85(9)  |
| 01   | C1               | 1.250(4) | 01              | Mn2  | O31             | 158.46(9)  |
| O3   | Mn2 <sup>6</sup> | 2.217(2) | 01              | Mn2  | N4 <sup>3</sup> | 89.05(12)  |
| O3   | C5               | 1.252(4) | 01              | Mn2  | O6              | 86.53(15)  |
| N4   | Mn2 <sup>7</sup> | 2.241(3) | 01              | Mn2  | O7              | 104.77(18) |
| N4   | N3               | 1.342(4) | O31             | Mn2  | O41             | 56.73(8)   |
| N4   | C16              | 1.339(6) | O31             | Mn2  | N4 <sup>3</sup> | 91.80(11)  |
| N3   | $Mn1^7$          | 2.284(3) | N4 <sup>3</sup> | Mn2  | O41             | 87.08(10)  |
|      |                  |          | O6              | Mn2  | O41             | 82.46(12)  |
|      |                  |          | O6              | Mn2  | O31             | 88.10(15)  |
|      |                  |          | O6              | Mn2  | N4 <sup>3</sup> | 167.56(12) |
|      |                  |          | 07              | Mn2  | O4 <sup>1</sup> | 151.08(19) |

 Table S4 The selected bond lengths and angles for 3.

 ${}^{1}+X,3/2-Y,-1/2+Z; \ {}^{2}2-X,-1/2+Y,1/2-Z; \ {}^{3}2-X,1-Y,-Z; \ {}^{4}1+X,3/2-Y,-1/2+Z; \ {}^{5}1-X,-1/2+Y,1/2-Z; \ {}^{6}2-X,1/2+Y,1/2-Z; \ {}^{7}1-X,1/2+Y,1/2-Z; \ {}^{7}1-X,1/2+Y,1/2-Z$ 

| D  | Н   | Α               | d(D-H)/Å  | d(H-A)/Å  | d(D-A)/Å | D-H-A/° |
|----|-----|-----------------|-----------|-----------|----------|---------|
| 01 | H1A | O41             | 0.836(15) | 1.924(16) | 2.755(2) | 173(2)  |
| 01 | H1B | N3 <sup>2</sup> | 0.852(15) | 1.991(16) | 2.818(2) | 164(2)  |
| 05 | H5  | N4 <sup>3</sup> | 0.82      | 1.95      | 2.696(2) | 150.6   |

 Table S5 Specified hydrogen bonds for 1.

<sup>1</sup>1-X,1-Y,2-Z; <sup>2</sup>2+X,+Y,1+Z; <sup>3</sup>-1-X,1-Y,1-Z