Electronic Supplementary Information

Persistent room-temperature phosphorescence or high-contrast phosphorescent mechanochromism: Polymorphism-dependent different emission characteristics from a single gold(I) complex

Xiao-Yan Wang,^{‡a} Ya Yin,^{‡d} Jun Yin,^a Zhao Chen^{*ab} and Sheng Hua Liu^{*ac}

^a Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China. E-mail: chshliu@mail.ccnu.edu.cn; Fax: +86-27-67867725; Tel: +86-27-67867725.

^b Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China. E-mail: chenzhao666@126.com; Fax: +86-791-83831996; Tel: +86-791-83831996.

^c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.

^d Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, PR China.

‡ These authors contributed equally to this work.

Contents

1.	Measurements and Materials	
2.	Synthesis	
3.	Figures S1-S10	S5
4.	Tables S1-S4	S10
5.	Copies of NMR spectra	S15

1. Measurements and Materials

NMR spectra were collected on American Varian Mercury Plus 400 spectrometer (400 MHz) or Varian Mercury Plus 600 MHz instrument. The ¹³C NMR spectrum of compound **b** was collected by American Varian Mercury Plus 400 spectrometer (400 MHz), with the frequency of 101 MHz. The 13 C NMR spectra of compounds c, d and 1 were obtained on Varian Mercury Plus 600 MHz instrument, with the frequency of 151 MHz. ¹H and ¹³C NMR chemical shifts were relative to TMS. ¹⁹F NMR chemical shifts were relative to C_6F_6 ($\delta = -163.00$). Mass spectra were recorded on a Bruker ultrafleXtreme MALDI-TOF-TOF mass spectrometer and 6224 TOF LC/MS spectrometer. Steady-state PL spectra were obtained by Edinburgh FLS1000 spectrometer with Xe lamp as excitation light source. Delayed emission spectra, time-resolved emission spectra and decay curves were measured by Edinburgh FLS1000 spectrometer with µF2 lamp as excitation light source. The X-ray crystal-structure data were obtained by the Bruker APEX DUO CCD system. All manipulations were carried out in argon atmosphere by using standard Schlenk techniques, unless otherwise stated. All starting meterials and reagents were purchased from Shen Shi Hua Gong Company (China) and used without further purification.

2. Synthesis

Scheme S1 Synthetic route to the gold(I) complex **1** (tht = tetrahydrothiophene).

Synthesis of **b**: Tetraethylene glycol (15.0 g, 0.1 mol) was added to 100 mL CH₂Cl₂. Then triethylamine (5.05 g, 50 mmol) was added later. After stirring at room temperature for a while, *p*-TsCl (4.77 g, 25 mmol) was slowly added to the reaction system in batches. The mixture was stirred at room temperature for 1.5 hours to end the reaction. The reaction was washed with 5% NaHCO₃, dried over anhydrous sodium sulfate, and purified by column chromatography to obtain colorless oily liquid with the yield of 56% (4.30 g). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.1 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 4.22-4.17 (m, 2H), 3.74 (q, *J* = 4.4 Hz, 4H), 3.64 (s, 4H), 3.62 - 3.59 (m, 2H), 2.48 (s, 3H), 2.41 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.9, 132.6, 129.8, 127.7, 72.4, 70.4, 70.0, 69.4, 68.4, 61.2, 21.4. EI-MS: *m*/*z* = 304.4 [M]⁺; Found: *m*/*z* = 304.0 [M]⁺.

Synthesis of **c**: N-(4-hydroxyphenyl)formamide (2.47 g, 18.0 mmol) and potassium carbonate (4.97 g, 36.0 mmol) were dissolved in 50 mL DMF and stirred for several minutes. Then **b** (5.47 g, 18.0 mmol) was added. The mixture were reacted overnight at 60 °C. After that, most solvents were removed by vacuum distillation. The residual mixture were extracted with CH₂Cl₂ (3 × 50 mL). The organic layers were combined and concentrated. The residues were purified by column chromatography, and the brown-black oily liquid (3.1 g) was obtained in the yields of 65%. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.48 (d, *J* = 12.0 Hz, 0.5H), 8.28 (s, 0.5H), 8.22 (d, *J* = 12.0 Hz, 0.5H), 7.94 (s, 0.5H), 7.43 (d, *J* = 6.0 Hz, 1H), 7.01 (d, *J* = 6.0 Hz, 1H), 6.89-6.84 (m, 2H), 4.10 (d, *J* = 6.0 Hz, 1H), 3.86-3.83 (m, 2H), 3.71 (t, *J* = 9.0 Hz, 6H), 3.62-3.60 (m, 2H), 2.27 (s, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 163.0, 159.2, 156.5, 155.5, 130.4, 129.9, 121.7, 121.4, 115.6, 114.9, 72.5, 70.7, 70.2, 69.6, 67.6, 61.6. EI-MS: *m*/*z* = 269.3 [M]⁺; Found: *m*/*z* = 269.3 [M]⁺.

Synthesis of **d**: Under an argon atmosphere, the intermediate **c** (269.3 mg, 1.0 mmol) and triethylamine (3 mL) was dissolved in dry CH_2Cl_2 . The CH_2Cl_2 solution of triphosgene (326.4 mg, 1.1 mmol) was dropped slowly into the reaction system at 0 °C. Afterwards, the reaction was refluxed for 3 hours. It was returned to room temperature after the reaction was completed. The reaction bottle was placed in an ice bath, 10% Na₂CO₃ solution (50 mL) was added to the system for neutralization. And

then the solution was extracted three times with CH₂Cl₂. The organic phases were combined, washed with water (3 × 30 mL) and dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography. Yellow oily liquid was obtained in a yield with 58% (214.0 mg). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (s, 2H), 6.82 (s, 2H), 4.07 (s, 2H), 3.80 (s, 2H), 3.67 (d, *J* = 14.9 Hz, 6H), 3.56 (s, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 162.3, 158.6, 127.2, 118.9, 114.8, 70.8, 70.3, 70.1, 69.0, 67.3, 42.4. EI-MS: *m*/*z* = 269.7 [M]⁺; Found: *m*/*z* = 269.7 [M]⁺.

Synthesis of **1**: A mixture of $C_6F_5Au(tht)$ (237.4 mg, 0.525 mmol) and **c** (0.5 mmol) was stirred in CH₂Cl₂ (20 mL) overnight at room temperature. After completion of present reaction, the solvent was evaporated. A small amount of CH₂Cl₂ was added, and then a lot of *n*-hexane was added. Collecting the white solid product by suction filtration. Yield: 62% (392.9 mg). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 8.9 Hz, 2H), 7.01 (d, *J* = 9.0 Hz, 2H), 4.23 - 4.16 (m, 2H), 3.94 - 3.87 (m, 2H), 3.79 - 3.68 (m, 6H), 3.64 (t, *J* = 5.8 Hz, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.96, -157.61, -162.44. ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.0, 156.8, 150.3, 148.6, 140.2, 138.5, 137.7, 136.2, 128.4, 116.8, 115.9, 71.4, 70.9, 70.7, 69.4, 68.1, 42.8. Mass spectrum (Maldi-TOF-MS) (*m*/*z*): [M+Na]⁺, calcd. for C₁₉H₁₆AuF₅ClNO₃, 656.0297; found, 656.3512.

3. Figures S1-S10

Figure S1. Normalized steady-state (black) and delayed (red) emission spectra of polymorph 1B at 77 K.

Figure S2. Normalized steady-state (black) and delayed (red) emission spectra of polymorph 1YG

Figure S3. (a) Decay curve of **1B** at the peak emission wavelength of 423 nm at room temperature; (b) Decay curve of **1B** at the peak emission wavelength of 510 nm at room temperature; (c) Decay curve of **1B** at the peak emission wavelength of 417 nm at 77 K; (d) Decay curve of **1B** at the peak emission wavelength of 510 nm at 77 K.

Figure S4. (a) Decay curve of 1YG at the peak emission wavelength of 436 nm at room temperature; (b) Decay curve of 1YG at the peak emission wavelength of 534 nm at room temperature.

Figure S5. (a) Decay curve of **1YG** at the peak emission wavelength of 422 nm at 77 K; (b) Decay curve of **1YG** at the peak emission wavelength of 487 nm at 77 K; (c) Decay curve of **1YG** at the peak emission wavelength of 527 nm at 77 K.

Figure S6. (a) Decay curve of the ground **1YG** at the peak emission wavelength of 507 nm at room temperature; (b) Decay curve of the ground **1YG** at the peak emission wavelength of 531 nm at room temperature; (c) Decay curve of the ground **1YG** at the peak emission wavelength of 412 nm at 77 K; (d) Decay curve of the ground **1YG** at the peak emission wavelength of 435 nm at 77 K; (e) Decay curve of the ground **1YG** at the peak emission wavelength of 494 nm at 77 K.

Figure S7. (a) Decay curve of **1YG** after treating with CH_2Cl_2 at the peak emission wavelength of 422 nm at room temperature; (b) Decay curve of **1YG** after treating with CH_2Cl_2 at the peak emission wavelength of 494 nm at room temperature; (c) Decay curve of **1YG** after treating with CH_2Cl_2 at the peak emission wavelength of 537 nm at room temperature.

Figure S8. (a) Decay curve of the ground 1B at the peak emission wavelength of 495 nm at room temperature; (b) Decay curve of 1B after treating with CH_2Cl_2 at the peak emission wavelength of 423 nm at room temperature.

Figure S9. Normalized emission spectra of the ground **1YG** at room temperature and 77 K. The pictures were taken at room temperature (above) and 77 K (below) under a 365 nm portable UV lamp.

Figure S10. The emission spectrum of complex 1 in dilute DMF solution. Concentration: 20 μ M. Excitation wavelength: 365 nm.

4. Tables S1-S4

Table S1. Structure determination summary of polymorph 1B.

Crystal data		
Chemical formula	$C_{19}H_{16}AuClF_5NO_3$	
$M_{ m r}$	633.75	

Crystal system, space group	Monoclinic, $P2_1/n$		
Temperature (K)	296		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	4.7449 (7), 10.8014 (16), 39.937 (6)		
b (%	93.174 (2)		
$V(\text{\AA}^3)$	2043.7 (5)		
Ζ	4		
Radiation type	Mo Ka		
m (mm ⁻¹)	7.40		
Crystal size (mm)	0.2 imes 0.1 imes 0.1		
	Data collection		
Diffractometer	Bruker APEX-II CCD		
Absorption correction	Multi-scan SADABS2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.0977 before and 0.0479 after correction. The Ratio of minimum to maximum transmission is 0.5863. The 1/2 correction factor is 0.0015.		
T_{\min}, T_{\max}	0.437, 0.745		
No. of measured, independent and observed [<i>I</i> ? 2u(<i>I</i>)] reflections	15922, 4238, 3831		
$R_{\rm int}$	0.042		
$(\sin q/l)_{max} (\text{\AA}^{-1})$	0.632		
	Refinement		
$R[F^2 > 2s(F^2)],$ $wR(F^2), S$	0.047, 0.097, 1.06		
No. of reflections	4238		
No. of parameters	271		
H-atom treatment	H-atom parameters constrained		
	$w = 1/[s^{2}(F_{o}^{2}) + (0.P)^{2} + 20.5973P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$		
$D\rho_{max}$, $D\rho_{min}$ (e Å ⁻³)	2.47, -4.08		

Computer programs: *SAINT* v7.68A (Bruker, 2009), XS (Sheldrick, 2008), olex2.refine (Bourhis *et al.*, 2015), Olex2 (Dolomanov *et al.*, 2009).

Au1—C7	1.969 (8)	C5—C4	1.355 (11)
Au1—C1	2.017 (7)	C5—F4	1.356 (9)
C7—N1	1.142 (9)	C2—C3	1.371 (11)
N1—C8	1.403 (9)	C2—F1	1.359 (9)
С10—С9	1.377 (10)	C3—C4	1.381 (11)
C10-C11	1.383 (10)	C3—F2	1.341 (9)
C8—C13	1.366 (10)	C4—F3	1.342 (8)
C8—C9	1.382 (10)	O2—C15	1.423 (9)
C13—C12	1.387 (10)	O2—C16	1.410 (9)
C11—C12	1.382 (9)	C14—C15	1.506 (10)
C11—O1	1.356 (8)	O3—C17	1.404 (10)
O1—C14	1.431 (8)	O3—C18	1.420 (11)
C1—C6	1.378 (10)	C16—C17	1.510 (12)
C1—C2	1.388 (10)	C18—C19	1.461 (14)
C6—C5	1.384 (11)	C19—C11	1.773 (10)
C6—F5	1.347 (8)		
C1—Au1—C7	177.6 (3)	C4—C5—C6	120.5 (7)
N1—C7—Au1	176.5 (7)	F4—C5—C6	120.4 (7)
C8—N1—C7	174.3 (7)	F4—C5—C4	119.1 (7)
С11—С10—С9	120.6 (7)	C3—C2—C1	124.5 (7)
C13—C8—N1	118.8 (6)	F1—C2—C1	119.1 (7)
C9—C8—N1	119.9 (7)	F1—C2—C3	116.3 (7)
C9—C8—C13	121.4 (7)	C4—C3—C2	118.8 (7)
C12—C13—C8	119.7 (7)	F2—C3—C2	121.9 (7)
C8—C9—C10	118.8 (7)	F2—C3—C4	119.3 (7)
C12—C11—C10	119.9 (7)	C3—C4—C5	119.1 (7)
01—C11—C10	115.7 (6)	F3—C4—C5	120.1 (7)
01—C11—C12	124.4 (6)	F3—C4—C3	120.8 (7)
C11—C12—C13	119.6 (7)	C16—O2—C15	113.0 (6)
C14	118.3 (5)	C15—C14—O1	107.2 (6)
C6—C1—Au1	122.7 (5)	C14—C15—O2	113.1 (6)
C2—C1—Au1	123.1 (5)	C18—O3—C17	111.1 (7)
C2—C1—C6	114.0 (7)	C17—C16—O2	108.6 (7)
C5—C6—C1	123.1 (7)	C16—C17—O3	110.4 (7)
F5—C6—C1	120.0 (7)	C19—C18—O3	110.1 (9)

Table S2. Selected geometric parameters (Å, 9 of polymorph 1B.

F5—C6—C5 116.9 (7)	Cl1—C19—C18	113.4 (8)
--------------------	-------------	-----------

	Crystal data	
Chemical formula	C ₁₉ H ₁₆ AuClF ₅ NO ₃	
M _r	633.74	
Crystal system, space group	Monoclinic, $P2_1/n$	
Temperature (K)	297	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	4.6528 (12), 10.670 (3), 39.493 (10)	
b ()	93.086 (4)	
$V(\text{\AA}^3)$	1957.8 (8)	
Ζ	4	
Radiation type	Mo Ka	
m (mm ⁻¹)	7.72	
Crystal size (mm)	0.12 imes 0.12 imes 0.10	
	Data collection	
Diffractometer	Bruker APEX-II CCD	
Absorption correction	_	
No. of measured, independent and observed $[I > 2s(I)]$ reflections	15724, 4447, 3567	
R _{int}	0.138	
$(\sin q/l)_{\max} (\text{\AA}^{-1})$	0.650	
	Refinement	
$R[F^2 > 2s(F^2)],$ $wR(F^2), S$	0.079, 0.205, 1.10	
No. of reflections	4447	
No. of parameters	271	
H-atom treatment	H-atom parameters constrained	

Table S3. Structure determination summary of polymorph 1YG.

$D\rho_{max}$, $D\rho_{min}$ (e Å ⁻³)	6.25, -5.59
--	-------------

Computer programs: Bruker *APEX2*, Bruker *SAINT*, *SHELXS97* (Sheldrick, 2008), *SHELXL2014*/7 (Sheldrick, 2014), Bruker *SHELXTL*.

Table S4. Selected geometric parameters (Å, 9 of polymorph 1YG.

Au1—C7	1.984 (14)	C8—N1	1.401 (13)
Au1—C1	2.028 (12)	C9—C10	1.402 (15)
C1—C2	1.366 (18)	C10-C11	1.373 (15)
C1—C6	1.386 (17)	C11—O1	1.361 (13)
C2—F1	1.338 (13)	C11—C12	1.365 (16)
C2—C3	1.389 (16)	C12—C13	1.398 (17)
C3—F2	1.316 (13)	C14—O1	1.445 (14)
C3—C4	1.368 (17)	C14—C15	1.516 (15)
C4—F3	1.329 (14)	C15—O2	1.411 (14)
C4—C5	1.369 (18)	C16—O2	1.410 (13)
C5—F4	1.343 (13)	C16—C17	1.486 (18)
C5—C6	1.350 (18)	C17—O3	1.411 (15)
C6—F5	1.338 (14)	C18—O3	1.423 (14)
C7—N1	1.100 (15)	C18—C19	1.469 (19)
C8—C13	1.382 (16)	C19—Cl1	1.800 (12)
C8—C9	1.387 (15)		
C7—Au1—C1	177.1 (5)	C9—C8—N1	117.2 (10)
C2—C1—Au1	121.9 (8)	C13—C8—C9	123.1 (10)
C2—C1—C6	115.7 (11)	C13—C8—N1	119.7 (10)
C6—C1—Au1	122.3 (10)	C8—C9—C10	117.0 (10)
C1—C2—C3	123.1 (10)	C11—C10—C9	120.4 (10)
F1—C2—C1	119.8 (10)	C12—C11—C10	121.4 (11)
F1—C2—C3	117.0 (10)	O1—C11—C10	124.0 (10)
C4—C3—C2	118.8 (11)	01—C11—C12	114.5 (10)
F2—C3—C2	121.7 (10)	C11—C12—C13	120.0 (12)
F2—C3—C4	119.5 (11)	C8—C13—C12	117.9 (11)
C3—C4—C5	118.9 (11)	01—C14—C15	105.3 (9)
F3—C4—C3	118.8 (12)	O2-C15-C14	113.6 (9)
F3—C4—C5	122.3 (11)	O2—C16—C17	107.6 (10)
C6—C5—C4	121.0 (11)	O3—C17—C16	110.3 (11)
F4—C5—C4	118.7 (11)	O3—C18—C19	108.8 (11)
F4—C5—C6	120.3 (11)	C18—C19—Cl1	112.4 (10)
C5—C6—C1	122.3 (12)	C7—N1—C8	173.5 (12)
F5—C6—C1	119.2 (12)	C11—O1—C14	117.2 (9)

F5—C6—C5	118.4 (11)	C16—O2—C15	113.3 (9)
N1—C7—Au1	177.6 (11)	C17—O3—C18	111.7 (10)
C6-C1-C2-F1	-176.3 (10)	C4—C5—C6—F5	177.0 (12)
C6—C1—C2—C3	3.3 (18)	C4—C5—C6—C1	-1 (2)
Au1—C1—C2—F1	7.8 (16)	N1-C8-C9-C10	-178.3 (11)
Au1—C1—C2—C3	-172.6 (9)	C13—C8—C9—C10	0.2 (18)
C2-C1-C6-F5	-179.2 (11)	N1-C8-C13-C12	179.0 (10)
C2-C1-C6-C5	-1.7 (18)	C9—C8—C13—C12	0.5 (18)
Au1—C1—C6—F5	-3.3 (16)	C8-C9-C10-C11	-0.3 (18)
Au1—C1—C6—C5	174.2 (10)	C9-C10-C11-O1	-177.9 (11)
F1-C2-C3-F2	-1.3 (17)	C9—C10—C11—C12	-0.3 (18)
F1—C2—C3—C4	176.9 (11)	C10-C11-O1-C14	-4.6 (16)
C1—C2—C3—F2	179.1 (11)	C12-C11-O1-C14	177.6 (10)
C1—C2—C3—C4	-2.7 (18)	O1—C11—C12—C13	178.8 (10)
F2-C3-C4-F3	-1.5 (18)	C10-C11-C12-C13	1.0 (17)
F2—C3—C4—C5	178.5 (11)	C11—C12—C13—C8	-1.1 (17)
C2—C3—C4—F3	-179.7 (11)	C15-C14-O1-C11	-173.7 (9)
C2—C3—C4—C5	0.2 (18)	O1—C14—C15—O2	-69.7 (12)
F3—C4—C5—F4	-1.0 (19)	C14—C15—O2—C16	-77.1 (12)
F3—C4—C5—C6	-178.8 (12)	C17—C16—O2—C15	175.2 (9)
C3—C4—C5—F4	179.1 (11)	O2-C16-C17-O3	69.7 (12)
C3—C4—C5—C6	1.3 (19)	C16—C17—O3—C18	-166.4 (11)
F4—C5—C6—F5	-0.8 (18)	C19—C18—O3—C17	-177.9 (11)
F4—C5—C6—C1	-178.3 (12)		

5. Copies of NMR spectra

Figure S12. ¹³C NMR spectrum of **b** in CDCl₃ at room temperature.

Figure S14. ¹³C NMR spectrum of **c** in CDCl₃ at room temperature.

Figure S16. ¹³C NMR spectrum of **d** in CDCl₃ at room temperature.

Figure S17. ¹H NMR spectrum of 1 in CDCl₃ at room temperature.

Figure S18. ¹³C NMR spectrum of 1 in CDCl₃ at room temperature.

Figure S19. ¹⁹F NMR spectrum of 1 in CDCl₃ at room temperature.