Copper(I) and silver(I) chemistry of vinyltrifluoroborate supported by a bis(pyrazolyl)methane

Adway O. Zacharias, James Mao,* Kwangho Nam, H. V. Rasika Dias*

Supporting Information

compound	¹ H NMR	¹³ C	¹⁹ F NMR	¹¹ B NMR	Ref.
-	δ (ppm)	NMR	δ (ppm)	δ (ppm)	
		δ (ppm)			
	5.06 (m)	99.9			This
(SIPr)Cu(MeCN)(CH ₂ =CHBF ₃)	4.66 (d)		-149.5 (br.s)	-1.16 (q)	work
	4.36 (m)				
	5.91 (m)	114.3			1
(SIPr)Ag(CH ₂ =CHBF ₃)	5.27 (dd)		-143.1 (m)		1
	5.10 (br d)				
	5.32 (m)	87.3			This
[CH ₂ (3,5-	4.83 (d)		-140.1 (br.s)	-0.92 (br s)	work
$(CH_3)_2Pz)_2]Cu(CH_2=CHBF_3)$	4.61 (br d)				
	6.15 (m)	102.2			This
[CH ₂ (3,5-	5.59 (dd)		-142.0 (br s)	-1.24 (br s)	work
$(CH_3)_2Pz)_2]Ag(CH_2=CHBF_3)$	5.31 (m)				

 Table S1.
 NMR spectroscopic data of vinyltrifluoroborates in CDCl3

Figure S1. ¹H NMR of (SIPr)Cu(MeCN)(CH₂=CHBF₃) (4)

Figure S2. ¹H NMR (zoomed) of (SIPr)Cu(MeCN)(CH₂=CHBF₃) (4)

¹H NMR (in CDCl₃): δ (ppm) 7.43 (CH_{Ar}), 7.26 (CH_{Ar}), 5.06 (CH₂CHBF₃), 4.66 (CH₂CHBF₃), 4.36 (CH₂CHBF₃), 4.05 (NCH₂), 3.02 (CH(CH₃)₂), 2.23 (CH₃CN), 1.32 (CH₃), 1.31 (CH₃).

¹³C{¹H} NMR (in CDCl₃): δ (ppm) 134.0(CH_{Ar}), 129.8 (CH_{Ar}), 124.5 (CH_{Ar}), 118.1, 99.9 (CH₂CHBF₃), 53.7 (NCH₂), 31.7-24.7 (CH(CH₃)₂).

In the HMQC spectrum, ¹H signals #1 (7.43 ppm (CH_{Ar})) corresponds to #15 (129.8 ppm (CH_{Ar}), #2 corresponds to solvent peak #11, #3 (7.26 ppm (CH_{Ar}) corresponds to #14 (124.5 ppm (CH_{Ar})), #4 (4.36 ppm (CH₂CHBF₃)) corresponds to #12 (99.9 ppm, (CH₂CHBF₃)), #5 (4.07 ppm (NCH₂)) corresponds to #10 (53.7 ppm (NCH₂)), #6 (3.02 ppm (CH(CH₃)₂) corresponds to #9 (31.7-24.7 ppm CH(CH₃)₂) and #8 (1.33-1.32 ppm (CH₃)) corresponds to #9 (31.7-24.7 ppm CH(CH₃)₂).

Figure S7. ¹¹B NMR of (SIPr)Cu(MeCN)(CH₂=CHBF₃) (4)

Figure S8. ¹H NMR of (MeCN)₃Cu(CH₂=CHBF₃)

Figure S10. ¹⁹F NMR of (MeCN)₃Cu(CH₂=CHBF₃)

Figure S11. ¹³C NMR of (MeCN)₃Cu(CH₂=CHBF₃)

Figure S12. ¹H NMR of [CH₂(3,5-(CH₃)₂Pz)₂]Cu(CH₂=CHBF₃) (5)

Figure S13. ¹H NMR (zoomed) [CH₂(3,5-(CH₃)₂Pz)₂]Cu(CH₂=CHBF₃) (5)

Figure S14. ¹⁹F NMR of [CH₂(3,5-(CH₃)₂Pz)₂]Cu(CH₂=CHBF₃) (5)

Figure S15. ¹³C NMR of [CH₂(3,5-(CH₃)₂Pz)₂]Cu(CH₂=CHBF₃) (5)

Figure S16. ¹¹B NMR of [CH₂(3,5-(CH₃)₂Pz)₂]Cu(CH₂=CHBF₃) (5)

Figure S17. IR of K(CH₂=CHBF₃)

Figure S18. IR of [CH₂(3,5-(CH₃)₂Pz)₂]Cu(CH₂=CHBF₃) (5)

Figure S20. ¹H NMR (zoomed) of (MeCN)₃Ag(CH₂=CHBF₃)

Figure S21. ¹⁹F NMR of (MeCN)₃Ag(CH₂=CHBF₃)

Figure S22. ¹³C NMR of (MeCN)₃Ag(CH₂=CHBF₃)

Figure S23. ¹H NMR of [CH₂(3,5-(CH₃)₂Pz)₂]Ag(CH₂=CHBF₃) (6)

Figure S24. ¹H NMR (zoomed) of [CH₂(3,5-(CH₃)₂Pz)₂]Ag(CH₂=CHBF₃) (6)

Figure S26. ¹³C NMR of [CH₂(3,5-(CH₃)₂Pz)₂]Ag(CH₂=CHBF₃) (6)

¹H NMR (in CDCl₃): δ (ppm) 6.15 (CH₂CHBF₃), 6.03 (N(CH₂)N), 5.88 (CH_{Pz}), 5.59 (CH₂CHBF₃), 5.31 (CH₂CHBF₃), 2.41 (CH₃), 2.28 (CH₃) ppm.

¹³C{¹H} NMR (in CDCl₃): δ (ppm) 151.5 (s, C(CH₃)), 141.2 (s, C(CH₃)), 141.2 (C(CH₃)), 107.0 (CH_{Pz}), 102.2 (*C*H₂CHBF₃), 58.1 (CH₂), 14.1 (CH₃), 11.2 (CH₃).

In the HMQC spectrum, ¹H signals #1 is the solvent peak corresponding to #10, #2 (6.03 ppm (N(CH₂)N)) corresponds to #9 (58.1 ppm (CH₂)), #3 (5.88 ppm (CH_{Pz})) corresponds to #12 (107 ppm, (CH_{Pz})), #4 (5.31 ppm (CH₂CHBF₃)) corresponds to #11 (102.2 ppm (CH₂CHBF₃)), #5 (2.41 ppm (CH₃)) corresponds to #7 (11.2 ppm (CH₃)) and #6 (2.27 ppm (CH₃)) corresponds to #8 (11.2 ppm (CH₃)). There are no proton cross-peaks for # 13 and 14 as these peaks correspond to C(CH₃) carbons.

Figure S28. ¹¹B NMR of [CH₂(3,5-(CH₃)₂Pz)₂]Ag(CH₂=CHBF₃) (6)

Figure S29. IR of [CH₂(3,5-(CH₃)₂Pz)₂]Ag(CH₂=CHBF₃) (6)

Figure S30. ¹⁹F NMR of crude mixture of *cis/trans* potassium 2-(ethoxycarbonyl)cycloproyl trifluoroborate and unreacted K(CH₂=CHBF₃)

Table S2. Crystal data and structure refinement for [CH ₂ (3,5-(CH ₃) ₂ Pz) ₂]Cu(CH ₂ =CHBF ₃).						

c/Å	20.3486(10)
$\alpha/^{\circ}$	90
β/°	122.0380(10)
$\gamma/^{\circ}$	90
Volume/Å ³	3003.2(2)
Z	8
$\rho_{calc}g/cm^3$	1.604
μ/mm^{-1}	1.487
F(000)	1488.0
Crystal size/mm ³	0.2 imes 0.19 imes 0.09
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.544 to 66.278
Index ranges	$-34 \le h \le 34, -12 \le k \le 12, -31 \le l \le 31$
Reflections collected	23153
Independent reflections	5707 [$R_{int} = 0.0387$, $R_{sigma} = 0.0355$]
Data/restraints/parameters	5707/0/215
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0381, wR_2 = 0.0844$
Final R indexes [all data]	$R_1 = 0.0524, wR_2 = 0.0892$
Largest diff. peak/hole / e Å ⁻³	1.50/-0.96

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cu	N1	1.9941(14)	N4	C6	1.442(2)
Cu	N3	1.9910(14)	N4	C9	1.357(2)
Cu	C12	2.0488(16)	C1	C2	1.400(2)
Cu	C13	2.0279(17)	C1	C4	1.490(2)
F1	В	1.419(2)	C2	C3	1.381(2)
F2	В	1.411(2)	C3	C5	1.489(2)
F3	В	1.406(2)	C7	C8	1.402(2)
N1	N2	1.3711(19)	C7	C10	1.489(2)
N1	C1	1.342(2)	C8	C9	1.378(2)
N2	C3	1.360(2)	C9	C11	1.489(2)
N2	C6	1.445(2)	C12	C13	1.371(3)
N3	N4	1.3750(19)	C12	В	1.620(3)
N3	C7	1.342(2)			

Table S3. Bond Lengths for [CH2(3,5-(CH3)2Pz)2]Cu(CH2=CHBF3).

Table S4. Bond Angles for [CH ₂ (3,5-(CH ₃) ₂ Pz) ₂]Cu(CH ₂ =CHBF ₃	3).
---	-----

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	Cu	C12	149.72(7)	N2	C3	C2	106.28(14)
N1	Cu	C13	110.74(7)	N2	C3	C5	122.98(16)
N3	Cu	N1	96.86(6)	C2	C3	C5	130.74(16)
N3	Cu	C12	113.43(7)	N4	C6	N2	111.99(13)
N3	Cu	C13	151.43(7)	N3	C7	C8	109.97(14)
C13	Cu	C12	39.31(7)	N3	C7	C10	122.00(15)
N2	N1	Cu	119.87(11)	C8	C7	C10	128.03(16)
C1	N1	Cu	133.40(11)	C9	C8	C7	106.90(15)
C1	N1	N2	105.56(13)	N4	C9	C8	106.03(14)
N1	N2	C6	119.66(13)	N4	C9	C11	123.77(16)
C3	N2	N1	111.46(14)	C8	C9	C11	130.16(16)
C3	N2	C6	128.59(14)	C13	C12	Cu	69.52(10)
N4	N3	Cu	117.14(10)	C13	C12	В	Ν
C7	N3	Cu	129.77(11)	В	C12	Cu	110.16(11)
C7	N3	N4	105.37(13)	C12	C13	Cu	71.17(10)
N3	N4	C6	118.26(13)	F1	В	C12	111.20(15)
C9	N4	N3	111.73(13)	F2	В	F1	107.27(15)
C9	N4	C6	129.48(14)	F2	В	C12	112.81(15)

Table S4. Bond Angles for $[CH_2(3,5-(CH_3)_2Pz)_2]Cu(CH_2=CHBF_3)$.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	C1	C2	110.16(15)	F3	В	F1	108.54(16)
N1	C1	C4	122.14(15)	F3	В	F2	107.33(16)
C2	C1	C4	127.68(15)	F3	В	C12	109.53(15)
C3	C2	C1	106.54(15)				

 $\label{eq:constant} \textbf{Table S5.} Crystal data and structure refinement for [CH_2(3,5-(CH_3)_2Pz)_2]Ag(CH_2=CHBF_3).$

Empirical formula	$C_{13}H_{19}AgBF_3N_4$
Formula weight	407.00
Temperature/K	99.98
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.3966(6)
b/Å	12.1819(7)
c/Å	12.0151(7)
α/°	90
β/°	114.8850(10)
$\gamma/^{\circ}$	90
Volume/Å ³	1513.21(15)
Z	4

$\rho_{calc}g/cm^3$	1.787
μ/mm^{-1}	1.364
F(000)	816.0
Crystal size/mm ³	$0.47 \times 0.36 \times 0.14$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.014 to 76.166
Index ranges	$\text{-19} \leq h \leq \text{19}, \text{-20} \leq k \leq \text{21}, \text{-20} \leq \text{l} \leq \text{20}$
Reflections collected	30566
Independent reflections	7962 [$R_{int} = 0.0262, R_{sigma} = 0.0253$]
Data/restraints/parameters	7962/0/216
Goodness-of-fit on F ²	1.049
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0243, wR_2 = 0.0589$
Final R indexes [all data]	$R_1 = 0.0294, wR_2 = 0.0612$
Largest diff. peak/hole / e Å ⁻³	0.71/-1.12

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ag	N1	2.2768(9)	N4	C6	1.4443(14)
Ag	N3	2.2454(9)	N4	C9	1.3597(13)
Ag	C12	2.3022(11)	C1	C2	1.4108(15)
Ag	C13	2.2562(11)	C1	C4	1.4886(15)
F1	В	1.4051(15)	C2	C3	1.3826(16)
F2	В	1.4078(14)	C3	C5	1.4910(16)
F3	В	1.4247(14)	C7	C8	1.4073(15)
N1	N2	1.3713(13)	C7	C10	1.4960(15)
N1	C1	1.3382(14)	C8	C9	1.3822(15)
N2	C3	1.3583(14)	C9	C11	1.4935(15)
N2	C6	1.4456(14)	C12	C13	1.3674(16)
N3	N4	1.3693(12)	C12	В	1.6300(17)
N3	C7	1.3386(13)			

Table S6. Bond Lengths for [CH₂(3,5-(CH₃)₂Pz)₂]Ag(CH₂=CHBF₃).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	Ag	C12	150.45(4)	N2	C3	C2	106.19(9)
N3	Ag	N1	87.74(3)	N2	C3	C5	123.15(10)
N3	Ag	C12	121.61(4)	C2	C3	C5	130.64(10)
N3	Ag	C13	156.41(4)	N4	C6	N2	112.70(8)
C13	Ag	N1	115.61(4)	N3	C7	C8	110.18(9)
C13	Ag	C12	34.89(4)	N3	C7	C10	120.13(9)
N2	N1	Ag	117.94(6)	C8	C7	C10	129.67(10)
C1	N1	Ag	131.18(7)	C9	C8	C7	106.42(9)
C1	N1	N2	105.65(8)	N4	C9	C8	106.02(9)
N1	N2	C6	118.24(8)	N4	C9	C11	123.01(10)
C3	N2	N1	111.76(9)	C8	C9	C11	130.97(10)
C3	N2	C6	129.62(9)	C13	C12	Ag	70.71(6)
N4	N3	Ag	120.54(6)	C13	C12	В	124.95(11)
C7	N3	Ag	131.86(7)	В	C12	Ag	108.64(7)
C7	N3	N4	105.51(8)	C12	C13	Ag	74.39(7)
N3	N4	C6	118.92(8)	F1	В	F2	109.11(10)
C9	N4	N3	111.87(9)	F1	В	F3	107.50(9)

Table S7. Bond Angles for $[CH_2(3,5-(CH_3)_2Pz)_2]Ag(CH_2=CHBF_3)$.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C9	N4	C6	129.19(9)	F1	В	C12	111.85(9)
N1	C1	C2	110.04(9)	F2	В	F3	107.71(9)
N1	C1	C4	120.35(9)	F2	В	C12	111.97(9)
C2	C1	C4	129.60(10)	F3	В	C12	108.52(9)
C3	C2	C1	106.35(9)				

 $\label{eq:constant} \textbf{Table S8.} Crystal data and structure refinement for (SIPr)Cu(MeCN)(CH_2=CHBF_3).$

Empirical formula	$C_{33}H_{48}BCl_4CuF_3N_3$
Formula weight	759.89
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.7461(4)
b/Å	22.3203(8)
c/Å	16.4600(6)
α/°	90
β/°	106.1390(10)
γ/°	90

3792.4(2)
4
1.331
0.899
1584.0
$0.475 \times 0.245 \times 0.23$
MoKa ($\lambda = 0.71073$)
5.586 to 66.284
$-16 \leq h \leq 16, -34 \leq k \leq 34, -25 \leq l \leq 25$
61121
14453 [$R_{int} = 0.0229, R_{sigma} = 0.0207$]
14453/30/454
1.026
$R_1 = 0.0386, wR_2 = 0.1045$
$R_1 = 0.0437, wR_2 = 0.1082$
1.07/-1.24

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cu	N3	1.9741(11)	C10	C12	1.524(2)
Cu	C1	1.9756(10)	C13	C14	1.5310(19)
Cu	C28	2.1061(12)	C13	C15	1.531(2)
Cu	C29	2.0936(13)	C16	C17	1.3998(15)
F1	В	1.4090(17)	C16	C21	1.4021(15)
F2	В	1.4075(18)	C17	C18	1.3972(16)
F3	В	1.4005(17)	C17	C22	1.5178(16)
N1	C1	1.3419(13)	C18	C19	1.3898(18)
N1	C2	1.4780(15)	C19	C20	1.3855(19)
N1	C4	1.4314(14)	C20	C21	1.3967(17)
N2	C1	1.3412(13)	C21	C25	1.5176(17)
N2	C3	1.4752(15)	C22	C23	1.5273(19)
N2	C16	1.4303(14)	C22	C24	1.5302(17)
N3	C32	1.1389(17)	C25	C26	1.526(2)
C2	C3	1.5288(17)	C25	C27	1.530(2)
C4	C5	1.3993(16)	C28	C29	1.3682(18)
C4	C9	1.4044(16)	C28	В	1.6187(19)
C5	C6	1.4002(18)	C32	C33	1.4537(19)
C5	C10	1.5175(19)	Cl1	C30	1.7636(17)
C6	C7	1.384(2)	Cl2	C30	1.7628(17)
C7	C8	1.385(2)	Cl3	C31	1.743(3)
C8	C9	1.3978(18)	Cl4	C31	1.745(4)
C9	C13	1.5157(19)	Cl3A	C31A	1.746(3)
C10	C11	1.528(3)	Cl4A	C31A	1.749(4)

Table S9. Bond Lengths for (SIPr)Cu(MeCN)(CH₂=CHBF₃).

Table S10. Bond Angles for (SIPr)Cu(MeCN)(CH2=CHBF3).							
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N3	Cu	C1	112.78(4)	C9	C13	C15	111.58(12)
N3	Cu	C28	94.56(5)	C15	C13	C14	110.25(12)
N3	Cu	C29	131.81(5)	C17	C16	N2	118.89(10)
C1	Cu	C28	152.66(5)	C17	C16	C21	122.78(10)
C1	Cu	C29	114.99(5)	C21	C16	N2	118.33(10)
C29	Cu	C28	38.03(5)	C16	C17	C22	122.03(10)

C1 N1 C2 113.17(9) C18 C17 C16 117.48(10)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
	Atom N1	Atom C4	Angle/			COO	Angle/
CI	NI	C4	124.27(9)			C22	120.49(10)
C4	N1	C2	120.55(9)	C19	C18	C17	121.00(11)
C1	N2	C3	113.87(9)	C20	C19	C18	120.12(11)
C1	N2	C16	124.21(9)	C19	C20	C21	121.11(11)
C16	N2	C3	121.24(9)	C16	C21	C25	122.29(10)
C32	N3	Cu	174.50(12)	C20	C21	C16	117.43(11)
N1	C1	Cu	127.53(8)	C20	C21	C25	120.28(11)
N2	C1	Cu	125.26(8)	C17	C22	C23	112.04(10)
N2	C1	N1	107.21(9)	C17	C22	C24	110.30(10)
N1	C2	C3	102.12(9)	C23	C22	C24	110.79(11)
N2	C3	C2	101.40(9)	C21	C25	C26	111.95(12)
C5	C4	N1	118.53(10)	C21	C25	C27	110.97(11)
C5	C4	C9	122.63(11)	C26	C25	C27	109.94(13)
C9	C4	N1	118.83(10)	C29	C28	Cu	70.49(7)
C4	C5	C6	117.73(12)	C29	C28	В	122.87(12)
C4	C5	C10	121.34(11)	В	C28	Cu	109.52(8)
C6	C5	C10	120.92(12)	C28	C29	Cu	71.48(7)
C7	C6	C5	120.59(13)	N3	C32	C33	179.30(16)
C6	C7	C8	120.65(12)	F1	В	C28	110.12(11)
C7	C8	C9	120.95(13)	F2	В	F1	107.73(12)
C4	C9	C13	122.11(11)	F2	В	C28	110.28(11)
C8	C9	C4	117.38(12)	F3	В	F1	107.02(12)
C8	C9	C13	120.51(12)	F3	В	F2	107.23(12)
C5	C10	C11	112.03(14)	F3	В	C28	114.20(11)
C5	C10	C12	111.41(12)	Cl2	C30	Cl1	112.73(9)
C12	C10	C11	110.64(13)	Cl3	C31	Cl4	110.6(3)
C9	C13	C14	111.68(12)	Cl3A	C31A	Cl4A	111.8(4)

 Table S10. Bond Angles for (SIPr)Cu(MeCN)(CH2=CHBF3).

	C=C bond length			M-C distance		
	Cu(CH ₂ =CH ₂)	Ag(CH ₂ =CH ₂)	Au(CH ₂ =CH ₂)	Cu(CH ₂ =CH ₂)	Ag(CH ₂ =CH ₂)	Au(CH ₂ =CH ₂)
wb97xd/def2tzvp	1.361	1.356	1.388	2.118	2.365	2.200
m06-2x/def2tzvp	1.352	1.350	1.385	2.229	2.454	2.205
bp86/def2tzvp	1.386	1.378	1.416	2.061	2.295	2.157
b3lyp/def2tzvp	1.366	1.361	1.395	2.136	2.378	2.210
pbe0/def2tzvp	1.364	1.360	1.395	2.099	2.329	2.165
ccsd(t)/def2qzvpp	1.358	1.357	1.395	2.173	2.372	2.164

Table S11. Selected distances of optimized M(CH₂=CH₂) structures.

Table S12. Metal-ethylene bond dissociation energies of M(CH₂=CH₂) (in unit of kcal/mol).

	Cu(CH ₂ =CH ₂)	Ag(CH ₂ =CH ₂)	Au(CH ₂ =CH ₂)
E-int (experiment) ²⁻⁴	44-50	33.7	>59
wb97xd/def2tzvp	-46.75	-36.11	-60.30
m06-2x/def2tzvp	-43.05	-33.77	-54.30
bp86/def2tzvp	-58.26	-45.67	-76.87
b3lyp/def2tzvp	-48.55	-39.28	-64.93
pbe0/def2tzvp	-48.88	-39.40	-67.59
ccsd(t)/def2qzvpp	-41.41	-33.39	-63.00

References

- 1. G. Wang, L. Pecher, G. Frenking and H. V. R. Dias, *Eur. J. Inorg. Chem.*, 2018, 4142-4152.
- 2. E.R. Fisher, P.B. Armentrout, J. Phys. Chem., 1990, 94, 1674-1683
- 3. B.C. Guo, A.W. Castleman Jr., *Chem. Phys. Lett.*, 1991, 181, 16-20.
- 4. D.A. Weil, C.L. Wilkins, J. Am. Chem. Soc., 1985, 107, 7316-7320.