Supplementary information

for

Sensitised Lanthanide Luminescence using a Rull Polypyridyl Functionalised Dipicolinic Acid Chelate

Divya Rajah, ${ }^{\text {a }}$ Michael C. Pfrunder, ${ }^{\text {a }}$ Bowie S. K. Chong, ${ }^{\text {a }}$ Alexander R. Ireland, ${ }^{\text {a }}$ Isaac M. Etchells, and Evan G. Moore*a
(a) School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia. E-mail: egmoore@uq.edu.au

Contents

I. Experimental 3
II. Synthesis 3
III. X-ray Crystallography 6
IV. NMR Spectroscopy. 7
V. DFT/TD-DFT Calculations 13
VI. Photophysical Data 20
VII. References 26

All reagents and solvents were purchased from commercial suppliers (Sigma Aldrich, Alfa Aesar, Precious Metals Online and Combi-Blocks) and were used without further purification. Lanthanide and Ruthenium metal salts were commercially obtained and were used in metal complexation. NMR spectra were obtained either on Bruker Avance or Ascend $500 \mathrm{MHz}\left({ }^{13} \mathrm{C}=125 \mathrm{~Hz}\right)$ spectrometers and all signals were referenced with respect to the residual solvent peaks. MestReNova, Mestrelab Research software was used to process and display spectra. For mass spectrometry analyses, samples were prepared in solution using either DCM-MeOH ($50: 50 \mathrm{v} / \mathrm{v}$), acetonitrile or $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(60: 10 \mathrm{v} / \mathrm{v})$ at approximately 10 uM . Samples were infused at 5 uL per minute via a HESI source into an LCQ Fleet mass spectrometer in positive mode. Data was acquired across the m / z range of $200-2000$. Source parameters included a heater temperature at sheath gas flow 5 ; ISV at 5 kV , ion transfer tube temperature at $275^{\circ} \mathrm{C}$. Data was analysed using the on-board Xcalibur software. Elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were performed by the University of Queensland School of Chemistry and Molecular Biosciences Microanalytical Service using a Thermo Scientific Flash 2000 Organic Elemental Analyser.

II. Synthesis

Dimethyl 4-hydroxypyridine-2,6-dicarboxylate (HODPAMe ${ }_{2}$)

This compound was synthesised in accordance to the literature. ${ }^{1}$ Concentrated sulphuric acid (1 mL) was added dropwise at room temperature to a vigorously stirring suspension of chelidamic acid monohydrate (0.5 $\mathrm{g}, 2.73 \mathrm{mmol}$) in methanol (20 mL). The reaction mixture was then refluxed at $65^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled to room temperature and solvent was removed in vacuo. The resulting yellow liquid was neutralised to pH 7 with saturated NaHCO_{3} and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over MgSO_{4} and removal of the solvent in vacuo yielded a white crystalline powder ($0.35 \mathrm{~g}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{4}-\mathrm{MeOD}$) $\delta(\mathrm{ppm}): 7.60(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{d}_{4}-\mathrm{MeOD}\right) \delta(\mathrm{ppm}): 168.0$, 164.7, 148.7, 115.5, 52.0. HRMS (ESI): m/z [M + H] 212.05 ; [$\mathrm{M}+\mathrm{Na}]^{+}$234.04. Anal. Calc'd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{5}$ (\%): C 51.19, H 4.30, N 6.63. Found C 51.22, H 4.31, N 6.40.

Dimethyl 4-bromopyridine-2,6-dicarboxylate (BrDPAMe ${ }_{2}$)

This compound was synthesised in accordance to the literature. ${ }^{2} \mathrm{HODPAMe}_{2}(1.01 \mathrm{~g}, 4.74 \mathrm{mmol})$ and phosphorus pentabromide $\left(\mathrm{PBr}_{5}\right)(5.07 \mathrm{~g}, 11.6 \mathrm{mmol})$ were heated at $95^{\circ} \mathrm{C}$ for 3 hours. The reaction mixture was allowed to cool to room temperature and hot methanol (20 mL) was added dropwise to precipitate the desired compound. The precipitate formed was filtered and washed with minimum amount of cold methanol to afford BrDPAMe ${ }_{2}$ as beige solid ($1.01 \mathrm{~g}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{4}-\mathrm{MeOD}$) $\delta(\mathrm{ppm}): 8.48(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}$, 6 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{d}_{4}-\mathrm{MeOD}$) δ (ppm): 165.2, 150.5, 136.1, 132.2, 53.6. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 273.97$; $[\mathrm{M}+\mathrm{Na}]^{+}$295.95. Anal. Calc'd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{4} \mathrm{Br}(\%)$: C 39.44, H 2.94, N 5.11. Found C 39.34, H 2.90, N 5.15.

Dimethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine-2,6-dicarboxylate ((RO) ${ }_{2}$ B-DPAMe ${ }_{2}$)

This compound was synthesised according to the literature. ${ }^{3}$ A reaction mixture of $\operatorname{BrDPAMe}_{2}(0.40 \mathrm{~g}, 1.46$ $\mathrm{mmol})$, bis(pinacolato) diboron ($0.56 \mathrm{~g}, 2.19 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.02 \mathrm{~g}, 0.03 \mathrm{mmol})$, dry potassium acetate $(0.43 \mathrm{~g}, 4.38 \mathrm{mmol})$ and anhydrous 1,4-dioxane (15 mL) was subjected to 3 cycles of freeze-pump-thaw, backfilled with Argon and heated at $80^{\circ} \mathrm{C}$ overnight. The cooled reaction mixture was poured into water and
extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over MgSO_{4} and yielded a pale brown solid ($0.46 \mathrm{~g}, 98 \%$) upon removal of the solvent. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.64(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 6 \mathrm{H})$, $1.37(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 165.2,147.6,133.2,85.2,83.5,53.3,25.0 . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ $[\mathrm{M}+\mathrm{H}]^{+} 322.15 ;[\mathrm{M}+\mathrm{Na}]^{+} 344.13 .{ }^{1} \mathrm{H} \mathrm{NMR}$ analysis revealed this product was the desired compound contaminated with a small amount of unreacted bis(pinacolato)diboron, which was deemed sufficiently pure to use in the next step without further purification.

Complexation of $\left[(t p y) \mathrm{RuCl}_{3}\right]^{3+}$

This complex was synthesised following a literature method. ${ }^{4}$ A solution of $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (tpy) (0.40 g , $1.71 \mathrm{mmol})$ dissolved in ethanol (50 mL) was added dropwise to $\left[\mathrm{RuCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right](0.51 \mathrm{~g}, 1.95 \mathrm{mmol})$ dissolved in ethanol (50 mL). The reaction mixture was stirred and heated to reflux under Argon for 3 hours. Upon cooling to room temperature, the precipitate obtained was filtered and washed with cold ethanol followed with diethyl ether to afford a black solid ($0.72 \mathrm{~g}, 1.63 \mathrm{mmol}$). Anal. Calc'd for $\mathrm{RuC}_{15} \mathrm{~N}_{3} \mathrm{H}_{11} \mathrm{Cl}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ (\%): C 40.47, H 2.60, N 9.44. Found $\mathrm{C} 40.27, \mathrm{H} 2.46, \mathrm{~N} 9.42$. [(tpy) $\left.\mathrm{RuCl}_{3}\right]^{3+}$ was used in the next step without further purification.

[(tpy)Ru"(tpyPh-Br)](PF $\left.{ }_{6}\right)_{2}$

This complex was prepared according to modified literature procedures. ${ }^{4-6}$ Briefly, [(tpy) Ru $\left.{ }^{\text {III }} \mathrm{Cl}_{3}\right]$ ($0.39 \mathrm{~g}, 0.88$ mmol) and silver tetrafluoroborate ($0.52 \mathrm{~g}, 2.65 \mathrm{mmol}$) dissolved in a mixture of $4: 1$ acetone (90 mL) and ethanol (22.5 mL) was heated to reflux for 3 hours. The reaction mixture was cooled to room temperature and the precipitated silver chloride (AgCl) was removed by filtration. Ethanol $(20 \mathrm{~mL})$ was added to the filtrate and the acetone was removed in vacuo. The residual of the filtrate was dissolved in acetone and added dropwise to a reaction mixture of 4^{\prime}-(4-bromophenyl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (tpyPh- Br) ($0.35 \mathrm{~g}, 0.90 \mathrm{mmol}$) dissolved in ethanol (30 mL) and 4-ethylmorpholine (1 mL). The dark purple reaction mixture was heated to reflux at $70{ }^{\circ} \mathrm{C}$ under Argon for 3 hours which resulted in a maroon solution. Upon cooling to room temperature, an aqueous solution of saturated $\mathrm{KPF}_{6}(1 \mathrm{~mL})$ was added to the reaction mixture and the solvent was removed under reduced pressure. The crude mixture was passed through an alumina plug using MeCN. The red band was collected and further purified via silica column using a solvent mixture of 90:7:3 ($\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$: sat. $\mathrm{KNO}_{3}(\mathrm{aq})$). The second fraction was collected, and solvent was removed to yield the desired complex. [(tpy)Ru"(tpyPh$\mathrm{Br})]\left(\mathrm{PF}_{6}\right)_{2}$ was precipitated by adding a saturated aqueous solution of $\mathrm{KPF}_{6}(3 \mathrm{~mL})$ yielding $(0.39 \mathrm{~g}, 61 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz, CD $\left.{ }_{3} \mathrm{CN}\right) \delta(\mathrm{ppm}): 9.00(\mathrm{~s}, 2 \mathrm{H}), 8.77(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.65(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.51(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 8.42(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.89(\mathrm{~m}, 6 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=$ $5.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.17-7.14$ ($\mathrm{m}, 4 \mathrm{H}$). HRMS (ESI): m/z [M] ${ }^{2+}$ 362.02. Anal. Calc'd for $\left[\mathrm{Ru}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\left(\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{Br}\right)\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (\%): C 41.96, H 2.64, N 8.15. Found C 41.80, H 2.41, N 7.86.

[(tpy)Ru"(tpyPh-DPAMe 2)] ${ }^{\prime \prime}$ PF $\left._{6}\right)_{2}$

This complex was synthesised according to modified literature methods. ${ }^{4,7}$ A solution of [(tpy)Ru"(tpyPh$\mathrm{Br})]\left(\mathrm{PF}_{6}\right)_{2} \quad(0.10 \mathrm{~g}, 0.10 \mathrm{mmol}),(\mathrm{RO})_{2} \mathrm{~B}-\mathrm{DPAMe}_{2},(0.04 \mathrm{~g}, 0.13 \mathrm{mmol})$ and potassium carbonate ($0.52 \mathrm{~g}, 0.37$ mmol) in DMSO (5 mL) was subjected to 3 cycles of freeze-pump-thaw. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.01 \mathrm{~g}, 0.01 \mathrm{mmol})$ was added to the reaction mixture under Argon which was subjected to another cycle of freeze-pump-thaw. The reaction mixture was heated to reflux at $75^{\circ} \mathrm{C}$ under argon for 24 hours. Upon cooling to room temperature, saturated KPF_{6} and water were added to the reaction mixture. The precipitate formed was filtered and washed with water. The crude mixture was purified via silica column using a solvent mixture of 90:7:3 ($\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$: sat. $\mathrm{KNO}_{3}(\mathrm{aq})$). The first band eluted was collected and the solvent was removed to yield the desired compound. [(tpy)Ru" ${ }^{\prime \prime}$ (tpyPh-DPAMe ${ }_{2}$)] $\left(\mathrm{PF}_{6}\right)_{2}$ was precipitated by adding an aqueous solution of saturated KPF_{6}
$(3 \mathrm{~mL})$ yielding ($0.03 \mathrm{~g}, 10 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta(\mathrm{ppm}): 9.08(\mathrm{~s}, 2 \mathrm{H}), 8.78(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.73-$ $8.68(\mathrm{~m}, 4 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.47-8.37(\mathrm{~m}, 3 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{dtd}, \mathrm{J}=15.7,7.8,1.5$ $\mathrm{Hz}, 4 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H})$. HRMS (ESI): m/z[M]2+418.58. Calc'd for $\left(\left[\mathrm{Ru}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\left(\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}\right)_{2} \cdot \mathrm{KPF}_{6}(\%): \mathrm{C} 44.35, \mathrm{H} 2.73, \mathrm{~N} 8.04$.Found C 44.17, H 2.71, N 7.80.

[(tpy)Ru" ${ }^{\prime \prime}$ tpyPh-DPA)](PF $\left.{ }_{6}\right)_{2}$

A solution of KOH dissolved in $6: 1(\mathrm{v} / \mathrm{v}) \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ was added dropwise to [(tpy)Ru" $\left.\left.{ }^{\prime \prime}(\text { tpyPh-DPAMe })_{2}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ ($0.03 \mathrm{~g}, 0.02 \mathrm{mmol}$) in $6: 1(\mathrm{v} / \mathrm{v}) \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ until a red precipitate was formed. The precipitate was centrifuged with the solvent mixture followed by MeCN. The supernatant was decanted, and the precipitate was dissolved in distilled $\mathrm{H}_{2} \mathrm{O}$. Concentrated HPF_{6} was added until a red precipitate of [(tpy)Ru"(tpyPh-DPA)] was formed ($0.02 \mathrm{~g}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 2: 1 \mathrm{~d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) $\delta(\mathrm{ppm}): 9.26(\mathrm{~s}, 2 \mathrm{H}), 8.91(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.82(\mathrm{~d}$, $\mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.66(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.57(\mathrm{~s}, 2 \mathrm{H}), 8.54-8.42(\mathrm{~m}, 3 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.10-7.96(\mathrm{~m}$, $4 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{q}, \mathrm{J}=4.9,2.8 \mathrm{~Hz}, 4 \mathrm{H}) . \mathrm{HRMS}(E S I): \mathrm{m} / \mathrm{z}[\mathrm{M}]^{2+} 404.57$. Calc'd for $\left[\mathrm{Ru}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\left(\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot \mathrm{HPF}_{6}(\%)$: $\mathrm{C} 41.49, \mathrm{H} 2.43, \mathrm{~N} 7.88$. Found C 42.05, H 2.64, N 7.67.

General method for formation of $L n^{\text {III }}$ complexes
An aqueous solution of MES buffer ($25 \mathrm{~mL}, 0.7 \mathrm{M}$) (MES = 2-(N-morpholino)ethanesulfonic acid) was prepared and adjusted to pH 6 using aqueous KOH (ca. 1 M).

A 1.43 mL portion of this buffer was evaporated to dryness over high vacuum and was subsequently reconstituted 3.33 mL of $\mathrm{D}_{2} \mathrm{O}$, which was then diluted with $\mathrm{d}_{4}-\mathrm{MeOD}$ to a final volume of $10 \mathrm{~mL}\left(2: 1 \mathrm{~d}_{4}-\mathrm{MeOD}\right.$: $\left.\mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}, 0.1 \mathrm{M}, \mathrm{pD} \approx 6.4\right)^{8}$

This solution was then used to prepare a stock solution of [(tpy)Ru"(tpyPh-DPA)] ($0.8 \mathrm{mg} / \mathrm{mL}$) which was used for subsequent photophysical characterisation and in situ Ln(III) complex formation.

To prepare the required Ln (III) complexes, an excess (10 mg) of $\left[\mathrm{Ln}(\mathrm{OTf})_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right]$ salt was added to a portion (700 uL) of the stock solution of [(tpy)Ru" $(\mathrm{tpyPh}-\mathrm{DPA})$]. The formation of the desired 1:1 complexes was evidenced by HRMS analysis of the Lu(III) complex, and for the Lu(III) and Nd (III) complexes, successful complexation was also confirmed by ${ }^{1} \mathrm{H}$ NMR.

Lu(III) complex: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 2: 1 \mathrm{~d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) $\delta(\mathrm{ppm}): 9.28(\mathrm{~s}, 2 \mathrm{H}), 8.93(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.84$ ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $8.67(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.63(\mathrm{~s}, 2 \mathrm{H}), 8.52(\mathrm{dd}, \mathrm{J}=8.2,5.6 \mathrm{~Hz}, 3 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $8.11-7.96(\mathrm{~m}, 4 \mathrm{H}), 7.47$ (dd, J = 24.3, 5.6 Hz, 4H), $7.30(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 4 \mathrm{H})$.

HRMS (ESI): m/z [(tpy)Ru"(tpyPh-DPA)Lu($\left.\left.\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3+} \quad 351.37, \quad\left[(t p y) \mathrm{Ru}^{\prime \prime}(t p y P h-D P A) L u\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{MeOH})_{2}\right]^{3+}$ 354.71[(tpy)Ru"(tpyPh-DPA)Lu($\left.\left.\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{3+} 357.37$, [(tpy)Ru"(tpyPh-DPA)Lu($\left.\left.\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{MeOH})_{2}\right]^{3+} 360.71$.
$\mathrm{Nd}(\mathrm{III})$ complex: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 2: 1 \mathrm{~d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) $\delta(\mathrm{ppm}): 12.00(\mathrm{~s}, 2 \mathrm{H}), 9.55(\mathrm{~s}, 2 \mathrm{H}), 9.42(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 8.98(\mathrm{dd}, \mathrm{J}=15.1,8.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.91(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.71(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.58-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.14$ (t, J = 7.7 Hz, 2H), 8.06 (t, J = 7.7 Hz, 2H), $7.62(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 4 \mathrm{H})$.

III. X-ray Crystallography

Data for [(tpy)Ru" ${ }^{\prime \prime}$ tpyPh-DPAMe 2$\left.)\right]\left(\mathrm{PF}_{6}\right)_{2}$ were collected at at 100 K on a Rigaku Synergy diffractometer using Mo K α radiation $(\lambda=0.71073)$ from a sealed tube operating at 50 kV and 1 mA . Data reduction, integration and empirical absorption correction (ψ-scans) were performed within the CrysAlisPro ${ }^{9}$ software package, with subsequent computations carried out using OLEX- $2 .{ }^{10}$ The structure solution was obtained using SHELXT ${ }^{11}$ and a full matrix least-squares refinement was carried out with SHELXL ${ }^{12}$ through the OLEX-2 interface. Reflections at angles greater than $50^{\circ} 2 \vartheta$ were omitted, and non-H atoms were refined using anisotropic displacement parameters. Diffraction was less than ideal being both broad and weak and with very few reflections observed at above 0.9 Å resolution which resulted in larger than expected residuals, however the data proved sufficient to unambiguously confirm the atomic connectivity of the primary residue. The structure was found to be a 2fold twin with a 180° rotation about the [-105] direct lattice direction. Disordered $\mathrm{PF}_{6}{ }^{-}$ion containing phosphorus $P 3$ was modelled as a rigid body with anisotropic displacement parameters as a suitable second position could not be located in the difference Fourier map. The remaining $\mathrm{PF}_{6}{ }^{-}$ions were each modelled over two positions with the aid of atomic distance restraints (DFIX). A global restraint was placed on the relationship between the vectors of neighbouring non-hydrogen atoms (RIGU) to prevent non-positive definites, and, where necessary, thermal parameters were further restrained to approximate isotropic displacement (ISOR). The CIF file has been deposited with the CSD (CCDC \# 2065117). Crystal data for [(tpy)Ru" ${ }^{\prime \prime}$ (tpyPh-DPA)](PF $)_{2}$ $\left(\mathrm{M}=1310.86 \mathrm{~g} \mathrm{~mol}^{-1}\right)$: Formula C45H33F18KN7O4P3Ru, triclinic, space group $P \overline{1}, a=9.1630(5) \AA, b=$ $11.2045(6) \AA, c=24.0190(18) \AA, \alpha=89.234(5)^{\circ}, b=85.686(5)^{\circ}, \gamma=79.545(5)^{\circ}, V=2418.2(3) \AA^{3}, Z=2$, crystal dimensions $0.14 \times 0.11 \times 0.01 \mathrm{~mm}$, colour orange, habit plate, $T=100(2) K, \mu(\mathrm{MoK} \alpha)=0.633 \mathrm{~mm}^{-1}, D_{\text {calc }}=1.800$ $\mathrm{g} \mathrm{cm}^{-3}, T_{\text {mix, } \max } 0.40176,1.00000,21954$ reflections measured ($h k l$ range $-1010,-1213,-2825$), 8324 unique $\left(R_{\text {int }}=0.0914\right)$ which were used in all calculations. The final R_{1} was $0.1280(I>2 \sigma(I))^{*}, w R_{2}$ was 0.3709 (all data)* and GoF onF2was 1.069 (all data), $\operatorname{Dr}_{\min , \max }-1.545,2.912 \mathrm{e}^{-} \AA^{-3} .{ }^{*} R 1=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|$ for $F_{\mathrm{o}}>$ $2 \sigma\left(F_{o}\right) ; w R 2=\left(\Sigma w\left(F_{o}^{2}-F_{c}^{2}\right)^{2} / \Sigma\left(w F_{c}^{2}\right)^{2}\right)^{1 / 2}$ all reflections.
IV. NMR Spectroscopy.

Figure S1: Assigned ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(t p y) R u^{11}(\text { tpyPh-DPAMe } 2)\right]^{2+}$ in $\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}$.

Figure S2: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\left[(\text { tpy }) \mathrm{Ru}{ }^{\prime \prime}\left(\text { tpy }{ }^{2} \mathrm{Ph}-\mathrm{DPAMe}_{2}\right)\right]^{2+}$ in $\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}$

Figure S3: 1D-NOESY spectrum of [(tpy)Ru"(tpyPh-DPAMe $\left.\left.)_{2}\right)\right]^{2+}$ irradiating at $9.08 \mathrm{ppm} \mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}$.

Figure S4: 1D-NOESY spectrum of [(tpy)Ru"(tpyPh-DPAMe 2) $]^{2+}$ irradiating at $8.71 \mathrm{ppm} \mathrm{CD} 3{ }_{3} \mathrm{CN}, 500 \mathrm{MHz}$.

Figure S5: 1D-NOESY spectrum of [(tpy)Ru"(tpyPh-DPAMe 2) $]^{2+}$ irradiating at $8.78 \mathrm{ppm} \mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}$.

Figure S6: Assigned ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\right.$ tpy $) R u^{\prime \prime}(\text { tpyPh-DPA) }]^{2+}$ in $2: 1 \mathrm{~d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}, 500 \mathrm{MHz}$.

Figure S7: ${ }^{1} \mathrm{H}$ NMR data showing fitting of curves to H_{d} of respective (ML$)_{x} L u^{\text {III }}$ species for successive concentrations of $\mathrm{Lu}(\mathrm{OTf})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Theoretical fit (bottom), theoretical fit overlaid with experimental data (middle) and residuals to fit (top).

Figure S8: The experimental and calculated speciation diagram of $\left[(t p y) \mathrm{Ru}^{\prime \prime}(\mathrm{tpyPh}-\mathrm{DPA}) L u^{\prime \prime \prime}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]^{3+}$ with varying concentrations of $\mathrm{Lu}(\mathrm{OTf})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Relative concentrations of each species were calculated by fitting a series of Lorentzian functions to the ${ }^{1} \mathrm{H}$ NMR signals of H_{d} for each species (accounting for 1 H signal multiplicity) as shown in Figure S7.

Figure S9 NMR spectrum of $\left[(\right.$ tpy $) \mathrm{Ru}^{11}\left(\text { tpyPh-DPA) } \mathrm{Nd}^{111}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\chi}\right]^{3+}$ prepared by addition of $\mathrm{Nd}(\mathrm{OTf})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg})$ to a solution of [(tpy)Ru" $(\text { tpyPh-DPA) }]^{2+}(0.8 \mathrm{mg} / \mathrm{mL})$ in (2:1 $\left.\mathrm{d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}\right)$ with deuterated MES buffer ($0.1 \mathrm{M}, \mathrm{pD} 6.4$).

V. DFT/TD-DFT Calculations

Density Functional Theory (DFT) calculations were performed using the Gaussian 16 package (Revision B.01). ${ }^{13}$ Ground state geometry optimisations of [(tpy)Ru"(tpyPh-DPA $]^{2+}$ and $\left[(t \mathrm{tpy}) \mathrm{Ru}^{\prime \prime}(\mathrm{tpyPh}-\mathrm{DPA})\left[u^{\prime \prime \prime}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]^{3+}\right.$ were conducted using mPW1PW91 functional ${ }^{14}$ with the D95V basis set ${ }^{15}$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$ atoms, the LanL2TZ(f) basis set ${ }^{16-18}$ for the Ru atom and the def2-QZVP basis set ${ }^{18,19}$ for the Lu"'ion, together with the SMD implicit solvent model ${ }^{20}$ to simulate the solvent (methanol). The ultrafine integration grid of Gaussian 16 was used. Subsequent frequency calculations of the optimized structures were performed to ensure no imaginary vibrational frequencies were present. Corresponding calculations of the singlet and triplet excited state energies were undertaken using Time-Dependent (TD-DFT) methods in Gaussian 16, using the same functional and basis sets. A summary of the results is presented in Fig 3., Table S1 and Figure S12 - S14.

Figure S10. DFT optimised structure of $\left[(t p y) R u^{\prime \prime}(t p y P h-D P A) L u^{\prime \prime \prime}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{3+}$ showing intra-metallic distance.

Table S1. Summary of the results of the lowest excited states calculation from TD-DFT, MPW1PW91/D95V/LanL2TZ(f) (Ru")/def2-QZVP (Lu'I')/SMD:methanol.

[(tpy)Ru'1 ${ }^{\text {(tpyPh-DPA) }}{ }^{3+}$				
Excited State	Singlet	2.4677 eV	502.43 nm	$\mathrm{f}=0.0165$
$191 \rightarrow 192$	0.69429	HOMO \rightarrow LUMO	96.4 \%	TPY_Ph_DPA_MLCT
Excited State	Triplet	1.9962 eV	621.11 nm	$\mathbf{f}=\mathbf{0 . 0 0 0 0}$
$189 \rightarrow 193$	-0.19339	HOMO -2 \rightarrow LUMO +1	7.5 \%	TPY MLCT
$190 \rightarrow 192$	0.64664	HOMO -1 \rightarrow LUMO	83.7 \%	TPY_Ph_DPA MLCT
[(tpy)Ru"'(tpyPh-DPA)Lu'I'($\left.\left.\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{3+}$				
Excited State	Singlet	2.4677 eV	502.43 nm	$\mathrm{f}=0.0165$
$236 \rightarrow 237$	0.63802	HOMO \rightarrow LUMO	81.4 \%	TPY_Ph_DPA MLCT
$236 \rightarrow 240$	0.2887	HOMO \rightarrow LUMO +3	16.7 \%	TPY_Ph_DPA_MLCT
Excited State	Triplet	1.9876 eV	623.78 nm	$\mathrm{f}=0.0000$
$234 \rightarrow 238$	-0.16699	HOMO -2 \rightarrow LUMO +1	5.6\%	TPY MLCT
$235 \rightarrow 237$	0.60604	HOMO -1 \rightarrow LUMO	73.5 \%	TPY_Ph_DPA MLCT
$235 \rightarrow 240$	0.25826	HOMO -1 \rightarrow LUMO +3	13.3 \%	TPY_Ph_DPA MLCT

HOMO -2 (189)

HOMO (191)

HOMO -1 (190)

LUMO (192)

LUMO +1 (193)
Figure S11. TD-DFT molecular orbitals of the excited state of [(tpy)Ru" (tpyPh-DPA)] metalloligand with mPW1PW91/D95V/LanL2TZ(f) (Ru")/SMD:Methanol.

HOMO -2 (234)

HOMO -1 (235)

HOMO (236)
LUMO (237)

Figure S12. TD-DFT molecular orbitals of the excited state of [(tpy)Ru" $\left.{ }^{\prime \prime}(t p y P h-D P A) L u u^{\prime \prime \prime}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{3+}$ with mPW1PW91/D95V/LanL2TZ(f) (Ru")/SMD:Methanol.

Figure S13. Comparison of UV-Vis absorption spectrum of [(tpy)Ru"(tpyPh-DPA)] ${ }^{2+}$ (ML) in (2:1 $\mathrm{d}_{4}-$ MeOD: $\mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) with deuterated MES buffer ($0.1 \mathrm{M}, \mathrm{pH} 6$) (red) at room temperature and the calculated spectrum (dotted grey) of [(tpy)Ru"(tpyPh-DPA)] ${ }^{2+}$ in methanol solution with TD-DFT, MPW1PW91/D95V/LanL2TZ(f).

Figure S14. Comparison of UV-Vis absorption spectrum of [(tpy)Ru" (tpyPh-DPA)Lu" $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]^{3+}$ in (2:1 $\mathrm{d}_{4}-$ MeOD: $\mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) with deuterated MES buffer ($0.1 \mathrm{M}, \mathrm{pH} 6$) (red) at room temperature and the calculated spectrum (dotted grey) of $\left[(t\right.$ tpy $) \mathrm{Ru}^{\prime \prime}\left(\text { tpyPh-DPA)Lu" }\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{3+}$ in methanol solution with TD-DFT, MPW1PW91/D95V/LanL2TZ(f) (Ru")/def2-QZVP (Lu'II).

Atomic coordinates of the DFT-optimized [(tpy)Ru"(tpyPh-DPA)] ${ }^{2+}$ with MPW1PW91/D95V/LanL2TZ(f) (Rul')/SMD:Methanol.

01
C
N
C
$\begin{array}{lllll}C & 7.38647700 & 1.08205200 & -0.56041300\end{array}$
$\begin{array}{lllll}\text { C } & 5.98691600 & 1.06208100 & -0.54660700\end{array}$
C $\quad 5.98725300-1.06150800 \quad 0.54625500$
$\begin{array}{lllll}C & 5.07613800 & 2.09070600 & -1.07407300\end{array}$
$\begin{array}{lllll}\text { C } & 3.19111800 & 3.89651100 & -2.00623600\end{array}$
$\begin{array}{lllll}\mathrm{N} & 3.73169800 & 1.80873800 & -0.93783800\end{array}$
C $\quad 5.50220100 \quad 3.28043300-1.67374000$
$\begin{array}{lllll}\text { C } & 4.55343700 & 4.19432200 & -2.14571300\end{array}$
C $\quad 2.81909800 \quad 2.69661100-1.39720300$
C $\quad 5.07679500-2.09034200 \quad 1.07386900$
$\begin{array}{lllll}C & 3.19233900 & -3.89657600 & 2.00633500\end{array}$
C $\quad 5.50322700-3.27994300 \quad 1.67352400$
$N \quad 3.73226900-1.80870100 \quad 0.93780700$
C $\quad 2.81994700-2.69678400 \quad 1.39731700$
C $\quad 4.55474800-4.19404900 \quad 2.14564800$
Ru $\quad 3.34561400-0.00002400 \quad 0.00000200$
$\begin{array}{lllll}\text { C } & 2.12710200 & 2.16249000 & 4.18476500\end{array}$
$\begin{array}{lllll}\mathrm{N} & 2.95406500 & 0.94124600 & 1.80765200\end{array}$
$\begin{array}{lllll}\text { C } & 1.18043500 & 1.69014500 & 3.26897300\end{array}$
$\begin{array}{lllll}C & 3.49002300 & 2.01631200 & 3.89329600\end{array}$
$\begin{array}{lllll}\text { C } & 3.86453000 & 1.40100900 & 2.69740700\end{array}$
$\begin{array}{lllll}C & 1.60892300 & 1.08335000 & 2.08398100\end{array}$
$\begin{array}{lllll}C & 0.70138200 & 0.55323100 & 1.05293600\end{array}$
C $\quad-0.69414800 \quad-0.56731000-1.07215200$
$\begin{array}{lllll}\text { C } & -0.69413200 & 0.56703000 & 1.07233700\end{array}$
$\begin{array}{lllll}\mathrm{N} & 1.36355200 & -0.00014500 & 0.00007800\end{array}$
C $\quad 0.70136700-0.55352000-1.05276700$
$\begin{array}{lllll}\text { C } & -1.41559200 & -0.00013500 & 0.00009400\end{array}$
C $\quad 1.60889000-1.08362400-2.08383600$
C $\quad 3.48996100-2.01659000-3.89317700$
C $\quad 1.18038100-1.69053500-3.26876000$
N $\quad 2.95403500-0.94140300-1.80758800$
C $\quad 3.86448600-1.40116800-2.69735600$
C $\quad 2.12703500-2.16288400-4.18456600$
$\begin{array}{lllll}\mathrm{H} & -1.21970300 & 0.99161400 & 1.91718800\end{array}$
H $\quad-1.21972700$-0.99189600 -1.91699600
H $\quad 0.12306500-1.79308900-3.47657500$
H $\quad 1.80568600$-2.63491600 -5.10525600
H $\quad 4.25426300$-2.36888100 -4.57428600
H $\quad 4.90645100$-1.26829900 -2.43861000
$\begin{array}{lllll}\mathrm{H} & 0.12312300 & 1.79260800 & 3.47685000\end{array}$
$\begin{array}{lllll}H & 1.80576700 & 2.63442900 & 5.10550800\end{array}$

	2.36860500	
	-3.49220900	
	-5.11824500	2.61219700
-5.74367800	-0.00007800	0.00005400
-3.62152300	1.05483700	0.59196900
	-1	0
-5	-1	0
-5	1.05764600	0.58619000
-3	1.89042000	1.04345600
-3	-1	0
-5	-1	
-5	1.88219700	1.05618800
-10.05423900	0	-0.00000600
-	-1	0.06325200
-	0	0.13591600
18800	-1	0.06883600
14	-0.00004500	0
00	1.19843800	-0
-10.14683400	2.46338800	-0.13593800
-9.36209700	1.16071300	-0
-7.46582300	-2.15778000	0.14446900
-7.46571500	2.15770000	-
9.16547800	0.00065700	-0.00043600
-9.46064000	-3.54250300	0.32625300
-11.42469500	-2.42294200	0.
-11.42459500	2.42302200	-0.001
-9.46047100	3.54252600	0.

Atomic coordinates of the DFT-optimized $\left[(\right.$ tpy $) \mathrm{Ru}$ " $\left(\text { tpyPh-DPA)Lu"II }\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{3+}$ with MPW1PW91/D95V/LanL2TZ(f) (Ru")/def2-QZVP (Lu'I')/SMD:Methanol.

C	-10.99480700	0.01580600	0.01568500
N	-8.24418200	0.00962300	0.00605600
C	-10.30383100	-1.10161200	-0.47568000
C	-10.29537200	1.13014700	0.50203600
C	-8.89591300	1.10583300	0.48548200
C	-8.90419600	-1.08346900	-0.46910100
C	-7.98115800	2.16399600	0.94285600
C	-6.08996400	4.02286300	1.74964100
N	-6.63774200	1.87048200	0.82204700
C	-8.40296500	3.39105600	1.46492600
C	-7.45118500	4.33213800	1.87309300
C	-5.72215600	2.78462200	1.22002400
C	-7.99743000	-2.14568200	-0.93291800
C	-6.12054400	-4.01331200	-1.75260000
C	-8.42856100	-3.36927600	-1.45546300
N	-6.65185100	-1.85963900	-0.81840300
C	-5.74331500	-2.77805300	-1.22263600
C	-7.48403800	-4.31482200	-1.87006700
Ru	-6.25782900	0.00413500	0.00148400
C	-5.04377400	1.90583900	-4.30875400
N	-5.86859200	0.83075400	-1.86113800
C	-4.09642500	1.49308200	-3.36523000
C	-6.40632200	1.77426400	-4.00920700
C	-6.77979600	1.23309800	-2.77765600
C	-4.52365300	0.95859400	-2.14563400
C	-3.61496100	0.49155800	-1.08558100
C	-2.21806700	-0.51541500	1.09699000
C	-2.21913000	0.50523600	-1.10587900
N	-4.27600200	-0.00105000	-0.00167200
C	-3.61395000	-0.49637500	1.08039300
C	-1.49959700	-0.00623700	-0.00531900
C	-4.52171000	-0.95932600	2.14305900
C	-6.40280000	-1.76656200	4.01194600
C	-4.09349600	-1.49630300	3.36120700
N	-5.86687900	-0.82490600	1.86261700
C	-6.77730200	-1.22319600	2.78168700
C	-5.04002100	-1.90473800	4.30743800
H	-1.68994700	0.88434400	-1.97034900
H	-1.68795100	-0.89626900	1.96014000
H	-3.03656800	-1.59380200	3.57191200
H	-4.71872500	-2.32113100	5.25456700
H	-7.16730200	-2.07050400	4.71565100
H	-7.81939800	-1.09991500	2.51896900
H	-3.03963900	1.58535200	-3.57903900
H	-4.72329200	2.32041200	-5.25695800
H	-7.17142300	2.08167400	-4.71075600
H	-7.82167700	1.11486800	-2.51175600
H	-4.68152900	2.51114400	1.10795400
H	-5.32174200	4.72221100	2.05430900

VI. Photophysical Data

All steady state and emission measurements were carried out using 1 or 0.3 cm quartz cuvettes using (2:1 $\mathrm{d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) as the solvent. The UV-Vis absorption measurements were carried out using an Agilent Cary 60 UV-Vis spectrometer and the obtained spectra were recorded using Cary WinUV Scan Application (Version 5.0.0.999). Emission measurements were performed using Horiba JY FluoroLog-311 spectrofluorimeter and the spectra were obtained using the FluorEssence software. Femotosecond transient absorption studies (HELIOS) were undertaken using an amplified laser (Spitfire ACE, Spectra Physics) as the excitation source, delivering ca. 100 fs 800 nm laser pulses at a 1 kHz repetition rate. Approximately 0.1 mJ of this output was focused onto a CaF_{2} crystal to generate a while light continuum probe pulse from ca. 350 nm to 700 nm . The remainder of the output was coupled to an OPA system (TOPAS PRIME, Light Conversion) delivering femtosecond tuneable excitation pulses at 485 nm . The pump pulse polarisation was set to magic angle with respect to the probe. Absorbance of the samples was ca. 0.5 over the 2 mm path length cell used, and samples were continuously stirred mechanically. The instrument response function (IRF) for this setup is approximately 250 fs . The resulting transient data were analysed globally using commercially available software (Igor, Version 6.1.2.1, Wavemetrics).

Figure S15: UV-Vis spectra of 1:1 ML-Ln"II complexes where ML = [(tpy)Ru"(tpyPh-DPA)] and Ln = Lu, Nd, Yb or Er in (2:1 $\mathrm{d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) with deuterated MES buffer ($0.1 \mathrm{M}, \mathrm{pD} 6.4$).

Figure S16: Emission spectra of ML and 1:1 ML-Ln"I complexes upon 485 nm excitation where $\mathrm{ML}=$ [(tpy)Ru" (tpyPh-DPA)] and $\mathrm{Ln}=\mathrm{Lu}, \mathrm{Nd}, \mathrm{Yb}$ or Er in (2:1 $\mathrm{d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) with deuterated MES buffer (0.1M, pD 6.4).

Figure S17. TA spectra (top), Decay Associated Difference Spectra (middle) and a globally fit kinetic plot (bottom) for [(tpy)Ru" (tpyPh-DPA)] in (2:1 $\mathrm{d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) with deuterated MES buffer (0.1M, pD 6.4).

Figure S18. TA spectra (top), Decay Associated Difference Spectra (middle) and a globally fit kinetic plot (bottom) for [(tpy)Ru" (tpyPh-DPA)Lu" $\left.{ }^{\text {II }}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]^{3+}$ in (2:1 $\mathrm{d}_{4}-\mathrm{MeOD}$: $\mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) with deuterated MES buffer (0.1M, pD 6.4).

Figure S19. TA spectra (top), Decay Associated Difference Spectra (middle) and a globally fit kinetic plot (bottom) for [(tpy)Ru" $\left(\text { tpyPh-DPA)Nd" }{ }^{\prime \prime \prime}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]^{3+}$ in ($2: 1 \mathrm{~d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) with deuterated MES buffer (0.1M, pD 6.4).

Figure S20:: TA spectra (top), Decay Associated Difference Spectra (middle) and a globally fit kinetic plot (bottom) for [(tpy)Ru" $\left(\text { tpyPh-DPA)Er }{ }^{\prime \prime \prime}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}\right]^{3+}$ in (2:1 $\mathrm{d}_{4}-\mathrm{MeOD}: \mathrm{D}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}$) with deuterated MES buffer (0.1M, pD 6.4).

1. R. A. Tigaa, G. J. Lucas and A. de Bettencourt-Dias, Inorg. Chem., 2017, 56, 3260-3268.
2. O. K. Rasheed, C. Bawn, D. Davies, J. Raftery, I. Vitorica-Yrzebal, R. Pritchard, H. Zhou and P. Quayle, Eur. J. Org. Chem., 2017, 2017, 5252-5261.
3. O. K. Rasheed, J. J. W. McDouall, C. A. Muryn, J. Raftery, I. J. Vitorica-Yrezabal and P. Quayle, Dalton Trans., 2017, 46, 5229-5239.
4. S. Katagiri, R. Sakamoto, H. Maeda, Y. Nishimori, T. Kurita and H. Nishihara, Chem. Eur. J., 2013, 19, 5088-5096.
5. C. J. Aspley and J. A. Gareth Williams, New J. Chem., 2001, 25, 1136-1147.
6. F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, E. C. Constable and A. M. W. C. Thompson, J. Am. Chem. Soc., 1994, 116, 7692-7699.
7. C. Chakraborty, U. Rana, R. K. Pandey, S. Moriyama and M. Higuchi, ACS Appl. Mater. Interfaces, 2017, 9, 13406-13414.
8. A. Krȩżel and W. Bal, J. Inorg. Biochem., 2004, 98, 161-166.
9. C. P. Agilent and P. CrysAlis, 2014.
10. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
11. G. M. Sheldrick, Acta Crystallogr. A, 2015, 71, 3-8.
12. G. Sheldrick, Acta Crystallogr. A, 2008, 64, 112-122.
13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Journal, 2016.
14. C. Adamo and V. Barone, J. Chem. Phys., 1998, 108, 664-675.
15. T. H. Dunning Jr and P. J. Hay, 1976.
16. A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, Chem. Phys. Lett., 1993, 208, 111-114.
17. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
18. L. E. Roy, P. J. Hay and R. L. Martin, J. Chem. Theory Comput., 2008, 4, 1029-1031.
19. R. Gulde, P. Pollak and F. Weigend, J. Chem. Theory Comput., 2012, 8, 4062-4068.
20. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
