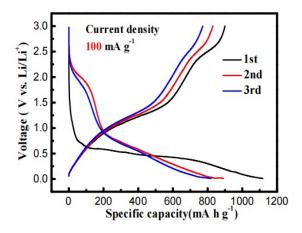
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supplementary data

Facile synthesis and electrochemical performance of $Ni_2V_2O_7$ as a novel anode material for lithium-ion batteries


Zhiyong Zhou^a, Jun Zhang^b, He Duan^c, Siyuan Chen^a, Heng Yao^a, Yanming Zhao^a, Quan Kuang^a, Qinghua Fan^a, Youzhong Dong^a*

^aSchool of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, P. R. China

^bRuyuan Dongyangguang Magnetic Materials Co., Ltd. Shaoguan, 512700, P. R. China

^cSchool of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China

*Corresponding author. E-mail address: yzdong@scut.edu.cn (Youzhong Dong)

Fig. S1. The discharge/charge curves of the Ni₂V₂O₇ electrode for the first three cycles with a current density of 100 mA g⁻¹.

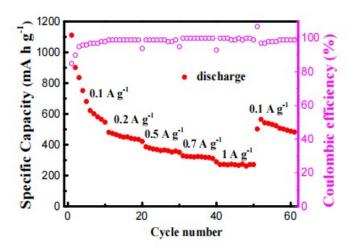


Fig. S2. The rate ability of the fresh $\mathrm{Ni}_2\mathrm{V}_2\mathrm{O}_7$ electrode.