Supporting Information for Ni-P Amorphous Alloy Efficient Electrocatalyst with Hierarchical Structure toward Borohydride Oxidation

Jingjing Yu,[†] Bihao Hu,[†] Chuanlan Xu,[†] Jiazhi Meng,[†] Shu Yang,[†] Yan Li,[†] Xiaoyuan

Zhou^{$\dagger \dagger$} Yuping Liu,^{\dagger} Danmei Yu,^{$*\dagger$} and Changguo Chen^{$*,\dagger$}

[†]School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China ^{††}College of Physics, Chongqing University, Chongqing 401331, PR China

Corresponding Authors

*Danmei Yu's E-mail: <u>yudanmei-1@163.com.</u>

*Changguo Chen's E-mail: cgchen@cqu.edu.cn.

Fig. S1 Schematic diagram of catalyst electrode preparation.

Fig. S2 XRD patterns of Ni-P@NF catalysts with different P.

Fig. S3 SEM images of (A) Ni foam, (B)Ni@NF.

Fig. S4 The EDS element distribution of Ni-P@NF was obtained from TEM.

Fig. S5 Pore size distribution map obtained by TEM.

Fig. S6 (A)-(C) LSVs of BOR on the Ni-P@NF prepared by different deposition times, different phosphorus concentrations, different deposition potentials in 0.27 mol dm⁻³ NaBH₄ and 2 mol dm⁻³ NaOH solution with scan rate of 5 mV s⁻¹ at 298 K, (D) The current density of BOR and the overpotential at current density of 10mA/cm⁻² on the Ni-P@NF prepared by different phosphorus concentrations.

Fig. S7 SEM image of Ni-P@NF (A-B) deposit for 15min, (C-D) deposit for 20min.

Fig. S8 Cyclic voltammograms for (A) Ni@NF; (B) Ni-P-0.1@NF; (C)Ni-P-0.2@NF; (D) Ni-P-0.3@NF; (E) Ni-P-0.4@NF; and (F) Ni-P-0.45@NF in the 0.1 V potential window in 1 mol dm⁻³ NaOH solution at scan rates of 10, 20, 30, 40, and 50 mV s⁻¹.

Fig. S9 (A) Plots of the average anodic current density at the specific potential *vs.* Hg/HgO as a function of scan rate (10, 20, 30, 40, and 50 mV s⁻¹), (B) the relationship between active area and phosphorus concentration.

Catalysts	$C_{\rm DL}({\rm mF~cm^{-2}})$	ECSA (cm ²)
Ni @NF	1.07	26.75
Ni-P-0.10@NF	1.17	29.25
Ni-P-0.20@NF	1.77	44.25
Ni-P-0.30@NF	2.10	52.5
Ni-P-0.40@NF	2.43	60.75
Ni-P-0.45@NF	1.75	43.75

Table S1. The C_{DL} and ECSA of Ni-P electrodes.

Fig. S10 (A) Chronoamperometry curves of BOR on different catalysts in 0.27mol dm⁻³ NaBH₄ and 2 mol dm⁻³ NaOH at 298 K, (B-C) The accelerated lifetime test the Ni-P@NF, Ni @NF in 0.27mol dm⁻³ NaBH₄ and 2 mol dm⁻³ NaOH solution with scan rate of 5 mV s⁻¹ at 298 K.

Anode catalyst	$R_L(\Omega)$	$R_{ct}(\Omega)$	C_d (mF)
NF	1.715	421.2	0.1824
Ni @NF	1.952	13.8	0.5054
Ni-P@NF	1.658	1.23	0.902

Table S2. EIS data of BOR on different catalyst electrodes