NMR and luminescence experiments reveal structure and symmetry adaptation of a europium ionic liquid to solvent polarity

Electronic Supplementary Information

Gerson P. Castro Jr.\(^a\), Lizandra L. L. S. Melo\(^a\), Fernando Hallwass\(^a\), Simone M. C. Gonçalves\(^a\), and Alfredo M. Simas*\(^a\)

*E-mail: simas@ufpe.br

\(^a\)Department of Fundamental Chemistry, CCEN, Federal University of Pernambuco, 50740-560, Recife, Pernambuco, Brazil
Table of Contents

1. Luminescence ... 10
 1.1 Excitation Spectra ... 10
 1.2 Emission Spectra ... 15
 1.3 Lifetime curves .. 20
2. NMR Data .. 27
 2.1 \([C_{5}\text{mim}][\text{La(BTFA)}_4]\) ... 27
 2.2 \([C_{5}\text{mim}][\text{Eu(BTFA)}_4]\) .. 42
3. Infrared Spectra .. 56
 3.1 \([C_{5}\text{mim}][\text{La(BTFA)}_4]\) ... 56
 3.2 \([C_{5}\text{mim}][\text{Eu(BTFA)}_4]\) ... 56
4. Canonical Shapes Used in the Article ... 57
List of Figures

Figure S1: Normalized excitation spectrum of the [C₅mim][Eu(BTFA)₄] ionic liquid complex, in C₆H₆, with the maximum excitation wavelength at λ= 365 nm. ... 10

Figure S 2: Normalized excitation spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CHCl₃, with the maximum excitation wavelength at λ= 366 nm. ... 10

Figure S 3: Normalized excitation spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CH₂Cl₂, with the maximum excitation wavelength at λ= 366 nm. ... 11

Figure S 4: Normalized excitation spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in (CH₃)₂CO, with the maximum excitation wavelength at λ= 363 nm. ... 11

Figure S 5: Normalized excitation spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CH₃CN, with the maximum excitation wavelength at λ= 366 nm. ... 12

Figure S 6: Normalized excitation spectrum of the [Na][Eu(BTFA)₄] complex, in C₆H₆, with the maximum excitation wavelength at λ= 367 nm. ... 12

Figure S 7: Normalized excitation spectrum of [Na][Eu(BTFA)₄] complex, in CHCl₃, with the maximum excitation wavelength at λ= 366 nm. ... 13

Figure S 8: Normalized excitation spectrum of [Na][Eu(BTFA)₄] complex, in CH₂Cl₂, with the maximum excitation wavelength at λ= 362 nm. ... 13

Figure S 9: Normalized excitation spectrum of [Na][Eu(BTFA)₄] complex, in (CH₃)₂CO, with the maximum excitation wavelength at λ= 367 nm. ... 14

Figure S 10: Normalized excitation spectrum of [Na][Eu(BTFA)₄] complex, in CH₃CN, with the maximum excitation wavelength at λ= 369 nm. ... 14

Figure S 11: Normalized emission spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in C₆H₆, with the maximum emission wavelength at λ= 611 nm. ... 15

Figure S 12: Normalized emission of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CHCl₃, with the maximum emission wavelength at λ= 611 nm. ... 15

Figure S 13: Normalized emission spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CH₂Cl₂, with the maximum emission wavelength at λ= 611 nm. ... 16

Figure S 14: Normalized emission spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in (CH₃)₂CO, with the maximum emission wavelength at λ= 611 nm. ... 16

Figure S 15: Normalized emission spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CH₃CN, with the maximum emission wavelength at λ= 611 nm. ... 17
Figure S 16: Normalized emission spectrum of [Na][Eu(BTFA)_4] complex, in C_6H_6, with the maximum emission wavelength at λ= 610 nm.

Figure S 17: Normalized emission spectrum of [Na][Eu(BTFA)_4] complex, in CHCl_3, with the maximum emission wavelength at λ= 610 nm.

Figure S 18: Normalized emission spectrum of [Na][Eu(BTFA)_4] complex, in CH_2Cl_2, with the maximum emission wavelength at λ= 610 nm.

Figure S 19: Normalized emission spectrum of [Na][Eu(BTFA)_4] complex, in (CH_3)_2CO, with the maximum emission wavelength at λ= 610 nm.

Figure S 20: Normalized emission spectrum of [Na][Eu(BTFA)_4] complex, in CH_3CN, with the maximum emission wavelength at λ= 610 nm.

Figure S 21: Lifetime curve of [C_5mim][Eu(BTFA)_4] ionic liquid complex, in C_6H_6, at the maximum excitation and emission wavelengths of λ= 365 nm and λ= 611 nm, respectively.

Figure S 22: Lifetime curve of [C_5mim][Eu(BTFA)_4] ionic liquid complex, in CHCl_3, at the maximum excitation and emission wavelengths of λ= 366 nm and λ= 611 nm, respectively.

Figure S 23: Lifetime curve of [C_5mim][Eu(BTFA)_4] ionic liquid complex, in CH_2Cl_2, at the maximum excitation and emission wavelengths of λ= 366 nm and λ= 611 nm, respectively.

Figure S 24: Lifetime curve of [C_5mim][Eu(BTFA)_4] ionic liquid complex, in (CH_3)_2CO, at the maximum excitation and emission wavelengths of λ= 363 nm and λ= 611 nm, respectively.

Figure S 25: Lifetime curve of [C_5mim][Eu(BTFA)_4] ionic liquid complex, in CH_3CN, at the maximum excitation and emission wavelengths of λ= 366 nm and λ= 611 nm, respectively.

Figure S 26: Lifetime curve of [Na][Eu(BTFA)_4] complex, in C_6H_6, at the maximum excitation and emission wavelengths of λ= 367 nm and λ= 610 nm, respectively.

Figure S 27: Lifetime curve of [Na][Eu(BTFA)_4] complex, in CHCl_3, at the maximum excitation and emission wavelengths of λ= 366 nm and λ= 610 nm, respectively.

Figure S 28: Lifetime curve of [Na][Eu(BTFA)_4] complex, in CH_2Cl_2, at the maximum excitation and emission wavelengths of λ= 362 nm and λ= 610 nm, respectively.

Figure S 29: Lifetime curve of [Na][Eu(BTFA)_4] complex, in (CH_3)_2CO, at the maximum excitation and emission wavelengths of λ= 367 nm and λ= 611 nm, respectively.

Figure S 30: Lifetime curve of [Na][Eu(BTFA)_4] complex, in CH_3CN, at the maximum excitation and emission wavelengths of λ= 369 nm and λ= 611 nm, respectively.
Figure S 31: NMR 1H Spectra of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex solutions, acquired on a 400 MHz spectrometer, at 25°C, in the following different solvents: benzene-d_6 (black), chloroform-d (red), dichloromethane-d_2 (green), acetone-d_6 (blue) and acetonitrile-d_3 (purple). .. 28

Figure S 32: 1H Spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C. .. 29

Figure S 33: 13C Spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C. .. 29

Figure S 34: 1H–1H COSY spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C. .. 30

Figure S 35: 1H–13C HSQC spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C. .. 30

Figure S 36: 1H–1H ROESY spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C and mixing time of 400 ms. .. 31

Figure S 37: 1H Spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C. .. 31

Figure S 38: 13C Spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C. .. 32

Figure S 39: 1H–1H COSY spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C. .. 32

Figure S 40: 1H–13C HSQC spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C. .. 33

Figure S 41: 1H–1H ROESY spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C and mixing time of 400 ms. .. 33

Figure S 42: 1H Spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C. .. 34

Figure S 43: 13C Spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C. .. 34

Figure S 44: 1H–1H COSY spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C. .. 35

Figure S 45: 1H–13C HSQC spectrum of [C$_{3}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C. .. 35
Figure S 46: 1H–1H ROESY spectrum of [C$_3$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C and mixing time of 400 ms. .. 36

Figure S 47: 1H Spectrum of [C$_3$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C. .. 36

Figure S 48: 13C Spectrum of [C$_3$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C. .. 37

Figure S 49: 1H–1H COSY spectrum of [C$_3$ mim][La(BTFA)$_4$], ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C. .. 37

Figure S 50: 1H–13C HSQC spectrum of [C$_3$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C. .. 38

Figure S 51: 1H–1H ROESY spectrum of [C$_3$ mim][La(BTFA)$_4$] ionic liquid complex, Acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C and mixing time of 400 ms. 38

Figure S 52: 1H Spectrum of [C$_3$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$CN, at 25°C. .. 39

Figure S 53: 13C Spectrum of [C$_3$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$CN, at 25°C. .. 39

Figure S 54: 1H–1H COSY spectrum of [C$_3$ mim][La(BTFA)$_4$], ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$CN, at 25°C. .. 40

Figure S 55: 1H–13C HSQC spectrum of [C$_3$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$CN, at 25°C. .. 40

Figure S 56: 1H–1H ROESY spectrum of [C$_3$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$CN, at 25°C and mixing time of 400 ms. .. 41

Figure S 57: 1H Spectrum of [C$_3$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C. .. 43

Figure S 58: 13C Spectrum of [C$_3$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C. .. 43

Figure S 59: 1H–1H COSY spectrum of [C$_3$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C. .. 44

Figure S 60: 1H–13C HSQC spectrum of [C$_3$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C. .. 44

Figure S 61: 1H–1H ROESY spectrum of [C$_3$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C and mixing time of 400 ms. .. 45
Figure S 62: 1H Spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C. .. 45

Figure S 63: 13C Spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C. .. 46

Figure S 64: 1H–1H COSY spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C. .. 46

Figure S 65: 1H–13C HSQC spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C. .. 47

Figure S 66: 1H–1H ROESY spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C and mixing time of 400 ms. ... 47

Figure S 67: 1H Spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C. .. 48

Figure S 68: 13C Spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C. .. 48

Figure S 69: 1H–1H COSY spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C. .. 49

Figure S 70: 1H–13C HSQC spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C. .. 49

Figure S 71: 1H–1H ROESY spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C and mixing time of 400 ms. ... 50

Figure S 72: 1H Spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C. .. 50

Figure S 73: 13C Spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C. .. 51

Figure S 74: 1H–1H COSY spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C. .. 51

Figure S 75: 1H–13C HSQC spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C. .. 52

Figure S 76: 1H–1H ROESY spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C and mixing time of 400 ms. ... 52

Figure S 77: 1H Spectrum of [C$_{3}$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C. .. 53
Figure S 78: 13C Spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, acquired on a 400 MHz spectrometer in CD₃CN, at 25°C. ... 53

Figure S 79: 1H–1H COSY spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, acquired on a 400 MHz spectrometer in CD₃CN, at 25°C. ... 54

Figure S 80: 1H–13C HSQC spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, acquired on a 400 MHz spectrometer in CD₃CN, at 25°C. ... 54

Figure S 81: 1H–1H ROESY spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, acquired on a 400 MHz spectrometer in CD₃CN, at 25°C and mixing time of 400 ms.. 55

Figure S 82: Infrared spectrum of [C₅mim][La(BTFA)₄] complex; acquired on KBr disk: C–H (CH₃) ν = 3147 cm$^{-1}$, C–H (–CH, ar) ν = 3089 cm$^{-1}$, C–H (CH₂) ν = 3147 cm$^{-1}$, C=O ν = 1613 cm$^{-1}$, C=N ν = 1371 cm$^{-1}$, C–F ν = 1249 cm$^{-1}$. .. 56

Figure S 83: Infrared spectrum of [C₅mim][Eu(BTFA)₄] complex; acquired on KBr disk: C–H (CH₃) ν = 3157 cm$^{-1}$, C–H (–CH, ar) ν = 3080 cm$^{-1}$, C–H (CH₂) ν = 3147 cm$^{-1}$, C=O ν = 1618 cm$^{-1}$, C=N ν = 1361 cm$^{-1}$, C–F ν = 1241 cm$^{-1}$. .. 56

Figure S 84: Shapes of the coordination polyhedron of the anion complex [Eu(BTFA)₄]$^+$ considered in this 57
List of Tables

Table S1: Summary of luminescence raw data for the Replicate 1 of Na[Eu(BTFA)₄] complex.................... 25

Table S2: Summary of luminescence raw data for the Replicate 2 of Na[Eu(BTFA)₄] complex.................... 25

Table S3: Summary of luminescence raw data for the Replicate 3 of Na[Eu(BTFA)₄] complex.................... 25

Table S4: Means and their 90% confidence interval for the luminescence data for the Na[Eu(BTFA)₄] complex calculated from the three replicates in Tabs. S1-S3... 26

Table S5: ¹H and ¹³C chemical shifts (δ ppm) obtained in different solvents of the ligands BTFA and the counterion [C₅mim] for the lanthanum complex [C₅mim][La(BTFA)₄]. The structure below with the numbering is to help interpretation of the data... 27

Table S6: ¹H and ¹³C chemical shifts (δ ppm) obtained in different solvents of the ligands BTFA and the counterion [C₅mim] for the lanthanum complex [C₅mim][Eu(BTFA)₄]. The structure below with the numbering is to help interpretation of the data... 42
1. Luminescence

1.1 Excitation Spectra

Figure S1: Normalized excitation spectrum of the [C₅mim][Eu(BTFA)₄] ionic liquid complex, in C₆H₆, with the maximum excitation wavelength at $\lambda = 365$ nm.

Figure S2: Normalized excitation spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CHCl₃, with the maximum excitation wavelength at $\lambda = 366$ nm.
Figure S3: Normalized excitation spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, in CH$_2$Cl$_2$, with the maximum excitation wavelength at $\lambda = 366$ nm.

Figure S4: Normalized excitation spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, in (CH$_3$)$_2$CO, with the maximum excitation wavelength at $\lambda = 363$ nm.
Figure S5: Normalized excitation spectrum of \([\text{C}_5\text{mim}]\text{Eu(BTFA)}_4\) ionic liquid complex, in CH\(_3\text{CN}\), with the maximum excitation wavelength at \(\lambda = 366\) nm.

Figure S6: Normalized excitation spectrum of the \([\text{Na}]\text{Eu(BTFA)}_4\) complex, in C\(_6\)H\(_6\), with the maximum excitation wavelength at \(\lambda = 367\) nm.
Figure S7: Normalized excitation spectrum of [Na][Eu(BTFA)₄] complex, in CHCl₃, with the maximum excitation wavelength at λ = 366 nm.

Figure S8: Normalized excitation spectrum of [Na][Eu(BTFA)₄] complex, in CH₂Cl₂, with the maximum excitation wavelength at λ = 362 nm.
Figure S9: Normalized excitation spectrum of [Na][Eu(BTFA)$_4$] complex, in (CH$_3$)$_2$CO, with the maximum excitation wavelength at $\lambda = 367$ nm.

Figure S10: Normalized excitation spectrum of [Na][Eu(BTFA)$_4$] complex, in CH$_3$CN, with the maximum excitation wavelength at $\lambda = 369$ nm.
1.2 Emission Spectra

Figure S11: Normalized emission spectrum of $[\text{Cs mim}][\text{Eu(BTFA)}_6]$ ionic liquid complex, in C$_6$H$_6$, with the maximum emission wavelength at $\lambda = 611$ nm.

Figure S12: Normalized emission of $[\text{Cs mim}][\text{Eu(BTFA)}_6]$ ionic liquid complex, in CHCl$_3$, with the maximum emission wavelength at $\lambda = 611$ nm.
Figure S 13: Normalized emission spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CH₂Cl₂, with the maximum emission wavelength at λ = 611 nm.

Figure S 14: Normalized emission spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in (CH₃)₂CO, with the maximum emission wavelength at λ = 611 nm.
Figure S 15: Normalized emission spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CH₃CN, with the maximum emission wavelength at λ= 611 nm.

Figure S 16: Normalized emission spectrum of [Na][Eu(BTFA)₄] complex, in C₆H₆, with the maximum emission wavelength at λ= 610 nm.
Figure S 17: Normalized emission spectrum of $[\text{Na}][\text{Eu(BTFA)}_4]$ complex, in CHCl_3, with the maximum emission wavelength at $\lambda = 610$ nm.

Figure S 18: Normalized emission spectrum of $[\text{Na}][\text{Eu(BTFA)}_4]$ complex, in CH_2Cl_2, with the maximum emission wavelength at $\lambda = 610$ nm.
Figure S 19: Normalized emission spectrum of $[\text{Na}][\text{Eu(BTFA)}_4]$ complex, in $(\text{CH}_3)_2\text{CO}$, with the maximum emission wavelength at $\lambda = 610$ nm.

Figure S 20: Normalized emission spectrum of $[\text{Na}][\text{Eu(BTFA)}_4]$ complex, in CH$_3$CN, with the maximum emission wavelength at $\lambda = 610$ nm.
1.3 Lifetime curves

Figure S 21: Lifetime curve of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in C₆H₆, at the maximum excitation and emission wavelengths of λ = 365 nm and λ = 611 nm, respectively.

Figure S 22: Lifetime curve of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CHCl₃, at the maximum excitation and emission wavelengths of λ = 366 nm and λ = 611 nm, respectively.
Figure S 23: Lifetime curve of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CH₂Cl₂, at the maximum excitation and emission wavelengths of λ = 366 nm and λ = 611 nm, respectively.

Figure S 24: Lifetime curve of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in (CH₃)₂CO, at the maximum excitation and emission wavelengths of λ = 363 nm and λ = 611 nm, respectively.
Figure S 25: Lifetime curve of [C₅mim][Eu(BTFA)₄] ionic liquid complex, in CH₃CN, at the maximum excitation and emission wavelengths of λ= 366 nm and λ= 611 nm, respectively.

Figure S 26: Lifetime curve of [Na][Eu(BTFA)₄] complex, in C₆H₆, at the maximum excitation and emission wavelengths of λ= 367 nm and λ= 610 nm, respectively.
Figure S 27: Lifetime curve of [Na][Eu(BTFA)₄] complex, in CHCl₃, at the maximum excitation and emission wavelengths of λ= 366 nm and λ= 610 nm, respectively.

Figure S 28: Lifetime curve of [Na][Eu(BTFA)₄] complex, in CH₂Cl₂, at the maximum excitation and emission wavelengths of λ= 362 nm and λ= 610 nm, respectively.
Figure S 29: Lifetime curve of [Na][Eu(BTFA)₄] complex, in (CH₃)₂CO, at the maximum excitation and emission wavelengths of λ = 367 nm and λ = 611 nm, respectively.

Figure S 30: Lifetime curve of [Na][Eu(BTFA)₄] complex, in CH₃CN, at the maximum excitation and emission wavelengths of λ = 369 nm and λ = 611 nm, respectively.
Table S1: Summary of luminescence raw data for the Replicate 1 of Na\[Eu(BTFA)\textsubscript{4}\] complex.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Benzene</th>
<th>Chloroform</th>
<th>Dichloromethane</th>
<th>Acetone</th>
<th>Acetonitrile</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>2.274</td>
<td>4.89</td>
<td>9.02</td>
<td>21.36</td>
<td>35.94</td>
</tr>
<tr>
<td>(\tau_{\text{obs}}) (ms)</td>
<td>0.678</td>
<td>0.6541</td>
<td>0.7783</td>
<td>0.6172</td>
<td>0.6455</td>
</tr>
<tr>
<td>(A_{\text{aud}}) (s-1)</td>
<td>1474.92</td>
<td>1528.81</td>
<td>1284.85</td>
<td>1620.22</td>
<td>1549.19</td>
</tr>
<tr>
<td>(A_{\text{rad}}) (s-1)</td>
<td>765.38</td>
<td>780.62</td>
<td>691.15</td>
<td>667.67</td>
<td>636.46</td>
</tr>
<tr>
<td>(A_{\text{nrad}}) (s-1)</td>
<td>709.54</td>
<td>748.20</td>
<td>593.70</td>
<td>952.55</td>
<td>912.73</td>
</tr>
<tr>
<td>(\eta) (%)</td>
<td>51.89</td>
<td>51.06</td>
<td>53.79</td>
<td>41.21</td>
<td>41.08</td>
</tr>
<tr>
<td>(^{5}\text{D}{0} \rightarrow ^{7}\text{F}{0})</td>
<td>Detected</td>
<td>Detected</td>
<td>Detected</td>
<td>Undetectable</td>
<td>Undetectable</td>
</tr>
</tbody>
</table>

Dielectric constant, \(\varepsilon \); lifetimes, \(\tau \); total decay rates, \(A_{\text{tot}} \); radiative decay rates, \(A_{\text{rad}} \); nonradiative decay rates, \(A_{\text{nrad}} \); and quantum efficiency, \(\eta \); pseudocontact shift, \(\delta_{\text{PCs}} \); nuclear Overhauser effect, \(\text{NOE} \) (observed by ROESY); RM1 predicted characteristics of the coordination polyhedron: shapes, and corresponding point groups.

Table S2: Summary of luminescence raw data for the Replicate 2 of Na\[Eu(BTFA)\textsubscript{4}\] complex.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Benzene</th>
<th>Chloroform</th>
<th>Dichloromethane</th>
<th>Acetone</th>
<th>Acetonitrile</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>2.274</td>
<td>4.89</td>
<td>9.02</td>
<td>21.36</td>
<td>35.94</td>
</tr>
<tr>
<td>(\tau_{\text{obs}}) (ms)</td>
<td>0.6702</td>
<td>0.6888</td>
<td>0.7800</td>
<td>0.6172</td>
<td>0.6473</td>
</tr>
<tr>
<td>(A_{\text{aud}}) (s-1)</td>
<td>1492.09</td>
<td>1451.80</td>
<td>1282.05</td>
<td>1618.91</td>
<td>1544.88</td>
</tr>
<tr>
<td>(A_{\text{rad}}) (s-1)</td>
<td>798.77</td>
<td>766.76</td>
<td>688.54</td>
<td>691.58</td>
<td>634.19</td>
</tr>
<tr>
<td>(A_{\text{nrad}}) (s-1)</td>
<td>693.32</td>
<td>685.04</td>
<td>593.51</td>
<td>927.33</td>
<td>910.69</td>
</tr>
<tr>
<td>(\eta) (%)</td>
<td>53.53</td>
<td>52.81</td>
<td>53.71</td>
<td>42.72</td>
<td>41.05</td>
</tr>
<tr>
<td>(^{5}\text{D}{0} \rightarrow ^{7}\text{F}{0})</td>
<td>Detected</td>
<td>Detected</td>
<td>Detected</td>
<td>Undetectable</td>
<td>Undetectable</td>
</tr>
</tbody>
</table>

Dielectric constant, \(\varepsilon \); lifetimes, \(\tau \); total decay rates, \(A_{\text{tot}} \); radiative decay rates, \(A_{\text{rad}} \); nonradiative decay rates, \(A_{\text{nrad}} \); and quantum efficiency, \(\eta \); pseudocontact shift, \(\delta_{\text{PCs}} \); nuclear Overhauser effect, \(\text{NOE} \) (observed by ROESY); RM1 predicted characteristics of the coordination polyhedron: shapes, and corresponding point groups.

Table S3: Summary of luminescence raw data for the Replicate 3 of Na\[Eu(BTFA)\textsubscript{4}\] complex.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Benzene</th>
<th>Chloroform</th>
<th>Dichloromethane</th>
<th>Acetone</th>
<th>Acetonitrile</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>2.274</td>
<td>4.89</td>
<td>9.02</td>
<td>21.36</td>
<td>35.94</td>
</tr>
<tr>
<td>(\tau_{\text{obs}}) (ms)</td>
<td>0.6759</td>
<td>0.7092</td>
<td>0.7687</td>
<td>0.6172</td>
<td>0.6283</td>
</tr>
<tr>
<td>(A_{\text{aud}}) (s-1)</td>
<td>1479.51</td>
<td>1424.90</td>
<td>1300.90</td>
<td>1620.22</td>
<td>1591.59</td>
</tr>
<tr>
<td>(A_{\text{rad}}) (s-1)</td>
<td>774.07</td>
<td>761.28</td>
<td>690.51</td>
<td>671.60</td>
<td>637.91</td>
</tr>
<tr>
<td>(A_{\text{nrad}}) (s-1)</td>
<td>705.44</td>
<td>663.62</td>
<td>610.39</td>
<td>948.62</td>
<td>953.68</td>
</tr>
<tr>
<td>(\eta) (%)</td>
<td>52.32</td>
<td>53.43</td>
<td>53.08</td>
<td>41.45</td>
<td>40.08</td>
</tr>
<tr>
<td>(^{5}\text{D}{0} \rightarrow ^{7}\text{F}{0})</td>
<td>Detected</td>
<td>Detected</td>
<td>Detected</td>
<td>Undetectable</td>
<td>Undetectable</td>
</tr>
</tbody>
</table>

Dielectric constant, \(\varepsilon \); lifetimes, \(\tau \); total decay rates, \(A_{\text{tot}} \); radiative decay rates, \(A_{\text{rad}} \); nonradiative decay rates, \(A_{\text{nrad}} \); and quantum efficiency, \(\eta \); pseudocontact shift, \(\delta_{\text{PCs}} \); nuclear Overhauser effect, \(\text{NOE} \) (observed by ROESY); RM1 predicted characteristics of the coordination polyhedron: shapes, and corresponding point groups.
Table S4: Means and their 90% confidence interval for the luminescence data for the Na[Eu(BTFA)₄] complex calculated from the three replicates in Tabs. S1-S3.

<table>
<thead>
<tr>
<th></th>
<th>Na[Eu(BTFA)₄]</th>
<th>Benzene</th>
<th>Chloroform</th>
<th>Dichloromethane</th>
<th>Acetone</th>
<th>Acetonitrile</th>
</tr>
</thead>
<tbody>
<tr>
<td>εᵣ</td>
<td>2.774</td>
<td>4.89</td>
<td>9.02</td>
<td>21.36</td>
<td>35.94</td>
<td></td>
</tr>
<tr>
<td>τ_{obs} [ms]</td>
<td>0.675 ± 0.012</td>
<td>0.684 ± 0.08</td>
<td>0.776 ± 0.02</td>
<td>0.617 ± 0.001</td>
<td>0.640 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>A_{tot} (s⁻¹)</td>
<td>1482 ± 26</td>
<td>1469 ± 157</td>
<td>1289 ± 30</td>
<td>1620 ± 2</td>
<td>1562 ± 75</td>
<td></td>
</tr>
<tr>
<td>A_{rad} (s⁻¹)</td>
<td>779 ± 51</td>
<td>770 ± 29</td>
<td>690 ± 4</td>
<td>677 ± 37</td>
<td>636 ± 5</td>
<td></td>
</tr>
<tr>
<td>A_{nrad} (s⁻¹)</td>
<td>703 ± 25</td>
<td>699 ± 128</td>
<td>599 ± 28</td>
<td>943 ± 40</td>
<td>926 ± 71</td>
<td></td>
</tr>
<tr>
<td>η (%)</td>
<td>52.6 ± 2.5</td>
<td>52.4 ± 3.6</td>
<td>53.5 ± 1.1</td>
<td>41.8 ± 2.4</td>
<td>40.7 ± 1.7</td>
<td></td>
</tr>
<tr>
<td>¹⁰B₂⁻→⁷F₀</td>
<td>Detected</td>
<td>Detected</td>
<td>Detected</td>
<td>Undetectable</td>
<td>Undetectable</td>
<td></td>
</tr>
</tbody>
</table>

Dielectric constant, εᵣ; Lifetimes, τ; total decay rates, A_{tot}; radiative decay rates, A_{rad}; nonradiative decay rates, A_{nrad}; and quantum efficiency, η; pseudocontact shift, δ_{PCs}; nuclear Overhauser effect, NOE (observed by ROESY); RM1 predicted characteristics of the coordination polyhedron: shapes, and corresponding point groups.
2. NMR Data

2.1 [C5mim][La(BTFA)4]

Table S5: 1H and 13C chemical shifts (δ ppm) obtained in different solvents of the ligands BTFA and the counterion [C5mim] for the lanthanum complex [C5mim][La(BTFA)4]. The structure below with the numbering is to help interpretation of the data.

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>Solvents δ(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1H 1C 1H 13C 1H 13C 1H 13C 1H 13C</td>
</tr>
<tr>
<td>1</td>
<td>C$_6$D$_6$ CDCl$_3$ CD$_2$Cl$_2$ (CD$_3$)$_2$CO CD$_3$CN</td>
</tr>
<tr>
<td>1</td>
<td>-- 120.80 -- 119.53 -- 119.96 -- 119.42 -- 120.35</td>
</tr>
<tr>
<td>2</td>
<td>-- 170.90 -- 170.12 -- 170.90 -- 170.16 -- 171.20</td>
</tr>
<tr>
<td>3</td>
<td>6.56 92.99 6.26 92.10 6.32 92.65 6.31 90.38 6.33 90.03</td>
</tr>
<tr>
<td>4</td>
<td>-- 189.27 -- 188.44 -- 188.90 -- 186.94 -- 188.82</td>
</tr>
<tr>
<td>5</td>
<td>-- 139.69 -- 138.89 -- 139.37 -- 139.58 -- 140.14</td>
</tr>
<tr>
<td>6</td>
<td>7.93 128.39 7.85 128.20 7.88 128.29 7.96 127.51 7.91 128.46</td>
</tr>
<tr>
<td>7</td>
<td>6.97 128.41 7.27 127.81 7.34 128.71 7.35 127.89 7.40 129.24</td>
</tr>
<tr>
<td>8</td>
<td>7.04 132.05 7.40 131.49 7.46 132.30 7.45 131.20 7.51 132.66</td>
</tr>
<tr>
<td>9</td>
<td>3.54 36.31 3.82 36.30 3.89 36.65 4.02 35.58 3.81 36.76</td>
</tr>
<tr>
<td>10</td>
<td>5.99 122.95 7.10 122.80 7.06 123.63 7.65 123.56 7.31 123.13</td>
</tr>
<tr>
<td>11</td>
<td>9.44 138.81 9.50 138.26 9.25 138.17 9.36 137.00 8.54 136.97</td>
</tr>
<tr>
<td>12</td>
<td>5.85 120.59 6.92 120.49 7.00 121.65 7.70 122.18 7.35 122.18</td>
</tr>
<tr>
<td>13</td>
<td>3.52 48.33 3.87 48.08 3.91 48.84 4.32 47.84 4.12 48.89</td>
</tr>
<tr>
<td>14</td>
<td>1.19 37.71 1.50 38.23 1.56 38.65 1.78 38.29 1.71 39.26</td>
</tr>
<tr>
<td>15</td>
<td>1.19 25.84 1.40 25.33 1.44 25.96 1.59 25.13 1.57 26.07</td>
</tr>
<tr>
<td>16</td>
<td>0.64 22.27 0.78 21.82 0.83 22.20 0.91 21.42 0.95 22.28</td>
</tr>
</tbody>
</table>
Figure S 31: NMR 1H Spectra of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex solutions, acquired on a 400 MHz spectrometer, at 25°C, in the following different solvents: benzene-d_6 (black), chloroform-d (red), dichloromethane-d_2 (green), acetone-d_6 (blue) and acetonitrile-d_3 (purple).
Figure S 32: 1H Spectrum of [C$_5$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$ at 25°C.

Figure S 33: 13C Spectrum of [C$_5$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$ at 25°C.
Figure S 34: 1H–1H COSY spectrum of [C$_5$ mim][La(BTFA)$_4$], ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C.

Figure S 35: 1H–13C HSQC spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C.
Figure S 36: 1H--1H ROESY spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C and mixing time of 400 ms.

Figure S 37: 1H Spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C.
Figure S 38: 13C Spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C.

Figure S 39: 1H–1H COSY spectrum of [C$_5$ mim][La(BTFA)$_4$], ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C.
Figure S 40: 1H–13C HSQC spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C.

Figure S 41: 1H–1H ROESY spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C and mixing time of 400 ms.
Figure S 42: 1H Spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C.

Figure S 43: 13C Spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C.
Figure S 44: 1H–1H COSY spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C.

Figure S 45: 1H–13C HSQC spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C.
Figure S 46: 1H–1H ROESY spectrum of $[\text{C}_{5}\text{mim}][\text{La(BTFA)}_4]$ ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C and mixing time of 400 ms.

Figure S 47: 1H Spectrum of $[\text{C}_{5}\text{mim}][\text{La(BTFA)}_4]$ ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C.
Figure S 48: 13C Spectrum of [C$_{5}$mim][La(BTFA)$_{4}$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_{3}$)$_{2}$CO, at 25°C.

Figure S 49: 1H–1H COSY spectrum of [C$_{5}$mim][La(BTFA)$_{4}$], ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_{3}$)$_{2}$CO, at 25°C.
Figure S 50: $^1\text{H}–^{13}\text{C}$ HSQC spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C.

Figure S 51: $^1\text{H}–^1\text{H}$ ROESY spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, Acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C and mixing time of 400 ms.
Figure S 52: 1H Spectrum of [C$_{5}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C.

Figure S 53: 13C Spectrum of [C$_{5}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C.
Figure S 54: 1H–1H COSY spectrum of [C$_5$ mim][La(BTFA)$_4$], ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C.

Figure S 55: 1H–13C HSQC spectrum of [C$_5$ mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C.
Figure S 56: 1H–1H ROESY spectrum of [C$_{5}$mim][La(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C and mixing time of 400 ms.
2.2 [C₅mim][Eu(BTFA)_4]

Table S6: \(^1\)H and \(^{13}\)C chemical shifts (δ ppm) obtained in different solvents of the ligands BTFA and the counterion [C₅mim] for the lanthanum complex [C₅mim][Eu(BTFA)_4]. The structure below with the numbering is to help interpretation of the data.

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>(\text{C}_6\text{D}_6)</th>
<th>CDCl₃</th>
<th>CD₂Cl₂</th>
<th>(CD₃)₂CO</th>
<th>CD₃CN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(^1)H</td>
<td>(^{13})C</td>
<td>(^1)H</td>
<td>(^{13})C</td>
<td>(^1)H</td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td>--</td>
<td>61.48</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>--</td>
<td>163.66</td>
<td>--</td>
<td>163.36</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>4.84</td>
<td>64.71</td>
<td>4.63</td>
<td>64.53</td>
<td>4.85</td>
</tr>
<tr>
<td>4</td>
<td>--</td>
<td>181.40</td>
<td>--</td>
<td>180.45</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>143.70</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>8.26</td>
<td>127.13</td>
<td>8.07</td>
<td>127.01</td>
<td>7.85</td>
</tr>
<tr>
<td>7</td>
<td>7.19</td>
<td>125.97</td>
<td>7.43</td>
<td>126.06</td>
<td>7.40</td>
</tr>
<tr>
<td>8</td>
<td>7.02</td>
<td>132.71</td>
<td>7.36</td>
<td>132.96</td>
<td>7.33</td>
</tr>
<tr>
<td>9</td>
<td>8.16</td>
<td>40.06</td>
<td>8.45</td>
<td>40.66</td>
<td>7.77</td>
</tr>
<tr>
<td>10</td>
<td>10.04</td>
<td>126.15</td>
<td>11.31</td>
<td>126.96</td>
<td>9.83</td>
</tr>
<tr>
<td>11</td>
<td>19.00</td>
<td>--</td>
<td>20.34</td>
<td>137.10</td>
<td>17.74</td>
</tr>
<tr>
<td>12</td>
<td>8.53</td>
<td>123.25</td>
<td>10.22</td>
<td>124.22</td>
<td>8.98</td>
</tr>
<tr>
<td>13</td>
<td>6.19</td>
<td>50.30</td>
<td>6.61</td>
<td>50.83</td>
<td>6.05</td>
</tr>
<tr>
<td>14</td>
<td>2.90</td>
<td>39.82</td>
<td>3.23</td>
<td>40.10</td>
<td>2.88</td>
</tr>
<tr>
<td>15</td>
<td>2.16</td>
<td>26.17</td>
<td>2.39</td>
<td>26.39</td>
<td>2.21</td>
</tr>
<tr>
<td>16</td>
<td>1.17</td>
<td>22.20</td>
<td>1.31</td>
<td>22.90</td>
<td>1.21</td>
</tr>
</tbody>
</table>
Figure S 57: 1H Spectrum of [C$_5$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C.

Figure S 58: 13C Spectrum of [C$_5$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C.
Figure S 59: 1H–1H COSY spectrum of [C$_5$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C.

Figure S 60: 1H–13C HSQC spectrum of [C$_5$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C.
Figure S61: 1H–1H ROESY spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in C$_6$D$_6$, at 25°C and mixing time of 400 ms.

Figure S62: 1H Spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C.
Figure S 63: 13C Spectrum of [C₅mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C.

Figure S 64: 1H–1H COSY spectrum of [C₅mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C.
Figure S 65: 1H–13C HSQC spectrum of [C$_5$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C.

Figure S 66: 1H–1H ROESY spectrum of [C$_5$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CDCl$_3$, at 25°C and mixing time of 400 ms.
Figure S 67: 1H Spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C.

Figure S 68: 13C Spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C.
Figure S 69: 1H–1H COSY spectrum of [C$_5$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C.

Figure S 70: 1H–13C HSQC spectrum of [C$_5$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_2$Cl$_2$, at 25°C.
Figure S 71: \(^1\)H–\(^1\)H ROESY spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, acquired on a 400 MHz spectrometer in CD₂Cl₂, at 25°C and mixing time of 400 ms.

Figure S 72: \(^1\)H Spectrum of [C₅mim][Eu(BTFA)₄] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD₃)₂CO, at 25°C.
Figure S 73: 13C Spectrum of [C$_5$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C.

Figure S 74: 1H–1H COSY spectrum of [C$_5$ mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C.
Figure S 75: ^1H–^{13}C HSQC spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C.

Figure S 76: ^1H–^1H ROESY spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in (CD$_3$)$_2$CO, at 25°C and mixing time of 400 ms.
Figure S 77: 1H Spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C.

Figure S 78: 13C Spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C.
Figure S 79: 1H–1H COSY spectrum of [C₅mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C.

Figure S 80: 1H–13C HSQC spectrum of [C₅mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C.
Figure S 81: 1H–1H ROESY spectrum of [C$_5$mim][Eu(BTFA)$_4$] ionic liquid complex, acquired on a 400 MHz spectrometer in CD$_3$CN, at 25°C and mixing time of 400 ms.
3. Infrared Spectra

3.1 [Csmim][La(BTFA)₄]

Figure S 82: Infrared spectrum of [Csmim][La(BTFA)₄] complex; acquired on KBr disk: C–H (CH₃) υ = 3147 cm⁻¹, C–H (=CH, ar) υ = 3089 cm⁻¹, C–H (CH₂) υ = 3147 cm⁻¹, C=O υ= 1613 cm⁻¹, C=N υ = 1371 cm⁻¹, C–F υ= 1249 cm⁻¹.

3.2 [Csmim][Eu(BTFA)₄]

Figure S 83: Infrared spectrum of [Csmim][Eu(BTFA)₄] complex; acquired on KBr disk: C–H (CH₃) υ = 3157 cm⁻¹, C–H (=CH, ar) υ = 3080 cm⁻¹, C–H (CH₂) υ = 3147 cm⁻¹, C=O υ= 1618 cm⁻¹, C=N υ = 1361 cm⁻¹, C–F υ= 1241 cm⁻¹.
4. Canonical Shapes Used in the Article

<table>
<thead>
<tr>
<th>Shape</th>
<th>Cu-8</th>
<th>Sapr-8</th>
<th>Tdd-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cube</td>
<td>Cube</td>
<td>Square antiprism</td>
<td>Triangular dodecahedron</td>
</tr>
</tbody>
</table>

Figure S 84: Shapes of the coordination polyhedron of the anion complex [Eu(BTFA)₄]⁻ considered in this