Supporting Information for

Multimetal lanthanide phosphonocarboxylate frameworks: structures, colour tuning and near-infrared emission

Huiru Jing,^a Wenyan Dan,^b Jiaxing Zhu,^a Yun Ling,^a Yu Jia,^a Yongtai Yang,^a Xiaofeng Liu^a, Zhenxia Chen^{a,*} and Yaming Zhou^{a,*}

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,

Department of Chemistry, Fudan University, Shanghai 200438, China

E-mail:zhxchen@fudan.edu.cn; ymzhou@fudan.edu.cn

Table of Contents

Section 1. Details of synthesis.	S2-S3
Section 2. The crystal data and structural refinement	
parameters for LnPCF	S4
Section 3. Description of single crystal structure.	S5-S6
Section 4. Supporting Characterizations of LnPCF	S7-S8
Section 5. Supporting Characterizations of mixed metal LnPCF	S9-S12
Section 6. Luminescence properties	S13-S19

Section 1. Details of synthesis.

Synthesis of TbPCF.

Tb(NO₃)₃·6H₂O (0.023 g, 0.05 mmol), H₄pbpdc (0.016 g, 0.05 mmol), DMF (4 mL), deionized water (2 mL) were added to the Teflon reactor, heated at 140 °C for 48 hours, then slowly cooled to room temperature. The product was washed with DMF, ethanol , centrifuged, and dried to obtain colorless needle crystals. Yield: 55%. Elemental Analysis: Found (%) C 33.19, N 1.57, H 2.69; Calc. (%) C 33.00, N 1.60, H 2.58. FT-IR: (KBr 4000 - 400 cm⁻¹): 3256(b), 1655(s), 1610(s), 1547(vs), 1508(m), 1470(m), 1443(s), 1406(s), 1383(s), 1162(s), 1139(s), 1054(m), 1025(m), 988(s), 796(w), 779(m), 737(m), 706(s), 600(m), 552(w).

Synthesis of EuPCF.

Eu(NO₃)₃·6H₂O (0.023 g, 0.05mmol), H₄pbpdc (0.016 g, 0.05 mmol), DMF (4 mL), deionized water (2 mL) were added to the Teflon reactor, heated at 140 °C for 48 hours, then slowly cooled to room temperature. The product was washed with DMF, ethanol , centrifuged, and dried to obtain colorless needle crystals. Yield: 52%. Elemental Analysis: Found (%) C 33.75, N 1.60, H 2.78; Calc. (%) C 33.47, N 1.63, H 2.61. FT-IR: (KBr 4000 - 400 cm⁻¹): 3256(b), 1655(s), 1610(s), 1545(vs), 1470(m), 1444(s), 1406(s), 1381(s), 1161(s), 1139(s), 1054(m), 1025(m), 988(s), 795(w), 779(m), 737(m), 706(s), 600(m), 552(w).

Synthesis of GdPCF.

Gd(NO₃)₃·6H₂O (0.023 g, 0.05mmol), H₄pbpdc (0.016 g, 0.05 mmol), DMF (4 mL), deionized water (2 mL) were added to the Teflon reactor, heated at 140 °C for 48 hours, then slowly cooled to room temperature. The product was washed with DMF, ethanol, centrifuged, and dried to obtain colorless needle crystals. Yield: 60%. Elemental Analysis: Found (%) C 33.21, N 1.57, H 2.68; Calc. (%) C 33.11, N 1.61, H 2.59. FT-IR: (KBr 4000 - 400 cm⁻¹): 3255(b), 1655(s), 1610(s), 1546(vs), 1508(m), 1471(m), 1443(s), 1406(s), 1383(s), 1161(s), 1139(s), 1056(m), 1024(m), 987(s), 796(w), 779(m), 737(m), 706(s), 600(m), 552(w).

Synthesis of NdPCF.

Nd(NO₃)₃·6H₂O (0.022 g, 0.05 mmol), H₄pbpdc (0.016 g, 0.05 mmol), DMF (4 mL), deionized water (2 mL) were added to the Teflon reactor, heated at 140 °C for 48 hours, then slowly cooled to room temperature. The product was washed with DMF, ethanol, centrifuged, and dried to obtain colorless needle crystals. Yield:46%. FT-IR: (KBr 4000 - 400 cm⁻¹): 3256(b), 1655(s), 1610(s), 1547(vs), 1508(m), 1470(m), 1443(s), 1406(s), 1383(s), 1162(s), 1139(s), 1054(m), 1025(m), 988(s), 796(w), 779(m), 737(m), 706(s), 600(m), 552(w).

Synthesis of Tb_xGd_{1-x}PCF.

Tb(NO₃)₃·6H₂O (0.05 *x* mmol, x = 0.05, 0.5), Gd(NO₃)₃·6H₂O (0.05 (1-*x*) mmol), H₄pbpdc (0.05 mmol), DMF (4 mL), H₂O (2 mL) were added to the Teflon reactor, heated at 140 °C for 48 hours, then slowly cooled to room temperature. The product was washed with DMF, ethanol, centrifuged, and dried to obtain colorless needle crystals.

Synthesis of Tb_xEu_{1-x}PCF.

Tb(NO₃)₃·6H₂O (0.05*x* mmol, x = 0.99, 0.98, 0.95, 0.9, 0.5), Eu(NO₃)₃·6H₂O (0.05(1 - x) mmol), H₄pbpdc (0.05 mmol), DMF (4 mL), H₂O (2 mL) were added to the Teflon reactor, heated at 140 °C for 48 hours, then slowly cooled to room temperature. The product was washed with DMF, ethanol, centrifuged, and dried to obtain colorless needle crystals.

Synthesis of Tb_{0.5}Nd_{0.5}PCF.

Tb(NO₃)₃·6H₂O (0.012 g, 0.025 mmol), Nd(NO₃)₃·6H₂O (0.012 g, 0.025 mmol), H₄pbpdc (0.016 g, 0.05 mmol), DMF (4 mL), H₂O (2 mL) were added to the Teflon reactor, heated at 140 °C for 48 hours, then slowly cooled to room temperature. The product was washed with DMF, ethanol, centrifuged, and dried to obtain colorless needle crystals.

Synthesis of $Tb_xGd_{0.5}Nd_{0.5-x}PCF$.

Tb(NO₃)₃·6H₂O (0.025*x* mmol, x = 0.3, 0.4), Gd(NO₃)₃·6H₂O (0.025 mmol), Nd(NO₃)₃·6H₂O (0.025 - 0.025*x* mmol), H₄pbpdc (0.05 mmol), DMF (4 mL), H₂O (2 mL) were added to the Teflon reactor, heated at 140 °C for 48 hours, then slowly cooled to room temperature. The product was washed with DMF, ethanol, centrifuged, and dried to obtain colorless needle crystals.

Section 2. The crystal data and structural refinement parameters for LnPCF

	TbPCF	GdPCF	EuPCF
Empirical	$C_{96}H_{90}N_4O_{49}P_6Tb_7$	$C_{96}H_{76}N_4O_{49}P_6Gd_7$	$C_{96}H_{70}N_4O_{49}P_6Eu_7$
Formula weight	3381.97	3356.17	3313.10
Crystal system	orthorhombic	orthorhombic	orthorhombic
space group	Pnnm	Pnnm	Pnnm
Unit cell	14.4585(4)	14.4962(6)	14.5138(5)
	20.3696(6)	20.3758(8)	20.4301(8)
	22.7805(7)	22.8688(11)	22.9139(9)
α, β, γ (°)	90	90	90
Volume (Å ³)	6709.2(3)	6754.8(5)	6794.4(4)
Ζ	2	2	2
$D(g \cdot cm^{-3})$	1.674	1.650	1.619
Theta range for data collection (°)	3.261-61.985	3.140-61.957	3.136-64.363
Index ranges	-18 <h<19; -26<k<26; -29<l<24< td=""><td>-13<h<18; -25<k<26; -30<l<18< td=""><td>-19<h<15; -26<k<21; -26<l<29< td=""></l<29<></k<21; </h<15; </td></l<18<></k<26; </h<18; </td></l<24<></k<26; </h<19; 	-13 <h<18; -25<k<26; -30<l<18< td=""><td>-19<h<15; -26<k<21; -26<l<29< td=""></l<29<></k<21; </h<15; </td></l<18<></k<26; </h<18; 	-19 <h<15; -26<k<21; -26<l<29< td=""></l<29<></k<21; </h<15;
F (000)	3262	3220	3194
Collected / unique	45729/8164	48154/ 8210	43814/8611
GOF on F^2	1.031	1.048	1.109
$R_1^{[a]}, w R_2^{[b]}$	0.0562, 0.1531	0.0567, 0.1571	0.0550, 0.1519
R_1 , wR_2 (all data)	0.0837, 0.1703	0.0789, 0.1742	0.0617, 0.1585
		2 22 22 1/2	

Table S1. Crystal data and structure refinements for TbPCF, GdPCF and EuPCF.

[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. [b] $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$

Section 3. Description of single crystal structure.

Fig. S1: (a) The 18-connected Tb₇-cluster. **(b)** The 18 nodes of Tb₇-cluster is divided into three parts (A, B and C). **(c) (d)** The 18-connected Tb₇-cluster is linked to another twelve Tb₇-clusters by triangular pbpdc⁴⁻ ligands.

Fig. S2: $2 \times 2 \times 2$ unit cell of TbPCF (the blue surface is the Connolly surface calculated by the probe radii of 1.4 Å) shows the 1D ultra-micro channel ($4.1 \times 3.8 \text{ Å}^2$).

Fig. S3 PXRD patterns of **(a)** LnPCF (Ln= Tb, Gd, Eu, Nd). **(b)** $Tb_{0.05}Gd_{0.95}PCF$ and $Tb_{0.5}Gd_{0.5}PCF$. **(c)** $Tb_{0.99}Eu_{0.01}PCF$, $Tb_{0.98}Eu_{0.02}PCF$, $Tb_{0.95}Eu_{0.05}PCF$, $Tb_{0.9}Eu_{0.1}PCF$, and $Tb_{0.5}Eu_{0.5}PCF$. **(d)** $Tb_{0.4}Gd_{0.5}Nd_{0.1}PCF$ and $Tb_{0.3}Gd_{0.5}Nd_{0.2}PCF$.

Fig. S4 (a) The TGA curves of TbPCF, GdPCF and EuPCF. **(b)** Temperature dependent PXRD patterns of TbPCF. **(c)** PXRD patterns of TbPCF after being immersed in water for different time. **(d)** PXRD patterns of TbPCF after being immersed in different pH (3-11) solutions.

Section 5. Supporting Characterizations of mixed metal LnPCFs

	Molar ratios in precursors		Molar ra	Molar ratios calculated from ICP		
	Tb (x)	Gd (1- <i>x</i>)		Tb (<i>x</i>)	Gd (1-x)	
Tb _x Gd _{1-x} PCF	0.05	0.95		0.059	0.941	
	0.50	0.50		0.525	0.475	
	Tb (x)	Eu (1-x)		Tb (x)	Eu (1-x)	
Tb _x Eu _{1-x} PCF	0.99	0.01		0.990	0.010	
	0.98	0.02		0.980	0.020	
	0.95	0.05		0.949	0.051	
	0.90	0.10		0.897	0.103	
	0.50	0.50		0.515	0.485	
	Tb (x)	Gd (0.5)	Nd (0.5- <i>x</i>)	Tb (<i>x</i>)	Gd (0.5)	Nd (0.5-x)
Tb _x Gd _{0.5} Nd _{0.5-x} PCF	0.40	0.50	0.10	0.412	0.470	0.118
	0.30	0.50	0.20	0.337	0.443	0.220
Tb _x Nd _{1-x} PCF	Tb (x)	Nd (1-x)		Tb (<i>x</i>)	Nd (1-x)	
	0.50	0.50		0.446	0.554	

Table S2. The lanthanide molar ratios of the mixed metal LnPCFs in precursors and calculated from ICP-AES.

Fig. S5 XPS spectra of (a) TbPCF. (b) GdPCF. (c) EuPCF. (d) NdPCF. (e) $Tb_{0.5}Eu_{0.5}PCF$ and (f) $Tb_{0.4}Gd_{0.5}Nd_{0.1}PCF$.

Fig. S6: Elemental analysis results of EDS mapping for bi- and trimetallic LnPCFs. (a) Tb_{0.5}Eu_{0.5}PCF (Scale bar: 1 μ m). (b) Tb_{0.95}Eu_{0.05}PCF (Scale bar: 1 μ m). (c) Tb_{0.5}Nd_{0.5}PCF (Scale bar: 200 nm). (d) Tb_{0.3}Gd_{0.5}Nd_{0.2}PCF (Scale bar: 1 μ m). (e) Tb_{0.4}Gd_{0.5}Nd_{0.1}PCF (Scale bar: 1 μ m).

Section 6. Luminescence properties

Fig. S7 (a) Exicitation and emission spectra of H₄pbpdc in solid state, in which the broad emission at 357 nm was caused by $\pi^* \rightarrow \pi$ transition. (b) Exicitation and emission spectra of GdPCF in solid state, in which the emission band of GdPCF was similar to H₄pbpdc, except the peak was blue-shifted by 5 nm.

Fig. S8 (a) UV-vis absorption spectrum of H_4 pbpdc. (b) Normalized emission spectra of GdPCF at 300 K and 77 K.

Scheme S1. The schematic emission and "antenna effect" processed in LnPCF.

Fig. S9 (a) Excitation spectra and (b) temporal decay curves of the TbPCF, $Tb_{0.5}Gd_{0.5}PCF$, $Tb_{0.05}Gd_{0.95}PCF$ excited at 330 nm.

Fig. S10. Temporal decay curves of the $Tb_{0.99}Eu_{0.01}PCF$, $Tb_{0.98}Eu_{0.02}PCF$, $Tb_{0.95}Eu_{0.05}PCF$, $Tb_{0.9}Eu_{0.1}PCF$, and $Tb_{0.5}Eu_{0.5}PCF$: (a) monitored at 545 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ of Tb^{3+}); (b) monitored at 612 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ of Eu^{3+}).

	$\tau_1^{}$ of Tb ³⁺ (ms)	$ au_2$ of Eu ³⁺ (ms)	$\eta = 1 - \tau_1^{1/\tau_0^1^{1/\tau_0^{1/\tau_0^{1/\tau_0^{1/\tau_0^{1/\tau_0^{1/\tau_0^{1/\tau_0^{1/\tau_0^$
Tb _{0.99} Eu _{0.01} PCF	0.60	1.95	0.412
Tb _{0.98} Eu _{0.02} PCF	0.45	1.73	0.559
Tb _{0.95} Eu _{0.05} PCF	0.22	1.49	0.784
Tb _{0.9} Eu _{0.1} PCF	0.12	1.36	0.882
Tb _{0.5} Eu _{0.5} PCF	0.02	0.80	0.980

Table S3. The lifetimes of Tb³⁺ and Eu³⁺ in Tb_xEu_{1-x}PCF (x = 0.99, 0.98, 0.95, 0.9, 0.5) and corresponding energy transfer efficiency η between Tb³⁺ and Eu³⁺; $\tau_0 = 1.02$ ms, which refers to the lifetime of Tb³⁺ in TbPCF.

Fig. S11. (a) SEM of TbPCF powder after being ground. **(b)** Emission spectra of the $Tb_{0.5}Nd_{0.5}PCF$ and NdPCF excited at 808 nm.