Proton-controlled Non-exponential Photoluminescence in a Pyridyl-Amidine-substituted Re(I) complex

Shea M. Martin^b, Amanda N. Oldacre^a, Craig A. Pointer^b, Tao Huang^b, Gil M. Repa^b, Lisa A. Fredin^b, and Elizabeth R. Young^{b,*}

a Department of Chemistry, St. Lawrence University, Canton, New York, 13617, USA.

b Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.

* Email: ery317@lehigh.edu; Fax: +1-610-758-6536.

Table of Contents

Synthetic Procedures	6
$[\text{Re(bpy)(CO)}_{3}(0-\text{DMSO})]\text{PF}_{6}$	6
$[\text{Re}(\text{bpy})(\text{CO})_3(4\text{-Pam})]\text{Fr}_6(\text{Re}(4\text{-Pam}))$ $[\text{Re}(\text{bpy})(\text{CO})_2(4\text{-Pam})]\text{BArF}(\text{Re}(4\text{-Pam}))$	0 6
Figure S1. ATR-FT-IR of Re(4-Pam) $v(CO)$ 2022, 1886 (br) cm ⁻¹	7
Figure S2. Characterization: ¹ H ¹³ C and ² D HSQC NMR spectra and peak assignments of Re(4-Pam), Re)(4-
Pam BArF) and Re(4-EtPy) in acetone- <i>d</i> ₆ and ESI-MS of Re(4-Pam) acetonitrile	.12
Figure S3. Heat map visualization of data for the ns-TA data collected with the EOS TA spectrometer	.14
Figure S4. B3LYP/LANL2DZ [Rej+6-311G(0,p)[H,C,N,O]/PCM(ACN) frontier molecular orbital electro	
Figure S5 The singlet electronic structure of the fully optimized Re(4-Pam) singlet (GS) and triplet (T) geometr	ries
at the B3LYP/LANL2DZ [Re]+6-311G(d,p)[H,C,N,O]/PCM(ACN) level of theory.	.16
Figure S6. Comparison of the lowest energy singlet (S ₀) and triplet (T ₁) surfaces for Re(4-Pam), Re(4-Pan	nH)
and Re(4-EtPy)	. 17
Figure S7. Re(4-Pam) ground state (S_0) and TDDFT excited state (S_{1-3} and T_{1-5}) potential energy curves between S_0 and S_0 and S_0 and T_{1-5}) potential energy curves between S_0 and S_0 and S_0 and T_{1-5}) potential energy curves between S_0 and S_0 and S_0 and T_{1-5}) potential energy curves between S_0 and S_0 and S_0 and T_{1-5}) potential energy curves between S_0 and	en
Figure S8 Re(4-PamH) ground state (S ₂) and TDDET excited state (S ₂ , and T ₂) potential energy cur	. IÕ
between 0 and 3.6 eV as a function of dihedral angle.	.19
Figure S9. Re(4-EtPy) ground state (S ₀) and TDDFT excited state (S ₁₋₃ and T ₁₋₄) potential energy curves betwee	een
0 and 3.6 eV as a function of dihedral angle.	.20
Figure S10. Comparison of optimized Re(4-Pam) S_0 and T_1 geometries along the dihedral scan	.21
Figure S11. Representation of spin-orbit couplings between critical S ₁ -triplet (top) and triplet-S ₀ (bottom) surface of $Re(A-Pam)$	ces
Table S1. Spin-orbit coupling in cm ⁻¹ for all surfaces less than 3.4 eV along the dihedral scan for Re(4-Pam).	. 23
Table S2. Spin-orbit coupling in cm ⁻¹ for all surfaces less than 3.4 eV along the dihedral scan for Re(4-Pam	ιH).
	. 24
Table S3. Spin-orbit coupling in cm ⁻¹ for all surfaces less than 3.4 eV along the dihedral scan for Re(EtPy)	.25
Figure S12. Fully optimized Re(4-Pam) GS on the S ₀ surface and excited states (ESs) on the T ₁ and Q_1 surface	;es. 26
Figure S13. TDDFT calculated excitations for solvent-CO ligand exchanged Re(4-Pam) with MeCN and DC	CM.
	. 26
Figure S14. Time-resolved photoluminescence data fitting showing PL data (red), IRF (black) and residual a	fter
Titting to mono- or bi-exponential functions (below each data plot).	.27
Global analysis fitting of the nanosecond transient absorption (TA) data	.20
Figure S16. Nano-second transient absorption fitting for Re4-PamH and Re4-Pam.	.29
Figure S17. Summary of emission lifetimes of the PF6 and BArF counter ions of Re(4-Pam) and Re(4-Pam	iH).
	. 30
Re(4-Pam) IDDFI Tables	.31

Table S4. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = -82.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	31
Table S5. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = -67.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN)	
Table S6. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = -52.275°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN)	
Table S7. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = -37.275°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S8. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = -22.275°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN)	
Table S9. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = -7.275°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S10. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 7.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S11. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = 22.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S12. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = 37.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S13. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 52.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S14. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = 67.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S15. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 82.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S16. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = 97.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	4(
Table S17. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 112.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN)	4′
Table S18. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 127.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN)	
Table S19. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 142.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S20. 10 TDDFT singlet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 157.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S21. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = -82.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S22. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = -67.725°,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S23. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = -52.275^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S24. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = -37.275^\circ$,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S25. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = -22.275^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S26. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = -7.275^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S27. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = 7.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).	
Table S28. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = 22.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(a.p)[H,C,N,O]/PCM(ACN).	
Table S29. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = 37.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(a.p)[H,C,N,O]/PCM(ACN).	
Table S30. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = 52.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(a.p)[H,C,N,O]/PCM(ACN).	
Table S31. 10 IDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = 67.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(a.p)[H,C,N,O]/PCM(ACN).	
Table S32. TO TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral} = 82.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6
311G(0.P)[H,C,N,O]/PCM(ACN).	58

Table S33. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 97.725°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN)		59
Table S34. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 112.725°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN)		61
Table S35. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 127.725°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN)		62
Table S36. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 142.725°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN)		63
Table S37. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ = 157.725°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN)		64
Re(4-PamH) TDDFT Tables		65
Table S38. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = -82.725°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN)		65
Table S39. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = -67.725°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		66
Table S40. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = -52.275°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		67
Table S41. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = -37.275^{\circ}$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		68
Table S42. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = -22.275°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		69
Table S43. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = -7.275^{\circ}$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		70
Table S44. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = 7.725°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		71
Table S45. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = 22.725°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		72
Table S46. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 37.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		73
Table S47. 10 IDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 52.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		73
Table S48. 10 IDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 67.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		/4
Table S49. 10 IDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 82.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		75
Table S50. 10 IDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 97.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		/6
Table S51. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 112./25^{\circ}$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		/6
Table S52. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 127.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		//
Table S53. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 142.725^{\circ}$,	B3LYP/LAL2DZ[Re]+6-
311G(0.p)[H,C,N,O]/PCM(ACN).		/8
Table S54. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 157.725^{\circ}$,	B3LYP/LAL2DZ[Re]+b-
311G(0.p)[H,C,N,O]/PCM(ACN).		79
Table S55. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = -82.725^{\circ}$,	B3LYP/LAL2DZ[Re]+b-
311G(0.p)[H,C,N,O]/PCM(ACN).		80
Table S56. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = -67.725^{\circ}$,	B3L1P/LAL2DZ[Re]+0-
311G(0.P)[H,C,N,O]/PCM(ACN).		
Table S57. TO TDDFT triplet excitations of Re(4-PamH) from S ₀ $\Theta_{dihedral} = -52.275^{\circ}$,	B3LTP/LAL2DZ[Re	J+0-
3 ΓΙG(U.P)[Π,U,N,U]/FUM(AUN).	- מזקט א ויטע וכט	
Table Sob. TO TODET Inplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = -37.275^{\circ}$,	DJLTP/LAL2DZ[Re	-0+Γ
311G(0.p)[H, U, N, U]/PUM(AUN).		83
Table Sost TO TODET inplet excitations of Re(4-PamH) from S ₀ $\Theta_{dihedral} = -22.275^{\circ}$,	DOL TP/LALZDZ[R0	-0+[
3116(U.P)[II,C,N,O]/FOM(AON).	- מזקט א ויטע וכט	
Table Sou. TO TODET TUPEL EXCITATIONS OF Re(4-PamH) from S ₀ $\theta_{dihedral} = -7.275^{\circ}$,	DJLTP/LAL2DZ[Re	1+0-
ͻͱͱϣ(u.p) Π,৬,Ν,Ψ/۲৬Ν(A৬Ν)		Ծ៦

	Table S61. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = 7.725°,	B3LYP/L	AL2DZ[Re]+6-
	311G(d.p)[H,C,N,O]/PCM(ACN).			86
	Table S62. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = 22.725°,	B3LYP/L	AL2DZ[Re]+6-
	311G(d.p)[H,C,N,O]/PCM(ACN).			88
	Table S63. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = 37.725°,	B3LYP/L	AL2DZ[Re]+6-
	311G(d.p)[H,C,N,O]/PCM(ACN).			89
	Table S64. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = 52.725°,	B3LYP/L	AL2DZ[Re]+6-
	311G(d.p)[H,C,N,O]/PCM(ACN).		-	90
	Table S65. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 67.725^{\circ}$,	B3LYP/L	AL2DZ[Re]+6-
	311G(d.p)[H,C,N,O]/PCM(ACN).		-	91
	Table S66. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 82.725^{\circ}$,	B3LYP/L	AL2DZ[Re]+6-
	311G(d.p)[H,C,N,O]/PCM(ACN).		-	. 92
	Table S67. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 97.725^{\circ}$,	B3LYP/L	AL2DZ[Re	1+6-
	311G(d.p)[H,C,N,O]/PCM(ACN).			.93
	Table S68. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral}$ = 112.725°,	B3LYP/L	AL2DZ[Re	1+6-
	311G(d.p)IH.C.N.OI/PCM(ACN).			94
	Table S69. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 127.725^{\circ}$.	B3LYP/L	AL2DZIRe	1+6-
	311G(d.p)[H.C.N.O]/PCM(ACN).			
	Table S70. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dihedral} = 142.725^{\circ}$.	B3LYP/L	AL2DZIRe	1+6-
	311G(d,p)[H,C,N,O]/PCM(ACN)			.96
	Table S71, 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ $\theta_{dibodral} = 157.725^{\circ}$.	B3LYP/L	AL 2DZIRe	1+6-
	311G(d n)IH C N OI/PCM(ACN)			97
R	e(4-EtPv) TDDET Tables			
	Table S72 6 TDDFT singlet excitations of Re(4-FtPv) from S ₀ $\theta_{dihedral} = -82.725^{\circ}$	B3I YP/I	AI 2D7IRe	1+6-
	311G(d n)[H C N O]/PCM(ACN)	2021172		98
	Table S73 6 TDDET singlet excitations of Re(4-EtPv) from S ₀ $\theta_{\text{structure}} = -67.725^{\circ}$	B3I YP/I	AI 2DZIRe	1+6-
	311G(d n)[H C N O]/PCM(ACN)	DOLITI		99
	Table S74 6 TDDFT singlet excitations of $\text{Re}(4\text{-}\text{FtPv})$ from S ₂ A _{ttactor} = -52 275	B3I YP/I		1+6-
	311G(d n)[H C N O]/PCM(ACN)	DOLITI		90
	Table S75 6 TDDFT singlet excitations of Re(4-EtPv) from S ₀ $\theta_{\text{structure}} = -37.275^{\circ}$	B3I YP/I	AI 2DZIRe	1+6-
	311G(d n)[H C N O]/PCM(ACN)	DOLITI		100
	Table S76 6 TDDFT singlet excitations of Re(4-EtPv) from S ₂ Automatic = -22 275°	B3I YP/I		1+6-
	311G(d n)[H C N O]/PCM(ACN)	DOLITI		100
	Table S77 6 TDDFT singlet excitations of Re(4-FtPv) from S ₂ $\theta_{\text{distant}} = -7.275^{\circ}$	B3I YP/I	AI 2DZIRe	1+6-
	311G(d n)[H C N O]/PCM(ACN)	DOLITI		101
	Table S78 6 TDDFT singlet excitations of Re(4-FtPv) from S ₀ $\theta_{\text{dilated}} = 7.725^{\circ}$	B3I YP/I	AI 2DZIRe	1+6-
	311G(d n)[H C N O]/PCM(ACN)	2021172		102
	Table S79 6 TDDFT singlet excitations of Re(4-EtPv) from S ₀ A _{diverse} = 22 725°	B3I YP/I	AI 2DZIRe	1+6-
	311G(d n)IH C N OI/PCM(ACN)	DOLITI		102
	Table S80 6 TDDFT singlet excitations of Re(4-EtPv) from S ₀ $\theta_{\text{diversel}} = 37.725^{\circ}$	B3I YP/I	AI 2DZIRe	1+6-
	311G(d n)IH C N OI/PCM(ACN)			103
	Table S81 6 TDDFT singlet excitations of Re(4-EtPv) from S ₀ $\theta_{\text{tilteded}} = 52.725^{\circ}$	B3I YP/I	AI 2DZIRe	1+6-
	311G(d,p)[H,C,N,O]/PCM(ACN)			103
	Table S82 6 TDDFT singlet excitations of Re(4-EtPv) from S ₀ $\theta_{\text{diversel}} = 67.725^{\circ}$	B3I YP/I	AI 2DZIRe	1+6-
	311G(d n)[H C N O]/PCM(ACN)	DOLITI		104
	Table S83 6 TDDFT singlet excitations of $\text{Re}(4\text{-}\text{EtPv})$ from S ₀ Arrester = 82 725°	B3I YP/I		1+6-
	311G(d n)[H C N O]/PCM(ACN)	DOLITI		104
	Table S84 6 TDDFT singlet excitations of Re(4-EtPv) from S ₀ $\theta_{\text{diversel}} = 97.725^{\circ}$	B3I YP/I	AI 2DZIRe	1+6-
	311G(d n)[H C N O]/PCM(ACN)	DOLITI		105
	Table S85 6 TDDET singlet excitations of Re(4-EtPv) from S ₂ Automatication = 112 725°	B3I YP/I		1+6-
	311G(d n)[H C N O]/PCM(ACN)	DOCIT/L	בבטבנו גט	106
	Table S86 6 TDDFT singlet excitations of $Re/4$ -EtPv) from S ₂ A ₁ = 127 725°	B3I YP/I		1+6-
	311G(d n)[H C N O]/PCM(ACN)	DOLIT/L	ייבבטבנו עם	106
	Table S87 6 TDDFT singlet excitations of Re/4-FtPv) from S ₂ A ₂₀₀₀ = 142 725°	B3I YP/I		1+6-
	-311G(d n)[H C N O]/PCM(ACN)	DOL II /L	ייבבטבנוינט	107
	Table S88 6 TDDFT singlet excitations of $Re(4-FtPv)$ from $S_2 A_{max} = 157.725^{\circ}$	B3I VP/I	ΔI 2D7ΓRΔ	1+6-
	-311G(d n)[H C N O]/PCM(ACN)			107

311G(d.p)[H,C,N,O]/PCM(ACN)	108 +6- 109 +6- 109 +6- 10
Table S90. 6 TDDFT triplet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral}$ = -67.725°, B3LYP/LAL2DZ[Re]- 311G(d.p)[H,C,N,O]/PCM(ACN). 1 Table S91. 6 TDDFT triplet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral}$ = -52.275°, B3LYP/LAL2DZ[Re]-	+6- 09 +6- 09 +6- 10
311G(d.p)[H,C,N,O]/PCM(ACN)	109 +6- 109 +6- 10
Table S91. 6 TDDFT triplet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral} = -52.275^{\circ}$, B3LYP/LAL2DZ[Re]-	+6- 09 +6- 10
	109 +6- 10
311G(0.P)[H,C,N,O]/PCM(ACN)1	+6- 10
Table S92. 6 TDDFT triplet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral}$ = -37.275°, B3LYP/LAL2DZ[Re]-	110
311G(d.p)[H,C,N,O]/PCM(ACN)	
Table S93. 6 TDDFT triplet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral}$ = -22.275°, B3LYP/LAL2DZ[Re]-	+6-
311G(d.p)[H,C,N,O]/PCM(ACN)1	11
Table S94. 6 TDDFT triplet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral}$ = -7.275°, B3LYP/LAL2DZ[Re]-	+6-
311G(d.p)[H,C,N,O]/PCM(ACN)	12
Table S95. 6 TDDFT triplet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral}$ = 7.725°, B3LYP/LAL2DZ[Re]-	+6-
311G(d.p)[H,C,N,O]/PCM(ACN)	13
Table S96. 6 IDDFT triplet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral}$ = 22.725°, B3LYP/LAL2DZ[Re]-	+6-
311G(d.p)[H,C,N,O]/PCM(ACN)	13
Table S97. 6 TDDFT triplet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral} = 37.725^{\circ}$, B3LYP/LAL2DZ[Re]-	+6-
311G(0.p)[H,C,N,O]/PCM(ACN)	14
Table S98. 6 TDDFT triplet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral} = 52.725^{\circ}$, B3LYP/LAL2DZ[Re]-	+6-
311G(0.p)[H,C,N,O]/PCM(ACN).	15
Table S99. 6 TDDFT Inplet excitations of $Re(4-E(Py))$ from S ₀ $\theta_{dihedral} = 67.725$, B3LYP/LAL2DZ[Re]-	+0-
311G(0.p)[H, C, N, O]/PCM(ACN).	10
Table STUD. 6 TDDFT IIPIEL EXCITATIONS OF $Re(4-E(FY))$ FOR S ₀ $\sigma_{dihedral} = 62.725$, BSL FP/LAL2DZ[Re]-	10-
Table S101 6 TDDET triplet excitations of $Po(4 \text{ EtD}_{4})$ from S A = 07.725° P31 VD/I AL 2D7[Po].	-10 6
Table STOT. O TODIT inplet excitations of $\text{Re}(4\text{-Lit y})$ from S_0 $\text{O}_{dihedral} = 97.725$, DOLTT/LAL2D2[Re] 311G(d p)[H C N O]/PCM(ACN)	117
Table S102 6 TDDFT triplet excitations of $Re(4-EtPy)$ from S ₂ A ₁₂ = 112 725° B3I YP/I AI 2D7IRe ¹	+6-
311G(d n)[H C N O]/PCM(ACN)	118
Table S103 6 TDDFT triplet excitations of Re(4-EtPv) from S ₂ A _{dianted} = 127 725° B3I YP/I AI 2DZIRe ¹	+6-
311G(d n)IH C N OI/PCM(ACN)	119
Table S104, 6 TDDFT triplet excitations of Re(4-EtPv) from S ₀ $\theta_{dibodral}$ = 142.725°, B3LYP/LAL2DZIRel-	+6-
311G(d.p)[H.C.N.O]/PCM(ACN).	119
Table S105. 6 TDDFT triplet excitations of Re(4-EtPv) from S ₀ $\theta_{dihedral} = 157.725^{\circ}$. B3LYP/LAL2DZIRel·	+6-
311G(d.p)[H.C.N.O]/PCM(ACN).	20
Solvent Coordinated TDDFT Tables	21
Table S106. TDDFT singlet excitations of Re(bpy)(4-Pam)CO ₂ (MeCN), B3LYP/LAL2DZ[Re]-	+6-
311G(d.p)[H,C,N,O]/PCM(ACŇ)	21
Table S107. TDDFT singlet excitations of Re(bpy)(4-Pam)CO ₂ (DCM), B3LYP/LAL2DZ[Re]-	+6-
311G(d.p)[H,C,N,O]/PCM(ACŇ)	22
DFT Optimized Geometries1	23
Re(4-Pam) Fully Optimized Singlet1	23
Re(4-Pam) Fully Optimized Triplet1	24
Re(4-PamH) Fully Optimized Singlet1	25
Re(4-Pam) Fully Optimized Quintet1	26
Re(4-PamH) Fully Optimized Triplet1	27
Re(4-EtPy) Fully Optimized Singlet1	27
Re(4-EtPy) Fully Optimized Triplet1	28
Re(bpy)(4-Pam)CO ₂ (MeCN) Fully Optimized Singlet1	29
Re(bpy)(4-Pam)CO ₂ (DCM) Fully Optimized Singlet1	30

Experimental Details

Synthetic Procedures

 $[Re(bpy)(CO)_3(ACN)]PF_6$ and $[Re(bpy)(CO)_3(4-EtPy)]PF_6$ were prepared using literature procedures from Meyer *et. al.*¹

[Re(bpy)(CO)₃(o-DMSO)]PF₆

An air-free, dark flask was charged with 20 mL of acetone and 265 μ L of DMSO, 262.3 mg (0.57 mmol) of Re(bpy)(CO)₃Cl and 300 mg (1.2 mmol) of AgOTf. The resultant solution was refluxed overnight. After the solution was cooled down to room temperature, the reaction mixture was filtered to remove precipitated AgCl and the solvent was evaporated to dryness, dissolved in approximately 15 mL dichloromethane, and washed with saturated, aqueous NH₄PF₆ (3 × 20 mL). The solution was concentrated to approximately 2 mL and diethyl ether was added dropwise to precipitate. 156.3 mg, 42% yield. This synthesis was developed from previously published preparations of the complex.^{2.3} ¹H NMR (400 MHz, acetone-*d*₆): δ 9.27 (d, *J* = 4 Hz, 2H), 8.84 (d, *J* = 8 Hz, 2H), 8.52 (t, *J* = 4 Hz, 2H), 7.96 (d, *J* = 8 Hz, 2H), 2.77 (s, 6H)

[Re(bpy)(CO)₃(4-Pam)]PF₆ (Re(4-Pam))

An air-free flask was charged with 75 mL of acetone, 156.3 mg of $[\text{Re}(\text{bpy})(\text{CO})_3(\text{o-DMSO})]\text{PF}_6$, and 294 mg of 4-pyridylamidine (4-Pam). The solution was refluxed overnight. The solution was cooled to room temperature and evaporated to dryness. The solid was dissolved in 30 mL of DCM and washed quickly with water (3 × 30 mL) and dried with MgSO₄. The solution was concentrated to approximately 2 mL and ether was added dropwise to precipitate solid. 30 mg, 18% yield. ¹H NMR (400 MHz, acetone-*d*₆): δ 9.27 (d, *J* = 4 Hz, 2H), 8.81 (d, *J* = 8 Hz, 2H), 8.56 (d, *J* = 4 Hz, 2H), 8.47 (t, *J* = 8 Hz, 2H), 7.92 (t, *J* = 8 Hz, 2H), 7.25 (d, *J* = 4 Hz, 2H)

[Re(bpy)(CO)₃(4-Pam)]BArF (Re(4-Pam BArF))

An alternate synthesis was performed in which an air-free flask was charged with 10 mL of 1,2-difluorobenzene, 100.7 mg (0.22 mmol) of Re(bpy)(CO)₃Cl, 31.4 mg (0.26 mmol) of 4-pyridylamidine (4-Pam) and 200.4 mg (0.23 mmol) of sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF). The solution was refluxed for 72 hours and then cooled to room temperature. The reaction mixture was washed with DI water (3 × 5 mL) and then dried with MgSO₄ and the solvent was removed via rotovap. The solid was then packed on silica gel, and diethyl ether was used to elute the pure product as a tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF) salt. 157.4 mg, 51% yield. ¹H NMR (400 MHz, acetone-*d*₆): δ 9.27 (d, *J* = 8 Hz, 2H), 8.82 (d, *J* = 8 Hz, 2H), 8.55 (d, *J* = 4 Hz, 2H), 8.47 (t, *J* = 8 Hz, 2H), 7.92 (t, *J* = 4 Hz, 2H), 7.81 (br s, 8 H), 7.66 (br s, 4 H), 7.27 (d, *J* = 8 Hz, 2H); ¹³C{¹H} NMR (400 MHz, acetone-*d*₆): δ 168.5 (s), 161.5 (q, ¹J_{B-C} = 50.0 Hz), 156.4 (s), 153.9 (s), 150.2 (s), 140.9 (s), 134.7 (s), 129.1 (q, ²J_{C-F} = 31.5 Hz), 128.3 (s), 125.8 (s), 125.2 (s), 124.5 (s), 124.5 Hz (q, ¹J_{C-F} = 270 Hz), 123.1 (s), 121.2 (s), 120.4 (s), 117.5 (s).

Figure S1. ATR-FT-IR of Re(4-Pam) v(CO) 2022, 1886 (br) cm⁻¹

The ATR-FT-IR CO stretches are consistent with other fac-Re(I)(bpy)(CO)₃L complexes.⁴⁻⁷

Re(4-Pam BArF) with peaks labeled

Re(4-Pam)

Re(4-EtPy)

[Re(bpy)(CO)₃(o-DMSO)]PF₆

Re(4-Pam BArF) with peaks labeled

Re(4-Pam BArF) with peaks labeled

Chemical shift (ppm)

ESI-MS

Re(4-Pam BArF)

Electrospray ionization mass spectrometry (ESI-MS) of the Re(4-Pam BArF) complex show three peaks. The experiment was performed with 0.4 mL of sample at 1 mg/mL in acetonitrile was added via direct injection to the ionization source. The peak at 584.1 M/Z matches the exact mass of the complex (shown on the right side of the figure). The splitting of Δ = 2 M/Z in each of the three primary peaks occurs because of the two isotopes of Re. The isotopes of Re are listed with their relative abundance in the inset of the figure. The remaining two peaks are (1) at 427.0 and (2) at 454.9 M/Z. The peak at 427.0 M/Z represents the complex with the 4-Pam ligand displaced. The 4-Pam ligand is labile and would be expected to be the most likely to be removed during the measurement. The second remaining peak at 454.9 M/Z represents the nitrogen adduct of the complex with the 4-Pam removed. The carrier gas in the ESI-MS measurement is N₂, making this complex a likely product. Similar Re-N₂ adducts have previously been reported.⁸⁻¹⁰

Figure S2. Characterization: ¹H ¹³C and 2D HSQC NMR spectra and peak assignments of Re(4-Pam), Re(4-

Pam BArF) and Re(4-EtPy) in acetone- d_6 and ESI-MS of Re(4-Pam) acetonitrile.

NMR is reported in acetone- d_6 . The shift of 8.56 ppm corresponds to the alpha-¹H of pyridyl of the 4-Pam, which indicates the N-pyridyl of 4-Pam is bound to the Re center. There is a similar shift of 8.58 that corresponds to the alpha-¹H of pyridyl of the 4-EtPy, which indicates that the pyridyl is bound to the Re center.

References:

- (1) Caspar, J. V; Meyer, T. J. Application of the Energy Gap Law to Nonradiative, Excited-State Decay. *The Journal of Physical Chemistry* **1983**, *6* (87), 952–957.
- (2) Casanova, M.; Zangrando, E.; Munini, F.; Iengo, E.; Alessio, E. Fac-[Re(CO)3(Dmso-O)3](CF3SO3): A New Versatile and Efficient Re(I) Precursor for the Preparation of Mono and Polynuclear Compounds Containing Fac-[Re(CO)3]+ Fragments. *Dalton Transactions* **2006**, *3* (42), 5033–5045.
- (3) Cavigli, P.; Da Ros, T.; Kahnt, A.; Gamberoni, M.; Indelli, M. T.; Iengo, E. Zinc Porphyrin-Re(I) Bipyridyl-Fullerene Triad: Synthesis, Characterization, and Kinetics of the Stepwise Electron-Transfer Processes Initiated by Visible Excitation. *Inorganic Chemistry* **2015**, *54*, 280–292.
- (4) McAllister, W. A.; Marston, A. L. The Inrared and Raman Spectra of Rhenium Carbonyl Chloride and Bromide. *Spectrochim. Acta Part A Mol. Spectrosc.* **1971**, *27*, 523–525.
- (5) Crawley, M. R.; Kadassery, K. J.; Oldacre, A. N.; Friedman, A. E.; Lacy, D. C.; Cook, T. R. Rhenium(I) Phosphazane Complexes for Electrocatalytic CO2 Reduction. *Organometallics* **2019**, *38* (7), 1664–1676.
- (6) Yam, V. W.-W.; Lau, V. C.-Y.; Wu, L.-X. Synthesis, Photophysical, Photochemical and Electrochemical Properties of Rhenium(I) Diimine Complexes with Photoisomerizable Pyridyl-Azo, -Ethenyl or -Ethyl Ligands. *Journal of the Chemical Society, Dalton Transactions* **1998**, *0* (9), 1461–1468.
- (7) Chabolla, S. A.; Dellamary, E. A.; Machan, C. W.; Tezcan, F. A.; Kubiak, C. P. Combined Steric and Electronic Effects of Positional Substitution on Dimethyl-Bipyridine Rhenium(I)Tricarbonyl Electrocatalysts for the Reduction of CO2. *Inorganica Chimica Acta* 2014, 422, 109–113.
- (8) Moelwyn-Hughes, J. T.; Garner, A. W. B. Nitrogen Complexes of Rhenium(0). *Chemical Communications* **1969**, No. 22, 1309–1310.
- (9) Firth, S.; Horton-Mastin, A.; Poliakoff, M.; Turner, J. J.; McKean, D. C.; McQuillan, G. P.; Robertson, J. C-H Stretching Vibrations as a Probe of the Structure of Unstable Organometallic Species. *Organometallics* **1989**, *8* (12), 2876–2883.
- (10) Firth, S.; Klotzbucher, W. E.; Poliakoff, M.; Turner, J. J. Generation of Re2(CO)9(N2) from Re2(CO)10: Identification of Photochemical Intermediates by Matrix Isolation and Liquid-Noble-Gas Techniques. *Inorganic Chemistry* **1987**, *26* (20), 3370–3375.

Figure S3. Heat map visualization of data for the ns-TA data collected with the EOS TA spectrometer.

Figure S4. B3LYP/LANL2DZ [Re]+6-311G(d,p)[H,C,N,O]/PCM(ACN) frontier molecular orbital electronic structure of the Re(4-Pam), Re(4-PamH) and Re(4-EtPy) ground states.

Figure S5. The singlet electronic structure of the fully optimized Re(4-Pam) singlet (GS) and triplet (T) geometries at the B3LYP/LANL2DZ [Re]+6-311G(d,p)[H,C,N,O]/PCM(ACN) level of theory.

The frontier MOs shown are the singlet configuration at each optimized singlet (S_0/GS) and triplet (S_0/T) geometries.

Figure S6. Comparison of the lowest energy singlet (S_0) and triplet (T_1) surfaces for Re(4-Pam), Re(4-PamH) and Re(4-EtPy).

Potential energy curves as a function of the dihedral angle between the pyridine and bpy ligands. The black line (lower energy curve) and red line (higher energy curve) are optimized lowest lying singlet and triplet of each complex, where only the dihedral angle was constrained and all other coordinates were freely optimized. The value of $\sim kT$ at room temperature is shown as a grey bar across the PEC for each surface. All calculations are B3LYP/LANL2DZ [Re]+6-311G(d,p)[H,C,N,O]/PCM(ACN).

Each potential energy curve is formed from relaxations of the geometry every 15° with only the bpy and pyridine dihedral angle constrained. Each point is a DFT optimization at the B3LYP/LANL2DZ [Re]+6-311G(d,p)[H,C,N,O]/PCM(ACN) level of theory.

Figure S7. Re(4-Pam) ground state (S_0) and TDDFT excited state (S_{1-3} and T_{1-5}) potential energy curves between 0 and 3.8 eV as a function of dihedral angle.

The black line (lowest energy curve) is the constrained DFT optimized singlet ground state surface of each complex. The higher lying, singlet (blue solid lines) and triplet (red dotted lines) potential energy curves are TDDFT excitations from this GS curve. All calculations are B3LYP/LANL2DZ [Re]+6-311G(d,p)[H,C,N,O]/PCM(ACN). Several, relevant transition energies are labeled directly on the surface plots.

Figure S8. Re(4-PamH) ground state (S_0) and TDDFT excited state (S_{1-6} and T_{1-7}) potential energy curves between 0 and 3.6 eV as a function of dihedral angle.

The black line (lowest energy curve) is the constrained DFT optimized singlet ground state surface of each complex. The higher lying, singlet (blue solid lines) and triplet (red dotted lines) potential energy curves are TDDFT excitations from this GS curve. All calculations are B3LYP/LANL2DZ [Re]+6-311G(d,p)[H,C,N,O]/PCM(ACN). Several, relevant transition energies are labeled directly on the surface plots.

Figure S9. Re(4-EtPy) ground state (S₀) and TDDFT excited state (S₁₋₃ and T₁₋₄) potential energy curves between 0 and 3.6 eV as a function of dihedral angle.

The black line (lowest energy curve) is the constrained DFT optimized singlet ground state surface of each complex. The higher lying, singlet (blue solid lines) and triplet (red dotted lines) potential energy curves are TDDFT excitations from this GS curve. All calculations are B3LYP/LANL2DZ [Re]+6-311G(d,p)[H,C,N,O]/PCM(ACN). Several, relevant transition energies are labeled directly on the surface plots.

Figure S10. Comparison of optimized $Re(4-Pam) S_0$ and T_1 geometries along the dihedral scan.

The independently constrained geometry scans of the S_0 and T_1 surfaces results in very similar optimized geometries at each dihedral angle. Importantly only the dihedral is constrained and each scan started from the fully optimized global minimum on each surface. This indicates that there is no other obvious geometrical coordinate between the S_0 and T_1 .

Figure S11. Representation of spin-orbit couplings between critical S_1 -triplet (top) and triplet- S_0 (bottom) surfaces of Re(4-Pam).

The spin-orbit coupling (SOC) energies between the (top) S_1 and T_1 (darker green) or T_2 (blue green) and (bottom) between the T_2 or T_1 and S_0 surfaces. The SOCs are displayed as double the coupling (in eV) around the surface from which the transition originates. All of the calculated SOCs are in Table S1.

Table S1. Spin-orbit coupling in cm⁻¹ for all surfaces less than 3.4 eV along the dihedral scan for Re(4-Pam).

Dihedral		T₁	T ₂	T ₃	T₄	T 5
	So	177.64159	250.59407	35.58175	219.33165	30.5761
	S₁	5.56094	767.43878	2.83968	22.5772	844.6377
	S ₂	530.27655	181.20206	6.30608	544,22766	620,39294
-52°	S ₂	503 31683	608 56354	7 83686	516 8385	178 45978
	S.	13 71354	13 12953	230 98514	11 26961	15 52362
	54 S-	59 99756	17 27553	8 87473	60 79902	80 32368
	05	<u> </u>	T.	<u> </u>	T.	
	S.	181 63161	252 95973	43 84499	221 7016	40 43677
	S.	69 17043	750 2464	16 90375	138 95074	835 15472
-37°	S	542 92755	269 50671	20 70583	537 72546	609 1767
0.	S ₂	502 57407	592 72961	21 31869	497 25488	235 43518
	S.	33 48489	9 69055	181 39688	29 41672	32 80264
	S₄ S₋	48 49593	22 93669	140 31215	51 63493	72 60793
	•5	T.	<u></u>	<u></u>	T.	T _e
	S₀	186.28822	261.42343	55.70821	225.50734	52.64732
	S₁	87.53074	720,52435	61,74385	209.7818	827.034
-22°	S ₂	568,97516	362.6777	63,47153	527,77179	567,1825
	S,	504 19949	552 27991	61 51597	459 23737	334 12943
	S,	48 6102	28 94302	20 46177	48 95612	71 49475
	S₅	20 60301	8 36957	195 59653	60 34943	38 0123
	•5	<u></u>	T ₂		<u></u>	
	S.	185 95044	271 45636	195 69398	117 4066	47 75128
	S.	89 15224	707 55048	226 79181	52 46413	827 78265
-7°	S ₁	597 01196	415 8873	494 48145	180 37221	507 73032
-1	S ₂	508 61771	505 83838	397 06152	151 0213	411.03
	S .	35 11568	43 05714	11 08038	11 05070	71 15108
	54 S-	30 86304	7 92124	35 56742	173 8979	52 35727
	•5	<u> </u>	<u> </u>	<u> </u>	<u></u>	T ₅
	S	182 00052	272 50455	167 7205	139 11119	49 61835
	S.	65 92094	707 86548	197 44698	78 36451	836 07831
7 °	S,	621 70227	441 01874	436 86972	273 03583	460 7504
•	S ₂	516 38641	464 01932	336 07867	221 02022	454 6691
	S,	19 00545	56 06718	31 01549	10 63954	73 32145
	S₅	42 80155	7 91164	38 26494	120 6453	62 31588
	•5	T1	<u> </u>	T ₂	T4	<u></u>
	S₀	176.65691	278.48877	159.42746	114.17696	32.14505
	S₁	33.62992	720.01068	133.87978	32,94396	847.45239
22°	S ₂	639.8432	463,17993	462.44867	198.08673	427.81946
	S ₂	524.06952	423,79971	364.1561	164.09209	481,91415
	S₄	3.86947	66.78119	16.61664	12.6912	78.84457
	S ₅	52.67302	7.08298	17.92113	67.62845	65.89313
		T ₁	T ₂	T₃	T₄	T ₅
	So	173.9552	282.18497	83.60638	157.40553	14.90661
	S₁	5.74118	729.77667	28.47561	14.06091	852.98004
37°	S ₂	646.80481	475.73212	65.74252	494.36569	413.90952
	S ₃	527.45886	402.8074	50.13207	401.02261	493.15179
	S₄	52.35461	22.98825	15.98355	39.26995	67.00422
	S ₅	24.35611	66.59384	15.08879	18.9451	82.09577
		T ₁	T ₂	T ₃	T ₄	T₅
	S ₀	176.23186	277.54501	156.42169	119.49876	37.38169
52°	S₁	34.9534	719.76843	133.10558	29.43862	846.40527
	S ₂	640.23767	462.08154	452.46109	216.96385	428.16943
	S ₃	524.81555	425.75064	354.64447	176.67053	481.86346

	S₄ S₋	17.67778 54 10226	60.89967 28 50469	15.33562 16 99369	32.66612 74.02678	71.91943 76.35181
	05	<u> </u>	<u></u>	<u></u>	<u></u> T₄	<u></u>
	S₀	182.08632	273.74167	178.89601	132.11232	52.54879
	S₁	66.46023	705.26086	208.26402	56.86946	834,7959
67°	S ₂	620.55908	440.25705	468.53726	220.30519	461.04913
	S_3	515.60565	465.03467	360.80435	178.28497	454.50757
	S₄	30.92968	59.06356	39.83979	13.08298	76.4571
	S ₅	46.24491	7.89302	16.86177	128.19337	65.92307
		T ₁	T ₂	T₃	T ₄	T₅
	S ₀	186.27831	269.1485	172.17737	153.82394	50.48353
	S ₁	87.09027	702.36523	214.81953	107.2569	828.00092
82	S ₂	593.80939	414.3576	423.86111	301.13202	509.32141
	S₃	508.27365	505.0618	342.74734	247.15395	408.14951
	S_4	48.07241	52.3414	50.29057	19.36577	77.02209
	S₅	33.57084	7.77848	71.09341	165.22789	56.322
	_	T₁	T ₂	T ₃	T ₄	T₅
	S₀	184.14589	261.54285	59.14603	228.40099	52.16275
	S₁	88.88322	716.51971	56.11987	216.48279	828.09265
97°	S ₂	560.4032	361.65613	41.93003	530.6792	570.22748
	S₃	501.23578	551.59314	46.08707	470.7027	326.03448
	S ₄	59.10924	46.93367	33.52602	56.16198	76.09397
	S ₅	24.10422	14.90172	202.00659	59.39682	45.41108
	•	T ₁	T ₂	T ₃	T ₄	T ₅
	S ₀	179.20329	252.81905	44.63315	223.57417	39.50021
1100	ວ ₁	69.22222	745.0918	15.53/0/	144.93747	837.75134
112	32 S	533.1579	209.19238	11.23/31	530.2384	009.9301
	33 6	10 0221	15 09542	12.97020	10 5502	221.01/3/
	54 C	10.0321 64 57407	15.90343	223.00900	69 74269	9.04339
	35	<u> </u>	<u>+5.74010</u> T	<u> </u>	<u> </u>	<u> </u>
	S.	176 72107	2/0 66002	13 38 57011	∎₄ 220 37544	15 31 78813
	50 S.	4 4889	766 60681	4 06764	10 6201	845 21423
127°	S ₂	525 31787	178 83366	3 92752	544 8819	619 23352
1 - 1	S ₂	502 21466	607 51215	8 38654	520 86188	176 04478
	S∡	13.30146	13,4881	236.00748	11.05438	16.16772
	S₅	66.15148	44.7498	7.04851	67.91908	81.17381
	₩.	00.10110	11.7 100	1.01001	01.01000	01.17001

Table S2. Spin-orbit coupling in cm⁻¹ for all surfaces less than 3.4 eV along the dihedral scan for Re(4-PamH).

Dihedral		T ₁	T ₂	T ₃	T₄	T₅
	S ₀	170.39375	104.99918	313.03397	164.32098	269.78595
	S₁	10.21689	106.79472	726.06451	11.50535	44.10128
27°	S ₂	156.48586	12.60709	35.71292	272.00266	773.65643
57	S₃	40.18345	763.62158	98.43379	17.36686	42.76056
	S_4	577.44708	62.29958	522.81512	528.26874	237.20737
	S₅	45.83013	744.26917	37.8168	121.71793	653.72931
		T₁	T ₂	T ₃	T ₄	T₅
	S ₀	180.56129	109.69258	262.29254	110.35491	249.72375
	S₁	16.63759	726.3017	84.07458	47.6516	17.65905
52°	S ₂	14.84642	81.20649	766.72675	30.24056	28.50745
	S₃	197.0815	219.89218	30.29694	805.22882	197.09955
	S_4	405.39725	332.13052	238.46497	531.57135	486.58386
	S ₅	350.89676	433.6601	381.96411	568.77545	391.30466

		T ₁	T ₂	T ₃	T4	T₅
	S₀	180.31009	100.07715	265.16345	109.99453	249.85251
	S ₁	16.13862	730.08728	71.5966	10.53469	17.9337
127°	S ₂	175.35077	222.90131	54.75389	818.09906	179.56905
	S₃	14.17699	71.36964	767.15637	61.41105	21.23508
	S ₄	376.43277	385.03174	195.84579	573.95538	448.3237
	S₅	374.05035	398.63025	382.53992	536.44641	426.14035
	-					

Table S3. Spin-orbit coupling in cm⁻¹ for all surfaces less than 3.4 eV along the dihedral scan for Re(EtPy).

Dihedral		T₁	T ₂	T ₃
	S ₀	175.32071	273.01819	141.23387
27 °	S₁	6.01038	731.20074	15.02106
37	S ₂	678.4549	469.59869	459.70877
	S₃	554.87036	409.87885	374.07642
		T ₁	T ₂	T ₃
	S ₀	176.39174	241.43927	206.02515
52°	S ₁	4.57224	765.11823	25.44425
	S ₂	536.30432	139.22527	518.91235
	S₃	528.63068	619.04541	513.052
		T₁	T ₂	T₃
	S ₀	183.84534	267.77319	188.93393
67°	S ₁	64.25043	702.51019	226.22246
	S ₂	643.99219	422.02704	494.9913
	S₃	541.87042	477.23489	389.8132
		T₁	T ₂	T ₃
	S ₀	187.83893	263.85355	203.16907
82°	S ₁	87.1899	701.65588	245.58733
	S ₂	612.8269	391.47192	499.15982
	S₃	532.10211	520.75214	423.96722
		T₁	T ₂	T₃
	S ₀	176.13571	237.69489	205.57658
127°	S ₁	7.83694	765.11938	35.3829
	S ₂	534.57983	134.06396	516.94244
	S₃	529.698	620.44165	514.30963

Figure S12. Fully optimized Re(4-Pam) GS on the S₀ surface and excited states (ESs) on the T₁ and Q₁ surfaces.

The energy of the lowest lying quintet clearly indicates that quintets are not at play within the energetic window of the experiments preformed (excitations ~ 370 nm, 3.35 eV).

Figure S13. TDDFT calculated excitations for solvent-CO ligand exchanged Re(4-Pam) with MeCN and DCM.

The solvent coordination results in excitations a wavelengths > 450 nm which are not seen in the steady-state of transient absorption experiments.

Re(4-PamH)

Fitting of the TSCSP time-resolve emission data fit to a mono- and bi-exponential function for (top) Re(4-PamH) and (bottom) Re(4-Pam). Fitting Re(4-PamH) shows a good residual and R² value that does not improve with addition of a second lifetime, indicating that a mono-exponential fit is most appropriate for the Re(4-PamH) moiety. On the other hand, fitting Re(4-Pam) data to a mono-exponential function shows a substantial, structured residual, indicating the presence of a second lifetime. Fitting of the data to a (right) bi-exponential function yield better residuals and better R² value.

		All Variables Unfixed						
	0 deg C	10 deg C	Room T	38 deg C				
T1 (ns)	22.7	21.6	24.2	17.1				
A1	0.51	0.42	0.6	0.45				
T2 (ns)	75.7	75	77.1	56.3				
A2	0.49	0.58	0.4	0.55				
R ²	0.981	0.98	0.983	0.989				

Lifetimes fixed 22 & 75 ns					Amplitudes fixed 50/50				
	0 deg C	10 deg C	Room T	38 deg C		0 deg C	10 deg C	Room T	38 deg C
T1 (ns)	22	22	22	22	T1 (ns)	23.3	25	21.3	19.1
A1	0.47	0.42	0.56	0.64	A1	0.5	0.5	0.5	0.5
T2 (ns)	75	75	75	75	T2 (ns)	77.2	82.3	68.6	60.3
A2	0.53	0.58	0.44	0.36	A2	0.5	0.5	0.5	0.5
R ²	0.982	0.98	0.983	0.982	R ²	0.982	0.98	0.984	0.989

We performed fitting of the temperature-dependent photoluminescence data of Re4-Pam in three ways. First (top table), we allowed all of the variables to vary in the biexponential decay trace: the two lifetimes with the two corresponding amplitudes. Second (middle table), we took the average value of each lifetime from the top table and fixed those to be 22 ns and 75 ns, respectively, in order to isolate the variation of the amplitudes. Third (bottom table) we took the average of the amplitudes of the top table, approximately 50% for each lifetimes and fixed those values for the fit in order to isolate the variation of the lifetimes. The second and third fitting are less relevant to subsequent analysis, however, they do show that no matter how the data is fit, there is only a very slight temperature dependence of the fitted values.

The values obtained in the top table (for which all lifetimes and amplitudes varied), were used to calculate a $k_{ave} = \frac{1}{\pi} = \frac{1}{4\pi} = \frac{1}{4\pi}$

weighted average to represent the temperature dependence of the lifetime $\kappa_{ave} = \frac{1}{\tau_{ave}} - \frac{1}{A_1\tau_1 + A_2\tau_2}$. These values were plotted in an Arrhenius type plot (In k_{ave} vs 1/T), shown below.

These data were fit with both a non-weighted (left) and weighted (right) linear regressions. The slope of the linear fit is related to the activation energy (E_a) of this process by E_a = slope × R. Given the two fits, activation energies of 48.4 meV (non-weighted fit) and 67.8 meV (weighted fit) are obtained. The very small values for the activation energy (room temperature ~ 25 meV for comparison) indicate that the process being measured possesses a very low activation barrier as we have calculated in our DFT computation.

Figure S15. Temperature-dependence photoluminescence and Arrhenius analysis for Re4-Pam.

Global analysis fitting of the nanosecond transient absorption (TA) data.

Each data set was fit to one principal component using the global analysis fitting of the Surface Xplorer program(Ultrafast Systes). The single principal component obtained from global analysis was fit to mono- or biexponential fits for Re(4-PamH) and mono-, bi-, or tri- exponential fits for Re(4-Pam) using Origin. The results of the fits and their residuals are shown below.

Global analysis fitting of the Re(4-PamH) nanosecond TA data (top) using a mono-exponential fit (left) reproduced the single lifetime obtained from the time-resolved PL data well. The data fit clearly to a mono-exponential fit with good residual. Addition of an additional lifetime (τ_2 , on the right), does not improve the fit or the R² value.

Global analysis fitting of Re(4-Pam) is more complex, however does *support* the time-resolved PL data in assignment of two lifetimes for the deprotonated moiety. A single principal component was used (addition of the second component contributed less than 5%). The trace of the single principal component was fit to mono-, bi-, and tri- exponential fits with lifetimes, R² values, and residuals shown above. Addition of the second lifetime (middle column) improves the residual from the mono-exponential fit (left column) even though the residual is not ideal. However, addition of a third lifetime (right column) does not improve the residual (nor the R² value) appreciably. Further, the fitted τ_3 lifetime is essentially infinite on the timescale of the data collection.

Figure S16. Nano-second transient absorption fitting for Re4-PamH and Re4-Pam.

Time-resolved photoluminescence of Re(4-Pam) and Re(4-PamH) with the PF_6 and BArF counter ions reveal nominally different lifetimes for the two species. Importantly, when either counter ion is used, Re(4-Pam) shows biexpoential kinetics in both cases, and the Re(4-PamH) retains a clear monoexpoential fit.

		Time-resolved Emission Lifetimes					
	Counter ion	$\tau_1(Ampl^{s})$ (ns)	$\tau_2(\text{Ampl}^{\$})$ (ns)				
Re(4-Pam)	PF ₆	23 ± 8 (59)	80 ± 30 (41)				
	BArF	36 ± 5 (58)	234 ± 33 (42)				
Re(4-PamH)	PF ₆	131 ± 19					
	BArF	137 ± 12					

[§] Amplitude of the contribution of each lifetime to the overall signal.

Figure S17. Summary of emission lifetimes of the PF₆ and BArF counter ions of Re(4-Pam) and Re(4-PamH).

Energy	Wavelength	Oscillator			Transi	tions
(eV)	(nm)	Strength			1101131	
3.1895	388.73	0.0072	100	\rightarrow	102	-0.27046
			101	\rightarrow	102	0.64641
3.3261	372.76	0.0584	98	\rightarrow	102	-0.20201
			99	\rightarrow	102	0.18793
			100	\rightarrow	102	0.60292
			101	\rightarrow	102	0.23043
3.4282	361.66	0.0334	98	\rightarrow	102	0.60459
			99	\rightarrow	102	-0.24403
			100	\rightarrow	102	0.22742
			101	\rightarrow	102	0.12738
3.8147	325.01	0.0027	98	\rightarrow	102	0.29565
			99	\rightarrow	102	0.63050
3.8396	322.91	0.021	100	\rightarrow	103	-0.48879
			101	\rightarrow	103	0.50004
3.9103	317.07	0.111	99	\rightarrow	103	0.11861
			100	\rightarrow	103	0.49538
			101	\rightarrow	103	0.46904
4.067	304.86	0.0307	98	\rightarrow	103	0.59223
			99	\rightarrow	103	-0.34814
			101	\rightarrow	103	0.11829
4.1227	300.74	0.0444	97	\rightarrow	102	0.43307
			98	\rightarrow	103	0.13659
			99	\rightarrow	103	0.31226
			100	\rightarrow	104	-0.21948
			101	\rightarrow	104	0.34361
4.129	300.28	0.0557	96	\rightarrow	103	-0.10489
			97	\rightarrow	102	-0.22847
			98	\rightarrow	103	0.33314
			99	\rightarrow	103	0.49986
			100	\rightarrow	104	0.11837
			101	\rightarrow	104	-0.21754
4.2354	292.73	0.0642	97	\rightarrow	102	-0.29519
			100	\rightarrow	104	0.21116
			101	\rightarrow	104	0.54840
			101	\rightarrow	105	0.20247
			101	\rightarrow	105	0.20247

Table S4. 10 TDDFT singlet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = -82.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
3.2021	387.2	0.005	100	\rightarrow	102	0.42069
			101	\rightarrow	102	0.56296
3.315	374.01	0.0728	98	\rightarrow	102	0.11502
			99	\rightarrow	102	0.19791
			100	\rightarrow	102	0.53772
			101	\rightarrow	102	-0.38889
3.4144	363.12	0.0185	98	\rightarrow	102	0.56651
			99	\rightarrow	102	0.36136
			100	\rightarrow	102	-0.15303
			101	\rightarrow	102	0.13769
3.8116	325.28	0.0023	98	\rightarrow	102	-0.39977
			99	\rightarrow	102	0.56957
3.821	324.48	0.005	100	\rightarrow	103	0.54194
			101	\rightarrow	103	0.44363
3.9076	317.29	0.1168	99	\rightarrow	103	-0.15073
			100	\rightarrow	103	-0.43313
			101	\rightarrow	103	0.51778
4.0588	305.47	0.0432	98	\rightarrow	103	0.5003
			99	\rightarrow	103	0.46181
			101	\rightarrow	103	0.1415
4.1205	300.9	0.0059	96	\rightarrow	103	0.11547
			97	\rightarrow	102	-0.15017
			98	\rightarrow	103	-0.45126
			99	\rightarrow	103	0.48531
4.1339	299.92	0.1142	97	\rightarrow	102	0.5063
			98	\rightarrow	103	-0.14765
			99	\rightarrow	103	0.12105
			100	\rightarrow	104	0.29884
			101	\rightarrow	104	0.28304
			101	\rightarrow	105	-0.12809
4.2545	291.42	0.036	97	\rightarrow	102	-0.21219
			100	\rightarrow	104	-0.11334
			101	\rightarrow	104	0.612
			101	\rightarrow	105	0.20677

Table S5. 10 TDDFT singlet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = -67.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Table S6. 10 TDDFT singlet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = -52.275°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength	Transitions			
3.2073	386.57	0.0025	100 101	\rightarrow \rightarrow	102 102	0.67828 0.18724

3.3044	375.21	0.0788	99	\rightarrow	102	0.19332
			100	\rightarrow	102	-0.18008
			101	\rightarrow	102	0.64628
3.4072	363.88	0.0137	98	\rightarrow	102	0.53272
			99	\rightarrow	102	0.42176
			101	\rightarrow	102	-0.17393
3.8054	325.81	0.0002	100	\rightarrow	103	0.67901
			101	\rightarrow	103	0.18257
3.8112	325.32	0.0021	98	\rightarrow	102	-0.45376
			99	\rightarrow	102	0.53098
			101	\rightarrow	102	-0.10265
3.8979	318.08	0.1216	99	\rightarrow	103	0.16739
			100	\rightarrow	103	-0.1759
			101	\rightarrow	103	0.64847
4.0447	306.54	0.0453	98	\rightarrow	103	0.46125
			99	\rightarrow	103	0.49737
			101	\rightarrow	103	-0.17483
4.1173	301.13	0.0138	96	\rightarrow	103	0.11792
			98	\rightarrow	103	0.51099
			99	\rightarrow	103	-0.46018
4.1357	299.79	0.1146	97	\rightarrow	102	0.53972
			100	\rightarrow	104	0.39177
			101	\rightarrow	105	-0.15753
4.2859	289.28	0.0177	99	\rightarrow	104	0.10602
			101	\rightarrow	104	0.66271
			101	\rightarrow	105	0.13447

Table S7. 10 TDDFT singlet excitations of	Re(4-Pam) from S ₀	$\theta_{dihedral} = -37.275^{\circ},$	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).			

Ene (e	ergy eV)	Wavelength (nm)	Oscillator Strength			Transit	ions
3.	1951	388.04	0.005	100	\rightarrow	102	-0.39129
				101	\rightarrow	102	0.58342
3.	3111	374.46	0.0702	98	\rightarrow	102	0.10956
				99	\rightarrow	102	0.20849
				100	\rightarrow	102	0.55571
				101	\rightarrow	102	0.35835
3.4	4094	363.65	0.0201	98	\rightarrow	102	0.52675
				99	\rightarrow	102	0.41134
				100	\rightarrow	102	-0.16751
				101	\rightarrow	102	-0.13796
3.	8091	325.5	0.0024	98	\rightarrow	102	-0.45273
				99	\rightarrow	102	0.53093
3.	8229	324.32	0.0058	100	\rightarrow	103	0.522

			101	\rightarrow	103	-0.46814
3.9101	317.09	0.1149	99	\rightarrow	103	0.15674
			100	\rightarrow	103	0.45714
			101	\rightarrow	103	0.49728
4.0603	305.36	0.0412	98	\rightarrow	103	0.45922
			99	\rightarrow	103	0.50231
			101	\rightarrow	103	-0.13728
4.126	300.49	0.0499	96	\rightarrow	103	0.10743
			97	\rightarrow	102	0.21024
			98	\rightarrow	103	0.45998
			99	\rightarrow	103	-0.42928
			100	\rightarrow	104	-0.12153
			101	\rightarrow	104	0.13649
4.1304	300.18	0.0701	97	\rightarrow	102	0.47358
			98	\rightarrow	103	-0.23307
			99	\rightarrow	103	0.16243
			100	\rightarrow	104	-0.27592
			101	\rightarrow	104	0.28824
			101	\rightarrow	105	-0.11768
4.2475	291.9	0.0374	97	\rightarrow	102	-0.22239
			100	\rightarrow	104	0.15027
			101	\rightarrow	104	0.60098
			101	\rightarrow	105	0.20604

Table S8. 10 TDDFT singlet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = -22.275°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator	Transitions			tions
(eV)	(nm)	Strength				tions
3.1749	390.51	0.0072	100	\rightarrow	102	-0.23541
			101	\rightarrow	102	0.65977
3.3223	373.19	0.0542	98	\rightarrow	102	0.20631
			99	\rightarrow	102	-0.20855
			100	\rightarrow	102	0.6073
			101	\rightarrow	102	0.1943
3.421	362.42	0.0363	98	\rightarrow	102	0.56695
			99	\rightarrow	102	-0.30259
			100	\rightarrow	102	-0.25451
			101	\rightarrow	102	-0.12277
3.8032	326	0.0032	98	\rightarrow	102	0.36063
			99	\rightarrow	102	0.59806
3.8418	322.72	0.0298	100	\rightarrow	103	-0.43459
			101	\rightarrow	103	0.54775
3.9146	316.73	0.0999	99	\rightarrow	103	-0.12015
			100	\rightarrow	103	0.54376

			101	\rightarrow	103	0.41478
4.0693	304.68	0.0291	98	\rightarrow	103	0.5481
			99	\rightarrow	103	-0.41224
			101	\rightarrow	103	-0.1138
4.1167	301.17	0.0802	97	\rightarrow	102	0.46585
			99	\rightarrow	103	0.10192
			100	\rightarrow	104	-0.21877
			101	\rightarrow	104	0.44308
4.1332	299.97	0.0166	96	\rightarrow	103	0.11855
			98	\rightarrow	103	0.42522
			99	\rightarrow	103	0.53762
4.2283	293.23	0.075	97	\rightarrow	102	-0.32536
			100	\rightarrow	104	0.23857
			101	\rightarrow	104	0.51592
			101	\rightarrow	105	0.2084

Table S9. 10 TDD	OFT singlet excitations	of Re(4-Pam) fro	$n S_0 \theta_{dihedral} = -7.275^{\circ}$, B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,C	D]/PCM(ACN).			

Energy	Wavelength	Oscillator	Transitions			tions
(eV)	(nm)	Strength			mansi	10113
3.1502	393.58	0.0062	100	\rightarrow	102	-0.13701
			101	\rightarrow	102	0.68539
3.3231	373.10	0.0387	98	\rightarrow	102	0.28847
			99	\rightarrow	102	-0.17946
			100	\rightarrow	102	0.60698
3.4305	361.41	0.0552	98	\rightarrow	102	0.57986
			99	\rightarrow	102	-0.21063
			100	\rightarrow	102	-0.31968
3.8004	326.24	0.0033	98	\rightarrow	102	0.27181
			99	\rightarrow	102	0.64350
3.8547	321.65	0.0759	100	\rightarrow	103	-0.32796
			101	\rightarrow	103	0.61132
3.9130	316.85	0.0695	100	\rightarrow	103	0.61415
			101	\rightarrow	103	0.31328
4.0657	304.95	0.0172	98	\rightarrow	103	0.62060
			99	\rightarrow	103	-0.29991
4.1083	301.79	0.0641	97	\rightarrow	102	-0.44872
			100	\rightarrow	104	-0.15119
			101	\rightarrow	104	0.49335
4.1388	299.57	0.0214	96	\rightarrow	103	0.11966
			98	\rightarrow	103	0.30548
			99	\rightarrow	103	0.61696
4.2378	292.57	0.1156	97	\rightarrow	102	0.38425
			100	\rightarrow	104	0.23015

1	00	\rightarrow	105	0.13191
1	01	\rightarrow	104	0.46324
1	01	\rightarrow	105	0.21654

Table S10. 10 TDDFT singlet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 7.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator			Trancia	lions
(eV)	(nm)	Strength			Iransi	lions
3.1502	393.58	0.0062	100	\rightarrow	102	-0.13701
			101	\rightarrow	102	0.68539
3.3231	373.1	0.0387	98	\rightarrow	102	0.28847
			99	\rightarrow	102	-0.17946
			100	\rightarrow	102	0.60698
3.4305	361.41	0.0552	98	\rightarrow	102	0.57986
			99	\rightarrow	102	-0.21063
			100	\rightarrow	102	-0.31968
3.8004	326.24	0.0033	98	\rightarrow	102	0.27181
			99	\rightarrow	102	0.6435
3.8547	321.65	0.0759	100	\rightarrow	103	-0.32796
			101	\rightarrow	103	0.61132
3.913	316.85	0.0695	100	\rightarrow	103	0.61415
			101	\rightarrow	103	0.31328
4.0657	304.95	0.0172	98	\rightarrow	103	0.6206
			99	\rightarrow	103	-0.29991
4.1083	301.79	0.0641	97	\rightarrow	102	-0.44872
			100	\rightarrow	104	-0.15119
			101	\rightarrow	104	0.49335
4.1388	299.57	0.0214	96	\rightarrow	103	0.11966
			98	\rightarrow	103	0.30548
			99	\rightarrow	103	0.61696
4.2378	292.57	0.1156	97	\rightarrow	102	0.38425
			100	\rightarrow	104	0.23015
			100	\rightarrow	105	0.13191
			101	\rightarrow	104	0.46324
			101	\rightarrow	105	0.21654

Table S11. 10 TDDFT singlet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 22.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
3.11	398.67	0.0034	101	\rightarrow	102	0.69817
3.3277	372.58	0.0239	98	\rightarrow	102	0.37783
			99	\rightarrow	102	0.16287
			100	\rightarrow	102	0.56929
3.433	361.16	0.0747	98	\rightarrow	102	0.51301
--------	--------	--------	-----	---------------	-----	----------
			99	\rightarrow	102	0.24657
			100	\rightarrow	102	-0.40582
3.8019	326.11	0.0012	98	\rightarrow	102	-0.2942
			99	\rightarrow	102	0.63636
3.8198	324.59	0.1763	101	\rightarrow	103	0.68689
3.8731	320.12	0.0068	100	\rightarrow	103	0.69026
			100	\rightarrow	107	0.1083
4.0095	309.22	0.0029	98	\rightarrow	103	0.62746
			99	\rightarrow	103	0.29374
4.0905	303.1	0.053	97	\rightarrow	102	-0.42004
			101	\rightarrow	104	0.5376
4.1171	301.14	0.0206	96	\rightarrow	103	0.11627
			98	\rightarrow	103	-0.29222
			99	\rightarrow	103	0.62519
4.2552	291.37	0.1968	97	\rightarrow	102	0.47684
			100	\rightarrow	104	0.10024
			100	\rightarrow	105	0.22487
			101	\rightarrow	104	0.40749
			101	\rightarrow	105	0.14825

Table S12. 10 TDDFT singlet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 37.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength	Transitions			
3.1011	399.81	0.0029	101	\rightarrow	102	0.69907
3.3271	372.65	0.0218	98	\rightarrow	102	-0.25829
			99	\rightarrow	102	-0.34636
			100	\rightarrow	102	0.55422
3.4293	361.54	0.0771	98	\rightarrow	102	0.35227
			99	\rightarrow	102	0.42746
			100	\rightarrow	102	0.42667
3.8005	326.23	0.0108	98	\rightarrow	102	0.52581
			99	\rightarrow	102	-0.4236
			101	\rightarrow	103	0.18638
3.8091	325.49	0.181	98	\rightarrow	102	-0.15995
			99	\rightarrow	102	0.10423
			101	\rightarrow	103	0.66669
3.8622	321.02	0.0002	100	\rightarrow	103	0.69398
			100	\rightarrow	107	0.10922
3.9946	310.38	0.0008	98	\rightarrow	103	0.41949
			99	\rightarrow	103	0.55219
4.0848	303.52	0.0472	97	\rightarrow	102	-0.41282
			101	\rightarrow	104	0.54648

4.1112	301.58	0.0214	96	\rightarrow	103	0.11502
			98	\rightarrow	103	0.54917
			99	\rightarrow	103	-0.42016
4.2577	291.2	0.2225	97	\rightarrow	102	0.50203
			100	\rightarrow	105	-0.24542
			101	\rightarrow	104	0.40377

Table S13. 10 TDDFT singlet	excitations of Re(4-Pam) from $S_0 \theta_{dihedral} = 52$	2.725°, B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		

Energy	Wavelength	Oscillator			Transitions	
(eV)	(nm)	Strength				
3.1077	398.96	0.0034	101	\rightarrow	102	0.69799
3.3251	372.87	0.0240	98	\rightarrow	102	-0.23293
			99	\rightarrow	102	-0.34436
			100	\rightarrow	102	0.56618
3.4301	361.46	0.0739	98	\rightarrow	102	0.37607
			99	\rightarrow	102	0.42497
			100	\rightarrow	102	0.40784
3.8022	326.09	0.0103	98	\rightarrow	102	0.52398
			99	\rightarrow	102	-0.42745
			101	\rightarrow	103	0.17572
3.8221	324.39	0.1657	98	\rightarrow	102	-0.15162
			99	\rightarrow	102	0.10069
			101	\rightarrow	103	0.66287
3.8748	319.98	0.0086	100	\rightarrow	103	0.68791
			100	\rightarrow	107	0.10745
4.0103	309.16	0.0031	98	\rightarrow	103	0.41258
			99	\rightarrow	103	0.55586
4.0894	303.18	0.0486	97	\rightarrow	102	0.41966
			101	\rightarrow	104	0.53798
4.123	300.71	0.0213	96	\rightarrow	103	0.11738
			98	\rightarrow	103	0.55144
			99	\rightarrow	103	-0.41311
4.2544	291.43	0.1950	97	\rightarrow	102	0.47472
			100	\rightarrow	104	-0.10576
			100	\rightarrow	105	-0.2252
			101	\rightarrow	104	-0.40433
			101	\rightarrow	105	-0.15674

Table S14. 10 TDDFT singlet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 67.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator	Transitions			
(eV)	(nm)	Strength	Iransitions			ILIOIIS
3.1280	396.37	0.0047	101	\rightarrow	102	0.693490

3.3251	372.87	0.0294	98	\rightarrow	102	-0.274150
			99	\rightarrow	102	-0.267780
			100	\rightarrow	102	0.586660
3.4337	361.08	0.0665	98	\rightarrow	102	0.499820
			99	\rightarrow	102	0.316630
			100	\rightarrow	102	0.368770
3.8007	326.22	0.004	98	\rightarrow	102	-0.403240
			99	\rightarrow	102	0.558120
			101	\rightarrow	103	-0.109880
3.8421	322.7	0.1309	100	\rightarrow	103	-0.193560
			101	\rightarrow	103	0.654910
3.8966	318.19	0.0314	100	\rightarrow	103	0.667200
			100	\rightarrow	107	0.100270
			101	\rightarrow	103	0.181540
4.0405	306.85	0.0095	98	\rightarrow	103	0.527880
			99	\rightarrow	103	0.445800
4.1003	302.38	0.0565	97	\rightarrow	102	0.438880
			100	\rightarrow	104	-0.101430
			101	\rightarrow	104	0.514250
4.1342	299.9	0.0203	96	\rightarrow	103	-0.120260
			98	\rightarrow	103	-0.443330
			99	\rightarrow	103	0.524150
4.2476	291.89	0.1528	97	\rightarrow	102	-0.427170
			100	\rightarrow	104	0.174530
			100	\rightarrow	105	0.176440
			101	\rightarrow	104	0.431780
			101	\rightarrow	105	0.214630

Table S15. 10 TDDFT singlet excitations	of Re(4-Pam) from	$S_0 \theta_{dihedral} = 82.725^\circ$, B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).			

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
3.1525	393.29	0.0066	100	\rightarrow	102	-0.15098
			101	\rightarrow	102	0.68245
3.3275	372.61	0.0397	98	\rightarrow	102	-0.24593
			99	\rightarrow	102	0.24718
			100	\rightarrow	102	0.60042
			101	\rightarrow	102	0.10496
3.4316	361.3	0.054	98	\rightarrow	102	0.53671
			99	\rightarrow	102	-0.29942
			100	\rightarrow	102	0.32204
			101	\rightarrow	102	0.10109
3.8028	326.03	0.0024	98	\rightarrow	102	0.37746
			99	\rightarrow	102	0.57914

3.8554	321.59	0.0785	100	\rightarrow	103	-0.32877
			101	\rightarrow	103	0.60737
3.914	316.77	0.069	100	\rightarrow	103	0.61322
			101	\rightarrow	103	0.31248
4.0663	304.91	0.0172	98	\rightarrow	103	0.52295
			99	\rightarrow	103	-0.44655
4.1086	301.77	0.0641	97	\rightarrow	102	0.44946
			100	\rightarrow	104	-0.15894
			101	\rightarrow	104	0.48989
4.1434	299.23	0.0163	96	\rightarrow	103	0.11873
			98	\rightarrow	103	0.45229
			99	\rightarrow	103	0.51836
4.2364	292.67	0.1161	97	\rightarrow	102	-0.3852
			100	\rightarrow	104	0.2216
			100	\rightarrow	105	0.12298
			101	\rightarrow	104	0.46738
			101	\rightarrow	105	0.21606

Table S16. 10 TDDFT singlet excitation	s of Re(4-Pam) from	$S_0 \theta_{dihedral} = 97.725^\circ$,B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).			

Energy	Wavelength	Oscillator			Trancit	ions
(eV)	(nm)	Strength			TTansit	10115
3.183	389.53	0.0075	100	\rightarrow	102	-0.25396
			101	\rightarrow	102	0.65273
3.3274	372.61	0.0548	98	\rightarrow	102	-0.17620
			99	\rightarrow	102	-0.23515
			100	\rightarrow	102	0.60177
			101	\rightarrow	102	0.21012
3.4282	361.66	0.0355	98	\rightarrow	102	0.54469
			99	\rightarrow	102	0.34486
			100	\rightarrow	102	0.24672
			101	\rightarrow	102	0.12850
3.8106	325.37	0.002	98	\rightarrow	102	-0.40455
			99	\rightarrow	102	0.56043
3.8469	322.29	0.0303	100	\rightarrow	103	-0.45107
			101	\rightarrow	103	0.53014
3.9165	316.57	0.1035	99	\rightarrow	103	-0.12425
			100	\rightarrow	103	0.53041
			101	\rightarrow	103	0.43039
4.0724	304.45	0.0262	98	\rightarrow	103	0.46667
			99	\rightarrow	103	0.50110
			101	\rightarrow	103	0.11387
4.1209	300.87	0.0885	97	\rightarrow	102	0.47489
			100	\rightarrow	104	-0.23106

			101	\rightarrow	104	0.42778
4.1409	299.41	0.0072	96	\rightarrow	103	0.11664
			98	\rightarrow	103	0.51482
			99	\rightarrow	103	-0.45575
4.2313	293.02	0.0731	97	\rightarrow	102	-0.31859
			100	\rightarrow	104	0.21704
			101	\rightarrow	104	0.52999
			101	\rightarrow	105	0.20441

Table S17. 10 TDDFT singlet excitation	s of Re(4-Pam) from ९	$S_0 \theta_{dihedral} = 112.725^\circ$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).			

Energy (eV)Wavelength (nm)Oscillator StrengthTransitions3.2032387.070.0052100 \rightarrow 1020.421253.3161373.890.070399 \rightarrow 1020.21483100 \rightarrow 1020.53670101 \rightarrow 1020.536703.3161373.890.070399 \rightarrow 1020.53670101 \rightarrow 1020.53670101 \rightarrow 1020.522923.4175362.790.019698 \rightarrow 1020.522923.8154324.950.001898 \rightarrow 1020.142593.8154324.950.001898 \rightarrow 1020.50989101 \rightarrow 1020.50989101 \rightarrow 1030.512673.8240324.230.006599 \rightarrow 1030.53826101 \rightarrow 1030.51267104 \rightarrow 1030.538263.9073317.320.120099 \rightarrow 1030.426373.9073305.410.038298 \rightarrow 1030.54896101 \rightarrow 1030.519391040.519394.0596305.410.038298 \rightarrow 1030.54896101 \rightarrow 1030.519391040.519394.1307300.150.054696 \rightarrow 1030.426374.1307300.150.054696 \rightarrow 1030.4263799 \rightarrow 10			. ,				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
101 \rightarrow 1020.562063.3161373.890.070399 \rightarrow 1020.21483100 \rightarrow 1020.53670101 \rightarrow 1020.386803.4175362.790.019698 \rightarrow 1020.41958100 \rightarrow 1020.41958101 \rightarrow 1020.41958101 \rightarrow 1020.41958101 \rightarrow 1020.41958101 \rightarrow 1020.41958101 \rightarrow 1020.419593.8154324.950.001898 \rightarrow 1023.8154324.950.001898 \rightarrow 1020.50989101 \rightarrow 1030.126673.8240324.230.006599 \rightarrow 1030.53826101 \rightarrow 1030.426373.8240324.230.005499 \rightarrow 1030.426373.8240324.230.005599 \rightarrow 1030.426373.8240324.230.020599 \rightarrow 1030.426373.9073317.320.120099 \rightarrow 1030.426374.0596305.410.038298 \rightarrow 1030.426374.1307300.150.054696 \rightarrow 1030.4263799 \rightarrow 1030.4263797 \rightarrow 1030.426374.1307300.150.054696 \rightarrow 1030.4263799<	3.2032	387.07	0.0052	100	\rightarrow	102	0.42125
3.3161 373.89 0.0703 99 \rightarrow 102 0.21483 100 \rightarrow 102 0.53670 101 \rightarrow 102 0.38680 3.4175 362.79 0.0196 98 \rightarrow 102 0.52292 99 \rightarrow 102 0.41958 100 \rightarrow 102 0.41958 100 \rightarrow 102 0.41958 101 \rightarrow 102 0.41958 100 \rightarrow 102 0.41958 101 \rightarrow 102 0.41959 3.8154 324.95 0.0018 98 \rightarrow 102 0.44949 99 \rightarrow 102 0.5089 101 \rightarrow 103 0.5089 3.8154 324.95 0.0055 99 \rightarrow 103 0.53826 3.8240 324.23 0.0056 99 \rightarrow 103 0.42637 3.8240 324.23 0.1020 99 \rightarrow 103 0.42637 3.9073 317.32 0.1200 99 \rightarrow 103 <t< td=""><td></td><td></td><td></td><td>101</td><td>\rightarrow</td><td>102</td><td>0.56206</td></t<>				101	\rightarrow	102	0.56206
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.3161	373.89	0.0703	99	\rightarrow	102	0.21483
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				100	\rightarrow	102	0.53670
3.4175 362.79 0.0196 98 \rightarrow 102 0.52292 99 \rightarrow 102 0.41958 100 \rightarrow 102 0.14259 3.8154 324.95 0.0018 98 \rightarrow 102 0.44949 99 \rightarrow 102 0.50989 101 \rightarrow 103 0.12667 3.8240 324.23 0.0065 99 \rightarrow 102 0.11251 3.8240 324.23 0.0065 99 \rightarrow 103 0.53826 101 \rightarrow 103 0.53826 101 \rightarrow 103 0.42637 3.9073 317.32 0.1200 99 \rightarrow 103 0.42637 3.9073 317.32 0.1200 99 \rightarrow 103 0.42637 4.0596 305.41 0.0382 98 \rightarrow 103 0.41918 4.1307 300.15 0.0546 96 \rightarrow 103 0.13940 4.1307 300.15 0.0546 96 \rightarrow 103 0.13194 4.1307 300.15 0.0546 96 \rightarrow 103 0.13940 4.1338 299.93 0.0635 97 \rightarrow 102 0.47483 98 \rightarrow 103 0.26778 96 \rightarrow 103 0.26778 4.1338 299.93 0.0635 97 \rightarrow 103 0.26778 99 \rightarrow 103 0.15160 104 0.28142				101	\rightarrow	102	-0.38680
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.4175	362.79	0.0196	98	\rightarrow	102	0.52292
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				99	\rightarrow	102	0.41958
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				100	\rightarrow	102	-0.15533
3.8154 324.95 0.0018 98 \rightarrow 102 -0.44949 99 \rightarrow 102 0.50989 101 \rightarrow 103 -0.12667 3.8240 324.23 0.0065 99 \rightarrow 102 0.11251 100 \rightarrow 103 0.53826 101 \rightarrow 103 0.53826 101 \rightarrow 103 0.42637 3.9073 317.32 0.1200 99 \rightarrow 103 3.9073 317.32 0.1200 99 \rightarrow 103 -0.43198 100 \rightarrow 103 -0.43198 101 \rightarrow 103 0.40191 4.0596 305.41 0.0382 98 \rightarrow 103 0.40191 4.1307 300.15 0.0546 96 \rightarrow 103 0.13940 4.1307 300.15 0.0546 96 \rightarrow 103 0.13125 4.1307 300.15 0.0546 96 \rightarrow 103 0.13673 4.1338 299.93 0.0635 97 \rightarrow 104 0.13673 4.1338 299.93 0.0635 97 \rightarrow 103 0.26778 99 \rightarrow 103 0.15160 99 \rightarrow 103 0.15160 100 \rightarrow 103 0.15160 100 \rightarrow 103 0.26778				101	\rightarrow	102	0.14259
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.8154	324.95	0.0018	98	\rightarrow	102	-0.44949
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				99	\rightarrow	102	0.50989
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	-0.12667
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.8240	324.23	0.0065	99	\rightarrow	102	0.11251
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				100	\rightarrow	103	0.53826
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	0.42637
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.9073	317.32	0.1200	99	\rightarrow	103	-0.15328
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				100	\rightarrow	103	-0.43198
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	0.51939
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.0596	305.41	0.0382	98	\rightarrow	103	0.40191
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				99	\rightarrow	103	0.54896
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	0.13940
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1307	300.15	0.0546	96	\rightarrow	103	0.10125
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				97	\rightarrow	102	0.22917
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				98	\rightarrow	103	0.49683
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				99	\rightarrow	103	-0.37010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				100	\rightarrow	104	0.13673
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	104	0.13933
$98 \rightarrow 103$ -0.26778 $99 \rightarrow 103$ 0.15160 $100 \rightarrow 104$ 0.28142	4.1338	299.93	0.0635	97	\rightarrow	102	0.47483
99 \rightarrow 1030.15160100 \rightarrow 1040.28142				98	\rightarrow	103	-0.26778
$100 \rightarrow 104$ 0.28142				99	\rightarrow	103	0.15160
				100	\rightarrow	104	0.28142

			101	\rightarrow	104	0.25413
			101	\rightarrow	105	-0.12344
4.2520	291.59	0.0355	97	\rightarrow	102	-0.21399
			100	\rightarrow	104	-0.10699
			101	\rightarrow	104	0.61318
			101	\rightarrow	105	0.20303

Table S18. 10 TE	DDFT singlet excitations	of Re(4-Pam) from S	$\theta_{\text{dihedral}} = 127.725^{\circ},$	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N	,O]/PCM(ACN).			

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transit	tions
3.2106	386.17	0.0024	100	\rightarrow	102	0.70244
3.3056	375.08	0.0780	99	\rightarrow	102	0.19914
			101	\rightarrow	102	0.67011
3.4110	363.49	0.0134	98	\rightarrow	102	0.49892
			99	\rightarrow	102	0.46321
			101	\rightarrow	102	-0.17500
3.8061	325.75	0.0000	100	\rightarrow	103	0.70145
3.8184	324.70	0.0020	98	\rightarrow	102	0.49239
			99	\rightarrow	102	-0.49185
			101	\rightarrow	102	0.11116
3.8951	318.30	0.1241	99	\rightarrow	103	0.16895
			101	\rightarrow	103	0.67002
4.0454	306.48	0.0441	98	\rightarrow	103	0.38096
			99	\rightarrow	103	0.56056
			101	\rightarrow	103	-0.17823
4.1255	300.53	0.0045	96	\rightarrow	103	-0.10954
			98	\rightarrow	103	0.57499
			99	\rightarrow	103	-0.37555
4.1369	299.70	0.1193	97	\rightarrow	102	0.54135
			100	\rightarrow	104	0.39597
			101	\rightarrow	105	0.16254
4.2892	289.06	0.0132	99	\rightarrow	104	0.11179
			100	\rightarrow	105	-0.11888
			101	\rightarrow	104	0.67713

Table S19. 10 TDDFT singlet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 142.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength	Transitions			
3.2028	387.11	0.005	100	\rightarrow	102	-0.44672
			101	\rightarrow	102	0.54247
3.3127	374.27	0.0729	99	\rightarrow	102	0.20419
			100	\rightarrow	102	0.52045

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
.4142363.15 0.0173 $98 \rightarrow 102$ 0.53478 99 $\rightarrow 102$ 0.41144 100 $\rightarrow 102$ -0.13972 101 $\rightarrow 102$ -0.13905 .8149325 0.0035 $98 \rightarrow 102$ -0.2384 99 $\rightarrow 102$ 0.28334 100 $\rightarrow 103$ 0.4616 101 $\rightarrow 103$ -0.37426 .8183324.71 0.0036 $98 \rightarrow 102$ -0.37901 .8183324.71 0.0036 $98 \rightarrow 102$ -0.37901 .8985318.03 0.1188 $99 \rightarrow 103$ 0.15391 .000 $\rightarrow 103$ 0.15391 $100 \rightarrow 103$ 0.4109 .0531305.9 0.0419 $98 \rightarrow 103$ 0.42749 99 $\rightarrow 103$ 0.52951 $101 \rightarrow 103$ -0.14394 .1264 300.47 0.0127 $97 \rightarrow 102$ 0.25321 98 $\rightarrow 103$ 0.47502 $99 \rightarrow 103$ 0.38377 100 $\rightarrow 104$ -0.14835 $101 \rightarrow 104$ 0.12202 .1345299.88 0.103 $97 \rightarrow 102$ 0.46569 98 $\rightarrow 103$ 0.18318 $100 \rightarrow 104$ -0.28827 101 $\rightarrow 104$ 0.24287 101 $\rightarrow 104$ 0.61935 101 $\rightarrow 104$ 0.61935 101 $\rightarrow 104$ 0.61935 101 $\rightarrow 104$ 0.61935				101	\rightarrow	102	0.41513
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.4142	363.15	0.0173	98	\rightarrow	102	0.53478
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				99	\rightarrow	102	0.41144
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	\rightarrow	102	-0.13972
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	102	-0.13905
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.8149	325	0.0035	98	\rightarrow	102	-0.2384
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				99	\rightarrow	102	0.28334
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	\rightarrow	103	0.4616
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	-0.37426
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.8183	324.71	0.0036	98	\rightarrow	102	-0.37901
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				99	\rightarrow	102	0.45145
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	\rightarrow	103	-0.32211
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	0.1963
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.8985	318.03	0.1188	99	\rightarrow	103	0.15391
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	\rightarrow	103	0.41009
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	0.53632
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.0531	305.9	0.0419	98	\rightarrow	103	0.42749
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				99	\rightarrow	103	0.52951
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	-0.14394
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1264	300.47	0.0127	97	\rightarrow	102	0.25321
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				98	\rightarrow	103	0.47502
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				99	\rightarrow	103	-0.38377
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	\rightarrow	104	-0.14835
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				101	\rightarrow	104	0.12202
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1345	299.88	0.103	97	\rightarrow	102	0.46569
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				98	\rightarrow	103	-0.26918
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				99	\rightarrow	103	0.18318
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				100	\rightarrow	104	-0.28827
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				101	\rightarrow	104	0.24287
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				101	\rightarrow	105	-0.12239
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.2536	291.48	0.0332	97	\rightarrow	102	-0.20256
$101 \rightarrow 105$ 0.20578				101	\rightarrow	104	0.61935
				101	\rightarrow	105	0.20578

Table S20. 10	0 TDDFT single [•]	t excitations of F	Re(4-Pam) from S	$S_0 \theta_{dihedral} = 1$	57.725°, B3I	_YP/LAL2DZ[Re] [,]	+6-
311G(d.p)[H,	C,N,O]/PCM(AC	N).					

Energy (eV)	Wavelength (nm)	Oscillator Strength	Transitions					
	(1111)	Jucigui						
3.1825	389.58	0.0077	100	\rightarrow	102	-0.26495		
			101	\rightarrow	102	0.64872		
3.3239	373.01	0.0575	98	\rightarrow	102	0.17207		
			99	\rightarrow	102	-0.21844		
			100	\rightarrow	102	0.60401		
			101	\rightarrow	102	0.22478		

3.4238	362.13	0.0321	98	\rightarrow	102	0.56479
			99	\rightarrow	102	-0.32538
			100	\rightarrow	102	-0.22972
			101	\rightarrow	102	-0.12502
3.8153	324.96	0.0017	98	\rightarrow	102	0.37736
			99	\rightarrow	102	0.57684
3.8415	322.75	0.0276	100	\rightarrow	103	-0.46008
			101	\rightarrow	103	0.51916
3.9124	316.9	0.1043	99	\rightarrow	103	-0.12425
			100	\rightarrow	103	0.52157
			101	\rightarrow	103	0.44017
4.0692	304.69	0.0318	98	\rightarrow	103	0.4954
			99	\rightarrow	103	-0.47372
			101	\rightarrow	103	-0.11859
4.1209	300.86	0.0782	97	\rightarrow	102	0.48112
			99	\rightarrow	103	0.10101
			100	\rightarrow	104	-0.24411
			101	\rightarrow	104	0.40926
4.1372	299.68	0.0146	96	\rightarrow	103	-0.11271
			98	\rightarrow	103	0.48675
			99	\rightarrow	103	0.48142
4.2309	293.05	0.066	97	\rightarrow	102	-0.30441
			100	\rightarrow	104	0.21059
			101	\rightarrow	104	0.54134
			101	\rightarrow	105	0.20724

Table S21. 10 TDDFT triplet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = -82.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
2.9051	426.77	0	97	\rightarrow	102	-0.37826
			97	\rightarrow	104	-0.14785
			100	\rightarrow	102	-0.3073
			101	\rightarrow	102	0.44537
3.0806	402.47	0	99	\rightarrow	102	0.10606
			100	\rightarrow	102	0.51478
			101	\rightarrow	102	0.4273
3.2194	385.12	0	94	\rightarrow	103	0.15567
			95	\rightarrow	106	0.1007
			98	\rightarrow	103	0.16398
			99	\rightarrow	103	0.47655
			99	\rightarrow	114	0.12774
			100	\rightarrow	103	-0.181
			101	\rightarrow	103	-0.35164

3.2507	381.41	0	97	\rightarrow	102	0.52073
			97	\rightarrow	104	0.12687
			100	\rightarrow	102	-0.31478
			101	\rightarrow	102	0.29251
3.3634	368.63	0	98	\rightarrow	102	0.62514
			99	\rightarrow	102	-0.28846
3.5691	347.38	0	94	\rightarrow	103	-0.17609
			95	\rightarrow	106	-0.15475
			96	\rightarrow	103	-0.13043
			98	\rightarrow	103	0.21423
			99	\rightarrow	103	0.36863
			100	\rightarrow	103	0.11471
			101	\rightarrow	103	0.43212
3.7974	326.5	0	96	\rightarrow	103	-0.11657
			100	\rightarrow	103	0.58269
			101	\rightarrow	103	-0.26577
			101	\rightarrow	107	-0.11695
3.8071	325.66	0	98	\rightarrow	102	0.2666
			99	\rightarrow	102	0.61909
			101	\rightarrow	102	-0.12433
3.8865	319.01	0	92	\rightarrow	102	-0.11351
			93	\rightarrow	105	0.18739
			97	\rightarrow	102	-0.22863
			97	\rightarrow	104	0.49457
			100	\rightarrow	104	-0.13214
			100	\rightarrow	105	-0.18886
			101	\rightarrow	105	-0.16199
3.9674	312.5	0	91	\rightarrow	102	-0.12164
			92	\rightarrow	105	-0.15741
			93	\rightarrow	104	-0.18953
			97	\rightarrow	105	-0.26788
			97	\rightarrow	109	-0.12857
			98	\rightarrow	103	-0.13155
			100	\rightarrow	104	0.31095
			101	\rightarrow	104	0.24795
			101	\rightarrow	105	-0.24264

Table S22.	10 TDDFT	triplet excitations	of Re(4-Pam)	from S ₀ 6	$\Theta_{dihedral} = -67.725^{\circ},$	B3LYP/LAL2DZ[R	e]+6-
311G(d.p)[H	I,C,N,O]/P	CM(ACN).				_	_

3110(u.	p)[11,0,14,0]/FC						
Energy	Wavelength	Oscillator	or Transitions h				
(eV)	(nm)	Strength					
2.9066	426.56	0	92	\rightarrow	102	0.10189	
			97	\rightarrow	102	0.38383	
			97	\rightarrow	104	0.15011	

			100	\rightarrow	102	-0.37914
			101	\rightarrow	102	-0.38112
3.0736	403.38	0	99	\rightarrow	102	-0.10817
			100	\rightarrow	102	-0.44952
			101	\rightarrow	102	0.50008
3.2237	384.6	0	94	\rightarrow	103	-0.15687
			95	\rightarrow	106	-0.10041
			98	\rightarrow	103	-0.22401
			99	\rightarrow	103	0.44495
			99	\rightarrow	114	0.12503
			100	\rightarrow	103	-0.20511
			101	\rightarrow	103	0.34174
3.2558	380.81	0	97	\rightarrow	102	0.52535
			97	\rightarrow	104	0.1284
			100	\rightarrow	102	0.34525
			101	\rightarrow	102	0.26271
3.363	368.68	0	98	\rightarrow	102	0.57398
			99	\rightarrow	102	0.39292
3.5741	346.9	0	94	\rightarrow	103	-0.1797
			95	\rightarrow	106	-0.15657
			96	\rightarrow	103	-0.13526
			98	\rightarrow	103	0.29174
			99	\rightarrow	103	-0.32375
			100	\rightarrow	103	-0.17169
			101	\rightarrow	103	0.39849
3.7869	327.41	0	100	\rightarrow	103	0.58156
			101	\rightarrow	103	0.33792
3.8035	325.98	0	98	\rightarrow	102	-0.37276
			99	\rightarrow	102	0.56353
			101	\rightarrow	102	0.12843
3.8859	319.06	0	92	\rightarrow	102	0.11531
			93	\rightarrow	105	0.18128
			97	\rightarrow	102	-0.23025
			97	\rightarrow	104	0.49276
			100	\rightarrow	104	0.12787
			100	\rightarrow	105	0.17607
			101	\rightarrow	105	-0.19384
3.9589	313.18	0	91	\rightarrow	102	0.12317
			92	\rightarrow	105	-0.16045
			93	\rightarrow	104	0.18004
			97	\rightarrow	105	0.25641
			97	\rightarrow	109	0.12496
			100	\rightarrow	104	0.27071
			100	\rightarrow	105	0.13655

101	\rightarrow	104	-0.26
101	\rightarrow	105	0.22235

Table S23. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ $\theta_{dihedral}$ =	-52.275°, B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).	

Energy W	Vavelength	Oscillator			Tranci	tions
(eV)	(nm)	Strength			11 01151	tions
2.9062	426.62	0	92	\rightarrow	102	0.10892
			97	\rightarrow	102	-0.38518
			97	\rightarrow	104	-0.15273
			100	\rightarrow	102	0.51909
			101	\rightarrow	102	0.13593
3.0678	404.14	0	99	\rightarrow	102	0.10267
			100	\rightarrow	102	-0.16398
			101	\rightarrow	102	0.65452
3.211	386.12	0	94	\rightarrow	103	-0.1568
			98	\rightarrow	103	-0.26423
			99	\rightarrow	103	0.42483
			99	\rightarrow	114	0.1155
			101	\rightarrow	103	-0.38803
3.2572	380.65	0	97	\rightarrow	102	0.52794
			97	\rightarrow	104	0.13151
			100	\rightarrow	102	0.4228
3.3598	369.03	0	98	\rightarrow	102	0.53612
			99	\rightarrow	102	0.44626
3.5663	347.65	0	94	\rightarrow	103	0.18178
			95	\rightarrow	106	-0.15702
			96	\rightarrow	103	-0.13283
			98	\rightarrow	103	-0.32319
			99	\rightarrow	103	0.29164
			101	\rightarrow	103	0.42844
3.776	328.35	0	100	\rightarrow	103	0.67711
			101	\rightarrow	103	0.12646
3.8031	326.01	0	98	\rightarrow	102	-0.42698
			99	\rightarrow	102	0.52541
			101	\rightarrow	102	-0.15749
3.888	318.89	0	92	\rightarrow	102	-0.12351
			92	\rightarrow	104	0.11042
			93	\rightarrow	105	0.19146
			97	\rightarrow	102	-0.23116
			97	\rightarrow	103	-0.10013
			97	\rightarrow	104	0.49283
			101	\rightarrow	105	-0.26951
3,9535	313.61	0	91	\rightarrow	102	-0.11411

92	\rightarrow	105	-0.14869
93	\rightarrow	104	-0.16763
96	\rightarrow	103	-0.18067
97	\rightarrow	105	-0.23264
97	\rightarrow	109	0.11471
98	\rightarrow	103	-0.14494
99	\rightarrow	103	-0.12284
100	\rightarrow	105	-0.22952
100	\rightarrow	106	-0.12874
100	\rightarrow	107	-0.13491
101	\rightarrow	103	-0.12423
101	\rightarrow	104	0.34053

Table S24. 10 TDDFT triplet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = -37.275°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

E.e.e.	14/2012	Ossillation				
Energy	wavelength	Oscillator			Transi	tions
(ev)	(nm)	Strength	0.2		4.02	0.40206
2.9021	427.22	0	92	\rightarrow	102	-0.10206
			97	\rightarrow	102	-0.37933
			97	\rightarrow	104	-0.14817
			100	\rightarrow	102	-0.36397
			101	\rightarrow	102	0.40055
3.0692	403.96	0	100	\rightarrow	102	0.47494
			101	\rightarrow	102	0.47821
3.2325	383.55	0	94	\rightarrow	103	-0.15846
			95	\rightarrow	106	0.10259
			98	\rightarrow	103	-0.26434
			99	\rightarrow	103	0.42777
			99	\rightarrow	114	0.1168
			100	\rightarrow	103	-0.20233
			101	\rightarrow	103	-0.3353
3.2527	381.18	0	97	\rightarrow	102	0.52763
			97	\rightarrow	104	0.12906
			100	\rightarrow	102	-0.32719
			101	\rightarrow	102	0.27675
3.3567	369.37	0	98	\rightarrow	102	0.53339
			99	\rightarrow	102	0.44453
3.5786	346.46	0	94	\rightarrow	103	0.17875
			95	\rightarrow	106	-0.15745
			96	\rightarrow	103	-0.13265
			98	\rightarrow	103	-0.31877
			99	\rightarrow	103	0.29089
			100	\rightarrow	103	0.16461
			101	\rightarrow	103	0.40767

3.797	326.53	0	98	\rightarrow	102	0.19736
			99	\rightarrow	102	-0.23527
			100	\rightarrow	103	0.53514
			101	\rightarrow	103	-0.28453
3.8014	326.15	0	98	\rightarrow	102	-0.37933
			99	\rightarrow	102	0.47496
			100	\rightarrow	103	0.2775
			101	\rightarrow	102	-0.10112
			101	\rightarrow	103	-0.14749
3.8852	319.12	0	92	\rightarrow	102	0.11632
			93	\rightarrow	105	0.1772
			97	\rightarrow	102	-0.23053
			97	\rightarrow	104	0.48992
			100	\rightarrow	104	-0.13319
			100	\rightarrow	105	-0.1859
			101	\rightarrow	105	-0.18721
3.9518	313.74	0	91	\rightarrow	102	-0.10438
			92	\rightarrow	105	0.1372
			93	\rightarrow	104	-0.15325
			95	\rightarrow	103	0.11379
			96	\rightarrow	103	-0.22102
			97	\rightarrow	105	-0.21431
			97	\rightarrow	109	-0.1071
			98	\rightarrow	103	-0.17609
			99	\rightarrow	103	-0.15704
			100	\rightarrow	103	-0.10433
			100	\rightarrow	104	0.24861
			100	\rightarrow	105	0.11127
			101	\rightarrow	103	-0.10063
			101	\rightarrow	104	0.21537
			101	\rightarrow	105	-0.19465
			101	\rightarrow	107	-0.10405

Table S25	5. 10 TDDFT	triplet excitations	of Re(4-Pam)	from S₀	$\theta_{dihedral} = -22$	2.275°, B3LY	P/LAL2DZ[Re]+6-
311G(d.p)	[H,C,N,O]/P	CM(ACN).					

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transit	tions
2.896	428.12	0	97	\rightarrow	102	-0.36861
			97	\rightarrow	104	-0.14391
			100	\rightarrow	102	-0.27542
			101	\rightarrow	102	0.47478
3.0754	403.15	0	100	\rightarrow	102	0.54126
			101	\rightarrow	102	0.39313
3.2261	384.31	0	94	\rightarrow	103	-0.15598

			95	\rightarrow	106	-0.10517
			98	\rightarrow	103	0.20762
			99	\rightarrow	103	0.46656
			99	\rightarrow	114	0.13457
			100	\rightarrow	103	0.16696
			101	\rightarrow	103	0.34018
3.245	382.08	0	97	\rightarrow	102	0.52256
			97	\rightarrow	104	0.12795
			100	\rightarrow	102	-0.29728
			101	\rightarrow	102	0.2976
3.3538	369.69	0	98	\rightarrow	102	0.59211
			99	\rightarrow	102	-0.35043
3.5719	347.11	0	94	\rightarrow	103	-0.1763
			95	\rightarrow	106	-0.16171
			96	\rightarrow	103	-0.12546
			98	\rightarrow	103	-0.24703
			99	\rightarrow	103	-0.33213
			100	\rightarrow	103	0.10543
			101	\rightarrow	103	0.44675
3.7971	326.52	0	98	\rightarrow	102	0.33419
			99	\rightarrow	102	0.59272
			101	\rightarrow	102	0.11334
3.8151	324.98	0	100	\rightarrow	103	0.59766
			100	\rightarrow	107	0.11479
			101	\rightarrow	103	-0.24109
			101	\rightarrow	107	-0.13015
3.8878	318.9	0	92	\rightarrow	102	-0.1138
			93	\rightarrow	105	0.18221
			97	\rightarrow	102	-0.22579
			97	\rightarrow	104	0.48724
			100	\rightarrow	104	-0.11454
			100	\rightarrow	105	-0.18851
			101	\rightarrow	105	-0.17073
3.9489	313.97	0	95	\rightarrow	103	-0.2358
			96	\rightarrow	103	0.32141
			97	\rightarrow	105	0.10411
			98	\rightarrow	103	0.33774
			99	\rightarrow	103	-0.21726
			100	\rightarrow	103	0.13346
			100	\rightarrow	104	-0.13279
			101	\rightarrow	103	0.12972
			101	\rightarrow	104	-0.10239
			101	\rightarrow	105	0.1106
			101	\rightarrow	107	0.12149

Energy	Wavelength	Oscillator			Transi	tions
(eV)	(nm)	Strength				-
2.8876	429.37	0	97	\rightarrow	102	0.35837
			97	\rightarrow	104	0.13998
			100	\rightarrow	102	-0.20135
			101	\rightarrow	102	0.51794
3.0868	401.65	0	97	\rightarrow	102	-0.11426
			100	\rightarrow	102	0.58625
			101	\rightarrow	102	0.31512
3.2268	384.23	0	97	\rightarrow	102	0.43357
			97	\rightarrow	104	0.10788
			98	\rightarrow	102	-0.10867
			99	\rightarrow	103	-0.26309
			100	\rightarrow	102	0.23095
			101	\rightarrow	102	-0.25668
			101	\rightarrow	103	-0.20702
3.2358	383.17	0	94	\rightarrow	103	0.12839
			97	\rightarrow	102	0.29392
			98	\rightarrow	103	0.12916
			99	\rightarrow	103	0.39523
			99	\rightarrow	114	0.11243
			100	\rightarrow	102	0.12764
			100	\rightarrow	103	0.10189
			101	\rightarrow	102	-0.19049
			101	\rightarrow	103	0.3088
3.344	370.77	0	98	\rightarrow	102	0.62712
			99	\rightarrow	102	-0.26318
			100	\rightarrow	102	0.11595
3.5575	348.51	0	94	\rightarrow	103	0.15701
			95	\rightarrow	106	-0.15446
			96	\rightarrow	103	-0.11045
			98	\rightarrow	103	-0.18301
			99	\rightarrow	103	-0.37687
			101	\rightarrow	103	0.45861
			101	\rightarrow	107	0.10243
3.7974	326.5	0	98	\rightarrow	102	0.24717
			99	\rightarrow	102	0.63589
			101	\rightarrow	102	0.11502
3.8167	324.84	0	97	\rightarrow	104	0.10159
			100	\rightarrow	103	0.59863
			100	\rightarrow	107	0.16086
			101	\rightarrow	103	-0.15154
			101	\rightarrow	107	-0.14345

Table S26. 10 TDDFT triplet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = -7.275°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

3.8913	318.62	0	92	\rightarrow	102	-0.1146
			93	\rightarrow	105	-0.19579
			97	\rightarrow	102	-0.221
			97	\rightarrow	104	0.47918
			100	\rightarrow	103	-0.12332
			100	\rightarrow	105	0.19943
			101	\rightarrow	105	0.1395
3.9368	314.94	0	95	\rightarrow	103	-0.23471
			96	\rightarrow	103	0.31404
			98	\rightarrow	103	0.41867
			98	\rightarrow	107	0.16521
			99	\rightarrow	103	-0.1752
			99	\rightarrow	107	-0.10347
			101	\rightarrow	103	0.13102
			101	\rightarrow	107	0.16973

Table S2	7.10	TDDFT	triplet	excitations	of	Re(4-Pam)	from	S ₀	$\boldsymbol{\theta}_{dihedral}$	= 7	′.725°,	B3LYP/L	AL2DZ[F	≀e]+6 -
311G(d.p)[H,C	,N,O]/PC)M(ACN	l).										

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
2.8785	430.72	0	97	\rightarrow	102	0.3489
			97	\rightarrow	104	0.13634
			100	\rightarrow	102	-0.13025
			101	\rightarrow	102	0.54655
3.103	399.57	0	97	\rightarrow	102	-0.12348
			98	\rightarrow	102	-0.10702
			100	\rightarrow	102	0.61971
			101	\rightarrow	102	0.2356
3.2073	386.57	0	94	\rightarrow	103	-0.10921
			97	\rightarrow	102	0.37991
			98	\rightarrow	102	-0.10258
			99	\rightarrow	103	-0.31917
			100	\rightarrow	102	0.18591
			101	\rightarrow	102	-0.23902
			101	\rightarrow	103	-0.27412
3.2206	384.97	0	94	\rightarrow	103	0.11261
			97	\rightarrow	102	0.36585
			99	\rightarrow	103	0.34717
			100	\rightarrow	102	0.12507
			101	\rightarrow	102	-0.24386
			101	\rightarrow	103	0.29017
3.3358	371.68	0	98	\rightarrow	102	0.64721
			99	\rightarrow	102	-0.1989
			100	\rightarrow	102	0.13615

3.5224	351.98	0	94	\rightarrow	103	0.13866
			95	\rightarrow	106	0.13341
			98	\rightarrow	103	-0.13563
			99	\rightarrow	103	-0.40967
			101	\rightarrow	103	0.46046
			101	\rightarrow	107	0.11947
3.7983	326.42	0	98	\rightarrow	102	0.18264
			99	\rightarrow	102	0.65105
			101	\rightarrow	102	0.11433
3.8107	325.36	0	100	\rightarrow	103	0.61816
			100	\rightarrow	107	0.17565
			101	\rightarrow	107	-0.1048
3.8897	318.75	0	92	\rightarrow	102	-0.11246
			93	\rightarrow	105	-0.20178
			97	\rightarrow	102	-0.22017
			97	\rightarrow	104	0.47639
			98	\rightarrow	105	-0.10187
			100	\rightarrow	105	0.22023
			101	\rightarrow	104	-0.13625
3.9168	316.55	0	95	\rightarrow	103	-0.18368
			96	\rightarrow	103	0.22759
			98	\rightarrow	103	0.50051
			98	\rightarrow	107	0.2222
			99	\rightarrow	103	-0.14278
			101	\rightarrow	107	0.12239

Table S28. 10 TDDFT triplet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 22.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
2.8703	431.96	0	97	\rightarrow	102	0.34108
			97	\rightarrow	104	0.13414
			101	\rightarrow	102	0.56381
3.1171	397.75	0	100	\rightarrow	102	0.65405
			101	\rightarrow	102	0.13287
3.1967	387.86	0	97	\rightarrow	102	0.44598
			97	\rightarrow	104	0.11883
			98	\rightarrow	103	0.10727
			99	\rightarrow	103	-0.23419
			100	\rightarrow	102	0.13149
			101	\rightarrow	102	-0.30172
			101	\rightarrow	103	-0.24788
3.206	386.73	0	94	\rightarrow	103	0.13264
			97	\rightarrow	102	0.31091

			98	\rightarrow	103	-0.1633
			99	\rightarrow	103	0.34571
			101	\rightarrow	102	-0.21269
			101	\rightarrow	103	0.36258
3.3276	372.59	0	98	\rightarrow	102	0.61811
			99	\rightarrow	102	0.2839
			100	\rightarrow	102	0.14117
3.4944	354.8	0	94	\rightarrow	103	0.12033
			95	\rightarrow	106	-0.11825
			98	\rightarrow	103	0.18716
			99	\rightarrow	103	-0.42526
			101	\rightarrow	103	0.44003
			101	\rightarrow	107	0.12569
3.798	326.45	0	98	\rightarrow	102	-0.29228
			99	\rightarrow	102	0.61616
			101	\rightarrow	102	0.11296
3.8077	325.61	0	98	\rightarrow	103	0.13325
			100	\rightarrow	103	0.63627
			100	\rightarrow	107	0.18831
3.8878	318.91	0	92	\rightarrow	102	-0.10587
			93	\rightarrow	105	-0.20205
			97	\rightarrow	102	-0.21568
			97	\rightarrow	104	0.46836
			99	\rightarrow	102	0.11441
			100	\rightarrow	105	0.2341
			101	\rightarrow	104	-0.18473
3.8994	317.95	0	98	\rightarrow	103	0.52654
			98	\rightarrow	107	0.2587
			99	\rightarrow	103	0.24449
			99	\rightarrow	107	0.11133
			100	\rightarrow	103	-0.15711

Table S29.	10 TDDFT	triplet excitations	of Re(4-Pam)	from S₀	$\theta_{dihedral} =$	37.725°,	B3LYP/LAL2DZ	[Re]+6-
311G(d.p)[H	I,C,N,O]/P0	CM(ACN).						

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transit	tions
2.8655	432.68	0	97	\rightarrow	102	0.33734
			97	\rightarrow	104	0.13387
			101	\rightarrow	102	0.56987
3.1217	397.17	0	100	\rightarrow	102	0.67266
3.1868	389.06	0	94	\rightarrow	103	-0.16146
			95	\rightarrow	106	0.1145
			98	\rightarrow	103	-0.3523
			99	\rightarrow	103	0.29058

			101	\rightarrow	103	0.44732
3.1929	388.31	0	97	\rightarrow	102	0.55691
			97	\rightarrow	104	0.15001
			101	\rightarrow	102	-0.38377
3.3226	373.15	0	98	\rightarrow	102	0.42238
			99	\rightarrow	102	0.53686
			100	\rightarrow	102	-0.13718
3.4794	356.34	0	94	\rightarrow	103	-0.11708
			95	\rightarrow	106	0.11458
			98	\rightarrow	103	0.3622
			99	\rightarrow	103	-0.30052
			101	\rightarrow	103	0.43751
			101	\rightarrow	107	0.12596
3.7965	326.58	0	98	\rightarrow	102	0.53592
			99	\rightarrow	102	-0.4265
			101	\rightarrow	102	-0.11176
3.8059	325.77	0	99	\rightarrow	103	-0.14634
			100	\rightarrow	103	0.63968
			100	\rightarrow	107	0.19032
3.8826	319.33	0	93	\rightarrow	105	0.1306
			97	\rightarrow	102	-0.13752
			97	\rightarrow	104	0.30654
			98	\rightarrow	103	0.28175
			98	\rightarrow	107	0.13491
			99	\rightarrow	103	0.33093
			99	\rightarrow	107	0.1707
			100	\rightarrow	103	0.15944
			100	\rightarrow	105	-0.16378
			101	\rightarrow	104	-0.1616
3.8924	318.53	0	93	\rightarrow	105	0.1577
			97	\rightarrow	102	-0.1738
			97	\rightarrow	104	0.36846
			98	\rightarrow	103	-0.25727
			98	\rightarrow	107	-0.11464
			99	\rightarrow	103	-0.30256
			99	\rightarrow	107	-0.14446
			100	\rightarrow	103	-0.13819
			100	\rightarrow	105	-0.18037
			101	\rightarrow	104	-0.10899

Table S30. 10 TDDFT triplet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 52.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator	Transitions
(eV)	(nm)	Strength	Transitions

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.8681	432.29	0	97	\rightarrow	102	-0.33885
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				97	\rightarrow	104	-0.13476
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	102	0.56486
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.1148	398.04	0	98	\rightarrow	102	0.11474
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				100	\rightarrow	102	0.65343
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	102	0.13397
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.1949	388.07	0	97	\rightarrow	102	0.45571
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				97	\rightarrow	104	0.12209
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				98	\rightarrow	103	0.18329
100 → 102 -0.13095 101 → 102 0.30504 101 → 103 -0.24167 3.2086 386.41 0 94 → 103 -0.13279 97 → 102 0.30228 98 → 103 -0.28829 99 → 103 0.25391 101 → 102 0.20377 101 → 102 0.20377 101 → 102 0.20377 101 → 102 0.20377 101 → 102 0.42147 99 → 102 0.42147 99 → 102 0.53373 100 → 102 0.11845 95 → 106 0.11831 98 → 103 0.35566 99 → 103 0.30055 101 → 103 0.43723 101 → 102 0.112571 3.8007				99	\rightarrow	103	-0.15808
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	\rightarrow	102	-0.13095
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				101	\rightarrow	102	0.30504
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	-0.24167
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2086	386.41	0	94	\rightarrow	103	-0.13279
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				97	\rightarrow	102	0.30228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				98	\rightarrow	103	-0.28829
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				99	\rightarrow	103	0.25391
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				101	\rightarrow	102	0.20377
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	0.36966
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.3256	372.82	0	98	\rightarrow	102	0.42147
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				99	\rightarrow	102	0.53373
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				100	\rightarrow	102	-0.13691
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.4988	354.37	0	94	\rightarrow	103	-0.11845
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				95	\rightarrow	106	0.11831
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				98	\rightarrow	103	0.35566
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				99	\rightarrow	103	-0.30005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				101	\rightarrow	103	0.43723
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	107	0.12571
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.8007	326.22	0	98	\rightarrow	102	0.52065
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				99	\rightarrow	102	-0.42984
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				101	\rightarrow	102	-0.11261
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.8112	325.32	0	99	\rightarrow	103	-0.1497
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	\rightarrow	103	0.63046
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	\rightarrow	107	0.18807
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.8882	318.87	0	92	\rightarrow	102	0.10402
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				93	\rightarrow	105	0.19824
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				97	\rightarrow	102	-0.21684
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				97	\rightarrow	104	0.47025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				100	\rightarrow	105	-0.23505
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				101	\rightarrow	104	0.18505
$98 \rightarrow 103$ 0.38161 $98 \rightarrow 107$ 0.16433 $99 \rightarrow 103$ 0.42232	3.8978	318.09	0	96	\rightarrow	103	0.14082
$98 \rightarrow 107$ 0.16433 $99 \rightarrow 103$ 0.42232				98	\rightarrow	103	0.38161
$99 \rightarrow 103 \qquad 0.42232$				98	\rightarrow	107	0.16433
				99	\rightarrow	103	0.42232

99	\rightarrow	107	0.21488
100	\rightarrow	103	0.14734

Table S31. 10 TDDFT triplet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 67.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator			Trans	itions
(eV)	(nm)	Strength			TTUTIS	
2.877	430.95	0	97	\rightarrow	102	-0.34728
			97	\rightarrow	104	-0.13739
			100	\rightarrow	102	-0.13912
			101	\rightarrow	102	0.54576
3.1018	399.72	0	97	\rightarrow	102	0.12559
			98	\rightarrow	102	0.12225
			100	\rightarrow	102	0.61471
			101	\rightarrow	102	0.24221
3.21	386.24	0	97	\rightarrow	102	0.43982
			97	\rightarrow	104	0.11341
			98	\rightarrow	102	-0.10846
			98	\rightarrow	103	0.1335
			99	\rightarrow	103	-0.21402
			100	\rightarrow	102	-0.20713
			101	\rightarrow	102	0.27452
			101	\rightarrow	103	-0.22622
3.2247	384.48	0	94	\rightarrow	103	-0.12791
			97	\rightarrow	102	0.29591
			98	\rightarrow	103	-0.20921
			99	\rightarrow	103	0.3375
			101	\rightarrow	102	0.1951
			101	\rightarrow	103	0.34299
3.3351	371.75	0	98	\rightarrow	102	0.54513
			99	\rightarrow	102	0.40252
			100	\rightarrow	102	-0.13094
3.5309	351.14	0	94	\rightarrow	103	-0.13481
			95	\rightarrow	106	0.13342
			98	\rightarrow	103	0.25596
			99	\rightarrow	103	-0.35951
			101	\rightarrow	103	0.44972
			101	\rightarrow	107	0.11793
3.8005	326.23	0	98	\rightarrow	102	-0.38327
			99	\rightarrow	102	0.55312
			101	\rightarrow	102	0.1169
3.8178	324.76	0	99	\rightarrow	103	-0.12182
			100	\rightarrow	103	0.61164
			100	\rightarrow	107	0.17656

3.8901	318.71	0	92	\rightarrow	102	0.10758
			93	\rightarrow	105	0.19828
			97	\rightarrow	102	-0.22139
			97	\rightarrow	104	0.47793
			98	\rightarrow	105	-0.1007
			100	\rightarrow	105	-0.21733
			101	\rightarrow	104	0.13309
			101	\rightarrow	105	-0.10434
3.9183	316.42	0	95	\rightarrow	103	0.18663
			96	\rightarrow	103	0.24572
			98	\rightarrow	103	0.42709
			98	\rightarrow	107	0.17446
			99	\rightarrow	103	0.28061
			99	\rightarrow	107	0.15299

Table S32.	10 TDDFT	triplet excitations	of Re(4-Pam)	from S ₀	$\theta_{dihedral} =$	82.725°,	B3LYP/LAL2	2DZ[Re]+6-
311G(d.p)[H,C,N,O]/P	CM(ACN).						

Energy	Wavelength	Oscillator	Transitions				
(eV)	(nm)	Strength			manor		
2.8891	429.14	0	97	\rightarrow	102	-0.35912	
			97	\rightarrow	104	-0.141	
			100	\rightarrow	102	-0.21117	
			101	\rightarrow	102	0.51364	
3.0884	401.45	0	97	\rightarrow	102	0.12313	
			98	\rightarrow	102	0.10988	
			100	\rightarrow	102	0.57368	
			101	\rightarrow	102	0.32862	
3.2251	384.43	0	94	\rightarrow	103	0.12865	
			97	\rightarrow	102	0.28891	
			98	\rightarrow	103	0.1833	
			99	\rightarrow	103	0.35574	
			100	\rightarrow	102	-0.17559	
			100	\rightarrow	103	-0.12547	
			101	\rightarrow	102	0.15773	
			101	\rightarrow	103	-0.3207	
3.234	383.38	0	97	\rightarrow	102	0.4356	
			97	\rightarrow	104	0.10856	
			98	\rightarrow	103	-0.12284	
			99	\rightarrow	103	-0.24267	
			100	\rightarrow	102	-0.21816	
			101	\rightarrow	102	0.26788	
			101	\rightarrow	103	0.21294	
3.3473	370.4	0	98	\rightarrow	102	0.57049	

			99	\rightarrow	102	-0.37309
			100	\rightarrow	102	-0.10745
3.5631	347.97	0	94	\rightarrow	103	-0.15474
			95	\rightarrow	106	0.15499
			96	\rightarrow	103	0.11608
			98	\rightarrow	103	0.24211
			99	\rightarrow	103	0.35575
			101	\rightarrow	103	0.44903
3.8007	326.22	0	98	\rightarrow	102	0.35463
			99	\rightarrow	102	0.57815
			101	\rightarrow	102	-0.12081
3.8211	324.48	0	97	\rightarrow	104	0.10943
			100	\rightarrow	103	0.59081
			100	\rightarrow	107	0.1637
			101	\rightarrow	103	-0.14474
			101	\rightarrow	107	-0.14561
3.8912	318.62	0	92	\rightarrow	102	0.1073
			93	\rightarrow	105	0.192
			97	\rightarrow	102	-0.22211
			97	\rightarrow	104	0.4815
			100	\rightarrow	103	-0.12984
			100	\rightarrow	105	-0.19174
			101	\rightarrow	105	-0.14855
3.9406	314.63	0	95	\rightarrow	103	-0.23835
			96	\rightarrow	103	0.29762
			98	\rightarrow	103	0.38422
			98	\rightarrow	107	0.15111
			99	\rightarrow	103	-0.24583
			99	\rightarrow	107	-0.13693
			101	\rightarrow	103	-0.12308
			101	\rightarrow	107	-0.17477

Table S33.	. 10 TDDF1	triplet excitations	of Re(4-Pam)	from S₀	$\boldsymbol{\theta}_{dihedral} =$	97.725°,	B3LYP/LAL2DZ	[Re]+6-
311G(d.p)[[H,C,N,O]/P	CM(ACN).						

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
2.902	427.24	0	97	\rightarrow	102	-0.37343
			97	\rightarrow	104	-0.1456
			100	\rightarrow	102	-0.28929
			101	\rightarrow	102	0.46177
3.0812	402.39	0	98	\rightarrow	102	0.10185
			100	\rightarrow	102	0.52348
			101	\rightarrow	102	0.41071
3.2264	384.29	0	94	\rightarrow	103	-0.15338

			95	\rightarrow	106	-0.1054
			98	\rightarrow	103	-0.23135
			99	\rightarrow	103	0.42994
			99	\rightarrow	114	0.12081
			100	\rightarrow	103	0.18327
			101	\rightarrow	103	0.36577
3.2485	381.66	0	97	\rightarrow	102	0.52019
			97	\rightarrow	104	0.1267
			100	\rightarrow	102	-0.31317
			101	\rightarrow	102	0.29056
3.3608	368.91	0	98	\rightarrow	102	0.56107
			99	\rightarrow	102	0.39983
3.5821	346.12	0	94	\rightarrow	103	-0.17173
			95	\rightarrow	106	-0.16147
			96	\rightarrow	103	0.13256
			98	\rightarrow	103	0.27382
			99	\rightarrow	103	-0.33776
			101	\rightarrow	103	0.42965
3.8052	325.83	0	98	\rightarrow	102	-0.38217
			99	\rightarrow	102	0.56139
			100	\rightarrow	102	0.10501
			101	\rightarrow	102	0.12494
3.8184	324.7	0	100	\rightarrow	103	0.59794
			100	\rightarrow	107	0.12348
			101	\rightarrow	103	-0.23143
			101	\rightarrow	107	-0.13381
3.8874	318.94	0	92	\rightarrow	102	0.10904
			93	\rightarrow	105	0.18281
			97	\rightarrow	102	-0.2273
			97	\rightarrow	104	0.49029
			100	\rightarrow	104	-0.11593
			100	\rightarrow	105	-0.18048
			101	\rightarrow	105	-0.1715
3.9587	313.19	0	92	\rightarrow	105	-0.10514
			93	\rightarrow	104	0.1343
			95	\rightarrow	103	0.20935
			96	\rightarrow	103	0.25453
			97	\rightarrow	105	0.17636
			98	\rightarrow	103	0.24592
			99	\rightarrow	103	0.19731
			100	\rightarrow	103	-0.13292
			100	\rightarrow	104	-0.20979
			101	\rightarrow	104	-0.16879
			101	\rightarrow	105	0.17093
•						1

Ener	gy	Wavelength	Oscillator			Trans	itions
(eV))	(nm)	Strength			Trans	
2.90	76	426.42	0	92	\rightarrow	102	-0.10143
				97	\rightarrow	102	-0.38387
				97	\rightarrow	104	-0.14966
				100	\rightarrow	102	0.38279
				101	\rightarrow	102	0.37689
3.07	44	403.28	0	98	\rightarrow	102	0.10149
				99	\rightarrow	102	-0.1
				100	\rightarrow	102	-0.4427
				101	\rightarrow	102	0.50424
3.22	43	384.53	0	94	\rightarrow	103	-0.15539
				95	\rightarrow	106	0.10139
				98	\rightarrow	103	-0.26221
				99	\rightarrow	103	0.4058
				99	\rightarrow	114	0.11937
				100	\rightarrow	103	-0.19889
				101	\rightarrow	103	0.36647
3.25	63	380.76	0	97	\rightarrow	102	0.52439
				97	\rightarrow	104	0.1276
				100	\rightarrow	102	0.34962
				101	\rightarrow	102	0.25746
3.36	43	368.52	0	98	\rightarrow	102	0.5259
				99	\rightarrow	102	0.45448
3.58	32	346.02	0	94	\rightarrow	103	-0.17672
				95	\rightarrow	106	0.15806
				96	\rightarrow	103	0.13795
				98	\rightarrow	103	0.32383
				99	\rightarrow	103	-0.31105
				100	\rightarrow	103	-0.13734
				101	\rightarrow	103	0.3953
3.79	89	326.37	0	100	\rightarrow	103	0.60904
				101	\rightarrow	103	0.29673
3.80	84	325.55	0	98	\rightarrow	102	-0.43258
				99	\rightarrow	102	0.5175
				101	\rightarrow	102	0.13284
3.88	54	319.1	0	92	\rightarrow	102	0.11561
				93	\rightarrow	105	0.18101
				97	\rightarrow	102	-0.2317
				97	\rightarrow	104	0.4927

Table S34. 10 TDDFT triplet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 112.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

			100	\rightarrow	104	0.13091
			100	\rightarrow	105	0.17154
			101	\rightarrow	105	-0.19457
3.9566	313.36	0	91	\rightarrow	102	0.11633
			92	\rightarrow	105	-0.1538
			93	\rightarrow	104	0.17331
			96	\rightarrow	103	0.15747
			97	\rightarrow	105	0.24532
			97	\rightarrow	109	0.11977
			100	\rightarrow	104	0.26047
			100	\rightarrow	105	0.13311
			101	\rightarrow	104	-0.25083
			101	\rightarrow	105	0.21339
			101	\rightarrow	107	-0.11081

Table S35. 10 TDDFT triplet excitations of Re(4-Pam) from S ₀ θ _{dihedral} = 127.725°, B3LYP/LAL2DZ[Re]+	6-
311G(d.p)[H,C,N,O]/PCM(ACN).	

	Energy	Wavelength	Oscillator			Transi	tions
	(ev)	(nm)	Strength				
	2.9077	426.4	0	92	\rightarrow	102	0.10949
				97	\rightarrow	102	-0.38741
				97	\rightarrow	104	-0.15333
				100	\rightarrow	102	0.53379
	3.0694	403.94	0	98	\rightarrow	102	-0.10254
				101	\rightarrow	102	0.67281
	3.2109	386.13	0	94	\rightarrow	103	0.15528
				98	\rightarrow	103	0.28889
				98	\rightarrow	114	0.10384
				99	\rightarrow	103	-0.38947
				99	\rightarrow	114	-0.11248
				101	\rightarrow	103	0.41419
	3.2585	380.5	0	97	\rightarrow	102	0.52653
				97	\rightarrow	104	0.13058
				100	\rightarrow	102	0.43553
	3.3632	368.65	0	98	\rightarrow	102	0.49804
				99	\rightarrow	102	0.4885
	3.5737	346.94	0	94	\rightarrow	103	0.17943
				95	\rightarrow	106	-0.15792
				96	\rightarrow	103	0.13646
				98	\rightarrow	103	-0.34503
				99	\rightarrow	103	0.28546
				101	\rightarrow	103	0.41962
	3.7784	328.14	0	100	\rightarrow	103	0.68999
	3.8118	325.27	0	98	\rightarrow	102	-0.46891
1							

			99	\rightarrow	102	0.4893
			101	\rightarrow	102	-0.16524
3.8879	318.89	0	92	\rightarrow	102	-0.12395
			92	\rightarrow	104	0.11019
			93	\rightarrow	105	-0.19322
			97	\rightarrow	102	-0.23135
			97	\rightarrow	103	-0.102
			97	\rightarrow	104	0.49353
			101	\rightarrow	105	0.27441
3.9552	313.47	0	91	\rightarrow	102	-0.12197
			92	\rightarrow	105	0.16036
			93	\rightarrow	104	-0.18154
			96	\rightarrow	103	0.12509
			97	\rightarrow	105	0.24933
			97	\rightarrow	109	0.12339
			100	\rightarrow	105	0.25852
			100	\rightarrow	106	-0.1499
			100	\rightarrow	107	-0.16286
			101	\rightarrow	104	0.36974

Table S36. 10 TDDFT triplet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 142.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
2.9053	426.75	0	92	\rightarrow	102	0.10299
			97	\rightarrow	102	0.38372
			97	\rightarrow	104	0.15035
			100	\rightarrow	102	0.40023
			101	\rightarrow	102	-0.35904
3.0699	403.86	0	99	\rightarrow	102	0.10159
			100	\rightarrow	102	0.42319
			101	\rightarrow	102	0.52222
3.212	386	0	94	\rightarrow	103	-0.15479
			98	\rightarrow	103	-0.25946
			99	\rightarrow	103	0.41548
			99	\rightarrow	114	0.12272
			100	\rightarrow	103	-0.19737
			101	\rightarrow	103	-0.36021
3.2564	380.74	0	97	\rightarrow	102	0.52524
			97	\rightarrow	104	0.12825
			100	\rightarrow	102	-0.35475
			101	\rightarrow	102	0.24773
3.3632	368.65	0	98	\rightarrow	102	0.53577
			99	\rightarrow	102	0.44257

3.5744	346.86	0	94	\rightarrow	103	0.17876
			95	\rightarrow	106	-0.15595
			96	\rightarrow	103	0.1377
			98	\rightarrow	103	-0.31076
			99	\rightarrow	103	0.31146
			100	\rightarrow	103	0.12866
			101	\rightarrow	103	0.40891
3.7872	327.38	0	100	\rightarrow	103	0.61363
			101	\rightarrow	103	-0.29093
3.8107	325.36	0	98	\rightarrow	102	-0.42359
			99	\rightarrow	102	0.5294
			101	\rightarrow	102	-0.13297
3.8859	319.06	0	92	\rightarrow	102	0.11688
			93	\rightarrow	105	0.18138
			97	\rightarrow	102	-0.2299
			97	\rightarrow	104	0.49184
			100	\rightarrow	104	-0.12771
			100	\rightarrow	105	-0.16887
			101	\rightarrow	105	-0.20438
3.9576	313.28	0	91	\rightarrow	102	-0.12393
			92	\rightarrow	105	0.16541
			93	\rightarrow	104	-0.18257
			97	\rightarrow	105	-0.25958
			97	\rightarrow	109	-0.12743
			100	\rightarrow	104	0.26655
			100	\rightarrow	105	0.15101
			101	\rightarrow	104	0.27458
			101	\rightarrow	105	-0.22176

Table S37. 10 TDDFT triplet excitations of Re(4-Pam) from S₀ $\theta_{dihedral}$ = 157.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
2.8996	427.59	0	97	\rightarrow	102	-0.37342
			97	\rightarrow	104	-0.14600
			100	\rightarrow	102	-0.30159
3.0764	403.02	0	100	\rightarrow	102	0.51629
			101	\rightarrow	102	0.42234
3.2251	384.44	0	94	\rightarrow	103	-0.15511
			95	\rightarrow	106	-0.10170
			98	\rightarrow	103	0.21774
			99	\rightarrow	103	0.43866
			99	\rightarrow	114	0.13782
			100	\rightarrow	103	0.19055

			101	\rightarrow	103	0.36516
3.2492	381.58	0	97	\rightarrow	102	0.52334
			97	\rightarrow	104	0.12734
			100	\rightarrow	102	-0.31672
			101	\rightarrow	102	0.28564
3.3597	369.03	0	98	\rightarrow	102	0.57828
			99	\rightarrow	102	-0.37521
3.5751	346.8	0	94	\rightarrow	103	-0.17109
			95	\rightarrow	106	-0.15334
			96	\rightarrow	103	0.13443
			98	\rightarrow	103	-0.25666
			99	\rightarrow	103	-0.35072
			101	\rightarrow	103	0.43206
3.8083	325.56	0	98	\rightarrow	102	0.28193
			99	\rightarrow	102	0.44515
			100	\rightarrow	103	0.37650
			101	\rightarrow	103	-0.15228
3.8108	325.35	0	98	\rightarrow	102	-0.22058
			99	\rightarrow	102	-0.37198
			100	\rightarrow	103	0.46970
			101	\rightarrow	103	-0.18471
3.887	318.97	0	92	\rightarrow	102	0.11164
			93	\rightarrow	105	0.18029
			97	\rightarrow	102	-0.22846
			97	\rightarrow	104	0.49248
			100	\rightarrow	104	-0.12579
			100	\rightarrow	105	-0.18427
			101	\rightarrow	105	-0.17351
3.9653	312.67	0	91	\rightarrow	102	-0.12219
			92	\rightarrow	105	0.15962
			93	\rightarrow	104	-0.18831
			97	\rightarrow	105	-0.26703
			97	\rightarrow	109	-0.12989
			100	\rightarrow	104	0.31125
			101	\rightarrow	104	0.25553
			101	\rightarrow	105	-0.25150

Re(4-PamH) TDDFT Tables

Table S38. 10 TDDFT singlet excitations of Re(4-PamH) from S₀ $\theta_{dihedral}$ = -82.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
3.1730	390.74	0.0141	100	\rightarrow	102	-0.39854
			101	\rightarrow	102	0.57566

3.2357	383.18	0.0133	100	\rightarrow	102	0.14890
			100	\rightarrow	103	-0.12716
			101	\rightarrow	102	0.13085
			101	\rightarrow	103	0.66128
3.2621	380.08	0.0814	99	\rightarrow	102	-0.15477
			100	\rightarrow	102	0.54592
			100	\rightarrow	103	0.14922
			101	\rightarrow	102	0.34835
			101	\rightarrow	103	-0.17158
3.3594	369.06	0.0343	99	\rightarrow	102	0.35313
			99	\rightarrow	103	-0.28067
			100	\rightarrow	103	0.52633
			101	\rightarrow	103	0.11471
3.4044	364.18	0.0405	99	\rightarrow	102	0.58476
			99	\rightarrow	103	0.23344
			100	\rightarrow	102	0.11278
			100	\rightarrow	103	-0.25097
			101	\rightarrow	102	0.14110
3.4739	356.9	0.0595	99	\rightarrow	103	0.59921
			100	\rightarrow	103	0.33219
			101	\rightarrow	103	0.10728
3.9900	310.74	0.0017	98	\rightarrow	102	0.70624
4.1289	300.28	0.1097	98	\rightarrow	103	0.52595
			100	\rightarrow	104	-0.17155
			101	\rightarrow	104	0.39776
			101	\rightarrow	105	0.10954
4.2457	292.03	0.0568	98	\rightarrow	103	-0.27345
			100	\rightarrow	104	0.28281
			101	\rightarrow	104	0.54840
			101	\rightarrow	105	-0.13700
4.3223	286.85	0.0899	98	\rightarrow	103	0.25688
			100	\rightarrow	104	0.58173
			100	\rightarrow	106	-0.14900
			100	\rightarrow	107	0.14079
			101	\rightarrow	104	-0.13485

Table S39. 10 TDDFT singlet excitations of Re(4-PamH) from S₀ θ_{dihedral} = -67.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator	Transitions			
(eV)	(nm)	Strength				
3.1715	390.93	0.0046	100	\rightarrow	102	0.32575
			101	\rightarrow	102	0.62175
3.2416	382.48	0.0108	100	\rightarrow	102	0.20144
			100	\rightarrow	103	0.15921

			101	\rightarrow	103	0.65040
3.2656	379.66	0.0815	99	\rightarrow	102	0.15850
			100	\rightarrow	102	0.56076
			100	\rightarrow	103	-0.21776
			101	\rightarrow	102	-0.28978
			101	\rightarrow	103	-0.15841
3.3594	369.07	0.0414	99	\rightarrow	102	0.32178
			99	\rightarrow	103	0.27009
			100	\rightarrow	103	0.53569
			101	\rightarrow	103	-0.16352
3.4126	363.31	0.0421	99	\rightarrow	102	0.57927
			99	\rightarrow	103	-0.32070
			100	\rightarrow	102	-0.14515
			100	\rightarrow	103	-0.14686
			101	\rightarrow	102	0.10910
3.4692	357.38	0.0641	99	\rightarrow	102	0.17443
			99	\rightarrow	103	0.56408
			100	\rightarrow	102	-0.10814
			100	\rightarrow	103	-0.33339
			101	\rightarrow	103	0.12392
3.9965	310.23	0.0012	98	\rightarrow	102	0.70543
4.1369	299.7	0.1292	98	\rightarrow	103	0.55973
			100	\rightarrow	104	-0.18020
			101	\rightarrow	104	-0.32819
			101	\rightarrow	105	0.13516
4.2674	290.54	0.0245	98	\rightarrow	103	0.17650
			100	\rightarrow	104	-0.30236
			101	\rightarrow	104	0.56777
			101	\rightarrow	105	0.15996
4.3198	287.01	0.0725	98	\rightarrow	103	0.23982
			100	\rightarrow	104	0.47731
			100	\rightarrow	106	-0.22575
			100	\rightarrow	107	0.25812
			101	\rightarrow	104	0.20467
			101	\rightarrow	106	0.10235
			101	\rightarrow	107	-0.11475

Table S40. 10 TDDFT singlet excitations of Re(4-PamH) from S₀ θ_{dihedral} = -52.275°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
3.1606	392.28	0.0001	101	\rightarrow	102	0.69935
3.2498	381.51	0.0030	101	\rightarrow	103	0.69747
3.2540	381.02	0.0937	99	\rightarrow	102	0.16231

			100	\rightarrow	102	0.65438
			100	\rightarrow	103	-0.19030
3.3599	369.01	0.0413	99	\rightarrow	102	0.39229
			99	\rightarrow	103	0.22608
			100	\rightarrow	103	0.53313
3.4033	364.31	0.0432	99	\rightarrow	102	0.52563
			99	\rightarrow	103	-0.37620
			100	\rightarrow	102	-0.18840
			100	\rightarrow	103	-0.20224
3.4677	357.54	0.0658	99	\rightarrow	102	0.20024
			99	\rightarrow	103	0.54927
			100	\rightarrow	102	-0.14523
			100	\rightarrow	103	-0.35941
3.9922	310.56	0.0019	98	\rightarrow	102	0.70496
4.1415	299.37	0.1396	98	\rightarrow	103	0.57829
			100	\rightarrow	105	-0.10194
			100	\rightarrow	106	-0.11820
			101	\rightarrow	104	0.34769
4.3056	287.96	0.0036	97	\rightarrow	102	-0.10103
			100	\rightarrow	104	0.13115
			100	\rightarrow	105	0.53235
			100	\rightarrow	106	-0.18792
			100	\rightarrow	107	-0.34816
			101	\rightarrow	105	0.10721
4.3295	286.37	0.0447	98	\rightarrow	103	-0.20110
			100	\rightarrow	104	0.23396
			100	\rightarrow	106	0.20617
			100	\rightarrow	107	0.14836
			101	\rightarrow	104	0.47218
			101	\rightarrow	105	0.30556

Table S41. 10 TDDFT singlet excitations of Re(4-P	amH) from S₀ θ _{dihedral} =	= -37.275°, B	3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).			

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
3.2209	384.93	0.0049	100	\rightarrow	102	-0.30770
			101	\rightarrow	102	0.61509
			101	\rightarrow	103	-0.14815
3.2384	382.86	0.0035	100	\rightarrow	102	-0.12091
			100	\rightarrow	103	-0.20551
			101	\rightarrow	103	0.65500
3.3084	374.75	0.0865	99	\rightarrow	102	0.12889
			100	\rightarrow	102	0.56682
			100	\rightarrow	103	-0.29170

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$100 \rightarrow 104 -0.1871$ $101 \rightarrow 104 0.3412$ $101 \rightarrow 105 0.1207$
$101 \rightarrow 104 \qquad 0.3412$
101 \ 105 0 1207
$101 \rightarrow 103 \qquad 0.1297$
4.2622 290.89 0.0287 98 → 103 -0.1902
$100 \rightarrow 104$ 0.3051
$101 \rightarrow 104$ 0.5669
$101 \rightarrow 105 -0.1527$
4.317 287.2 0.0749 98 → 103 0.2453
100 → 104 0.4948
100 → 106 -0.2286
$100 \rightarrow 107 -0.2399$
$100 \rightarrow 107 -0.2399$ $101 \rightarrow 104 -0.1861$
$100 \rightarrow 107 -0.2399$ $101 \rightarrow 104 -0.1861$ $101 \rightarrow 106 -0.1007$

Table S42. 10 TDDFT sir	glet excitations of Re(4-Paml	I) from S ₀ θ _{dihedral} =	-22.275°, B3LYF	VLAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCN	I(ACN).	-		

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transiti	ons
3.1952	388.03	0.0151	100	\rightarrow	102	0.37029
			100	\rightarrow	103	0.10870
			101	\rightarrow	102	0.56407
			101	\rightarrow	103	0.16611
3.2272	384.19	0.0099	100	\rightarrow	103	0.11485
			101	\rightarrow	102	0.17929
			101	\rightarrow	103	0.66708

3.2897	376.89	0.0820	99	\rightarrow	102	0.16877
			100	\rightarrow	102	0.57904
			100	\rightarrow	103	0.11226
			101	\rightarrow	102	0.34221
3.3560	369.45	0.0349	99	\rightarrow	102	0.24074
			99	\rightarrow	103	0.32199
			100	\rightarrow	103	0.56455
			101	\rightarrow	103	0.10408
3.4284	361.64	0.0399	99	\rightarrow	102	0.63867
			99	\rightarrow	103	0.15928
			100	\rightarrow	102	0.12113
			100	\rightarrow	103	0.16472
			101	\rightarrow	102	0.14018
3.4653	357.78	0.0582	99	\rightarrow	103	0.60157
			100	\rightarrow	103	0.33136
4.0239	308.12	0.0030	98	\rightarrow	102	0.70594
4.1237	300.66	0.0993	98	\rightarrow	103	0.51022
			100	\rightarrow	104	0.16640
			101	\rightarrow	104	0.42207
			101	\rightarrow	105	0.10484
4.2384	292.53	0.0672	98	\rightarrow	103	0.30063
			100	\rightarrow	104	0.27899
			101	\rightarrow	104	0.53415
			101	\rightarrow	105	0.14624
4.3232	286.79	0.0899	98	\rightarrow	103	0.25670
			100	\rightarrow	104	0.59194
			100	\rightarrow	106	0.12612
			100	\rightarrow	107	0.11658
			101	\rightarrow	104	0.11901

Table S43	. 10 TDDF	T singlet excitations	of Re(4-PamH)	from S ₀ θ _{dihedral}	= -7.275°,	B3LYP/LAL2DZ	[Re]+6-
311G(d.p)	[H,C,N,O]/I	PCM(ACN).					

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
3.1967	387.85	0.0127	100	\rightarrow	102	-0.23582
			100	\rightarrow	103	-0.11719
			101	\rightarrow	102	0.38915
			101	\rightarrow	103	0.52371
3.2384	382.86	0.0304	100	\rightarrow	102	0.32492
			101	\rightarrow	102	-0.41386
			101	\rightarrow	103	0.46235
3.3048	375.17	0.0777	99	\rightarrow	102	0.16149
			100	\rightarrow	102	0.56140
			101	\rightarrow	102	0.38002

3.3587	369.15	0.0238	99	\rightarrow	102	0.22448
			99	\rightarrow	103	0.33997
			100	\rightarrow	103	0.56328
3.4371	360.73	0.0354	99	\rightarrow	102	0.64308
			100	\rightarrow	103	-0.21671
			101	\rightarrow	102	-0.14708
3.4771	356.58	0.0608	99	\rightarrow	103	0.60489
			100	\rightarrow	103	-0.33337
4.0477	306.31	0.0078	98	\rightarrow	102	0.70390
4.1194	300.98	0.0874	98	\rightarrow	103	0.49544
			100	\rightarrow	104	-0.11348
			101	\rightarrow	104	0.46009
4.2503	291.71	0.1129	98	\rightarrow	103	-0.36797
			100	\rightarrow	104	0.23968
			100	\rightarrow	105	-0.12854
			101	\rightarrow	104	0.50063
			101	\rightarrow	105	-0.10128
4.3311	286.27	0.0665	98	\rightarrow	103	0.21317
			100	\rightarrow	104	0.63472
			100	\rightarrow	105	0.12826
			101	\rightarrow	104	-0.10317

Table S44. 10 TDDFT singlet excitations of Re(4-PamH) from S₀ $\theta_{dihedral}$ = 7.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator			Transi	tions
(eV)	(nm)	Strength			ITalisi	tions
3.1762	390.36	0.0201	100	\rightarrow	102	-0.19382
			101	\rightarrow	102	0.39216
			101	\rightarrow	103	0.54480
3.2312	383.71	0.0520	100	\rightarrow	102	0.32692
			101	\rightarrow	102	-0.43151
			101	\rightarrow	103	0.43876
3.2854	377.38	0.0697	99	\rightarrow	102	0.13269
			100	\rightarrow	102	0.57909
			101	\rightarrow	102	0.36274
3.3560	369.44	0.0111	99	\rightarrow	102	0.34706
			99	\rightarrow	103	0.35434
			100	\rightarrow	102	-0.10557
			100	\rightarrow	103	0.48703
3.4094	363.66	0.0258	99	\rightarrow	102	0.59573
			99	\rightarrow	103	-0.17502
			100	\rightarrow	103	-0.29927
			101	\rightarrow	102	-0.12911
3.4783	356.45	0.0715	99	\rightarrow	103	0.57476

			100	\rightarrow	103	-0.38788
4.0325	307.46	0.0086	98	\rightarrow	102	0.70374
4.1156	301.25	0.0852	98	\rightarrow	103	0.49284
			101	\rightarrow	104	0.47228
4.2651	290.7	0.1605	98	\rightarrow	103	-0.41665
			100	\rightarrow	104	0.11880
			100	\rightarrow	105	0.13678
			101	\rightarrow	104	0.49409
			101	\rightarrow	106	-0.10809
4.3403	285.66	0.0150	100	\rightarrow	104	0.63575
			101	\rightarrow	105	0.22848

Table S45. 10 TDDFT singlet excitations of Re(4-PamH) from S₀ θ_{dihedral} = 22.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator	Transitions			
(eV)	(nm)	Strength			mansi	
3.1743	390.59	0.0051	101	\rightarrow	102	0.14218
			101	\rightarrow	103	0.68120
3.2370	383.02	0.1248	100	\rightarrow	102	0.22430
			100	\rightarrow	103	0.15825
			101	\rightarrow	102	0.62520
			101	\rightarrow	103	-0.16899
3.2822	377.75	0.0292	100	\rightarrow	102	0.65753
			101	\rightarrow	102	-0.23175
3.3604	368.95	0.0139	99	\rightarrow	102	-0.22221
			99	\rightarrow	103	-0.44026
			100	\rightarrow	103	0.48824
			101	\rightarrow	102	-0.11100
3.3944	365.26	0.0064	99	\rightarrow	102	0.66509
			99	\rightarrow	103	-0.14825
			100	\rightarrow	103	0.15352
3.4738	356.91	0.0838	99	\rightarrow	103	0.52545
			100	\rightarrow	103	0.44928
			101	\rightarrow	102	-0.11196
4.0434	306.64	0.0020	98	\rightarrow	102	0.70581
4.1153	301.27	0.1015	98	\rightarrow	103	0.51030
			101	\rightarrow	104	-0.45446
4.2783	289.8	0.1588	98	\rightarrow	103	0.39215
			100	\rightarrow	105	-0.13977
			100	\rightarrow	106	0.11737
			101	\rightarrow	104	0.50440
			101	\rightarrow	105	-0.15048
4.3203	286.98	0.0264	98	\rightarrow	103	0.11899
			100	\rightarrow	104	-0.19956
Energy	Wavelength	Oscillator			Transitions	
--------	------------	------------	-----	---------------	-------------	----------
(eV)	(nm)	Strength				
3.1675	391.43	0.0030	101	\rightarrow	103	0.69723
3.2326	383.54	0.1607	100	\rightarrow	103	0.17554
			101	\rightarrow	102	0.67996
3.2707	379.08	0.0004	100	\rightarrow	102	0.69820
3.3587	369.15	0.0161	99	\rightarrow	103	-0.48125
			100	\rightarrow	103	0.49044
			101	\rightarrow	102	-0.12734
3.3784	367	0.0008	99	\rightarrow	102	0.69794
3.4695	357.36	0.0864	99	\rightarrow	103	0.50863
			100	\rightarrow	103	0.46732
			101	\rightarrow	102	-0.11741
4.0375	307.08	0.0010	98	\rightarrow	102	0.70615
4.1148	301.31	0.1057	98	\rightarrow	103	0.51633
			101	\rightarrow	104	-0.45257
4.2865	289.24	0.0411	97	\rightarrow	102	-0.10818
			98	\rightarrow	103	0.15969
			100	\rightarrow	104	0.11953
			101	\rightarrow	104	0.20583
			101	\rightarrow	105	0.61567
4.2900	289.00	0.1470	98	\rightarrow	103	0.36839
			100	\rightarrow	105	0.16670
			100	\rightarrow	106	-0.12309
			101	\rightarrow	104	0.46414
			101	\rightarrow	105	-0.27067

Table S46. 10 TDDFT singlet excitations of Re(4-PamH) from S₀ θ_{dihedral} = 37.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Table S47. 10 TE	DFT singlet excitations of	of Re(4-PamH) from S	$\delta_0 \theta_{\text{dihedral}} = 52.725^\circ$	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N	,O]/PCM(ACN).			

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transit	ions
3.1667	391.53	0.0195	100	\rightarrow	102	0.14200
			101	\rightarrow	102	-0.31781
			101	\rightarrow	103	0.60865
3.2210	384.93	0.1011	100	\rightarrow	102	-0.25690
			100	\rightarrow	103	0.12725
			101	\rightarrow	102	0.53734
			101	\rightarrow	103	0.35109
3.2584	380.50	0.0391	100	\rightarrow	102	0.63535
			101	\rightarrow	102	0.28663

3.3488	370.24	0.0056	99	\rightarrow	102	0.46432
			99	\rightarrow	103	-0.34471
			100	\rightarrow	103	0.39337
3.3801	366.81	0.0159	99	\rightarrow	102	0.52334
			99	\rightarrow	103	0.29049
			100	\rightarrow	103	-0.35190
			101	\rightarrow	102	0.10615
3.4721	357.09	0.081	99	\rightarrow	103	0.53639
			100	\rightarrow	103	0.43900
4.0210	308.34	0.0046	98	\rightarrow	102	0.70518
4.1157	301.24	0.0971	98	\rightarrow	103	0.50875
			101	\rightarrow	104	0.45542
4.2786	289.78	0.1529	98	\rightarrow	103	-0.38781
			100	\rightarrow	105	-0.14092
			100	\rightarrow	106	-0.11790
			101	\rightarrow	104	0.50140
			101	\rightarrow	105	0.16917
4.3149	287.34	0.0304	98	\rightarrow	103	0.13295
			100	\rightarrow	104	-0.18944
			101	\rightarrow	105	0.62773

Table S48. 10 TDDFT singlet excitations of Re(4-PamH) from S₀ θ_{dihedral} = 67.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
3.1725	390.81	0.0303	100	\rightarrow	102	0.24850
			101	\rightarrow	102	-0.43934
			101	\rightarrow	103	0.48082
3.2174	385.36	0.0438	100	\rightarrow	102	-0.29848
			101	\rightarrow	102	0.37517
			101	\rightarrow	103	0.50901
3.2598	380.35	0.0687	99	\rightarrow	102	-0.11741
			100	\rightarrow	102	0.57856
			101	\rightarrow	102	0.37276
3.3488	370.23	0.0096	99	\rightarrow	102	0.43686
			99	\rightarrow	103	-0.32391
			100	\rightarrow	103	0.43779
3.3907	365.66	0.0249	99	\rightarrow	102	0.53825
			99	\rightarrow	103	0.24404
			100	\rightarrow	103	-0.35772
			101	\rightarrow	102	0.12672
3.4749	356.80	0.0742	99	\rightarrow	103	0.56984
			100	\rightarrow	103	0.39716
4.0125	308.99	0.0059	98	\rightarrow	102	0.70505

4.1160	301.23	0.0901	98	\rightarrow	103	0.49855
			101	\rightarrow	104	0.46538
4.2673	290.54	0.1546	98	\rightarrow	103	-0.40756
			100	\rightarrow	104	0.11649
			100	\rightarrow	105	0.13847
			101	\rightarrow	104	0.50111
			101	\rightarrow	106	-0.10972

Table S49	. 10 TDDF	Γ singlet excitations	of Re(4-PamH) fi	rom S₀ θ _{dihedral}	= 82.725°,	B3LYP/LAL2D	Z[Re]+6-
311G(d.p)	[H,C,N,O]/I	°CM(ACN).					

Energy	Wavelength	Oscillator			Transition	s
(eV)	(nm)	Strength				
3.1955	388.00	0.0142	100	\rightarrow	102	0.24729
			100	\rightarrow	103	-0.12458
			101	\rightarrow	102	-0.38578
			101	\rightarrow	103	0.51909
3.2317	383.65	0.0329	100	\rightarrow	102	-0.31206
			101	\rightarrow	102	0.41824
			101	\rightarrow	103	0.46781
3.2954	376.23	0.0758	99	\rightarrow	102	-0.15268
			100	\rightarrow	102	0.56654
			101	\rightarrow	102	0.37872
3.3577	369.26	0.0231	99	\rightarrow	102	0.24418
			99	\rightarrow	103	-0.34634
			100	\rightarrow	103	0.55163
3.4291	361.56	0.0330	99	\rightarrow	102	0.64014
			100	\rightarrow	103	-0.21938
			101	\rightarrow	102	0.14366
3.4740	356.89	0.0639	99	\rightarrow	103	0.59794
			100	\rightarrow	103	0.34796
4.0411	306.81	0.0062	98	\rightarrow	102	0.70478
4.1178	301.09	0.0865	98	\rightarrow	103	0.49222
			100	\rightarrow	104	-0.11611
			101	\rightarrow	104	0.46332
4.2477	291.88	0.1116	98	\rightarrow	103	-0.37009
			100	\rightarrow	104	0.23832
			100	\rightarrow	105	-0.12751
			101	\rightarrow	104	0.49944
			101	\rightarrow	105	-0.10642
4.3320	286.21	0.0673	98	\rightarrow	103	0.21459
			100	\rightarrow	104	0.63432
			100	\rightarrow	105	0.12863

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
3.1822	389.62	0.0155	100	\rightarrow	102	-0.39376
0.1022	303.02	0.0100	101	$\stackrel{'}{\rightarrow}$	102	0.56689
3,2328	383.51	0.0092	100	\rightarrow	103	-0.12596
5.2520	000101	0.0052	101	\rightarrow	102	0.13611
			101	\rightarrow	103	0.67775
3.2729	378.82	0.0825	99	\rightarrow	102	-0.16790
			100	\rightarrow	102	0.56845
			100	\rightarrow	103	0.10225
			101	\rightarrow	102	0.35971
3.3564	369.39	0.0338	99	\rightarrow	102	0.30176
			99	\rightarrow	103	-0.30088
			100	\rightarrow	103	0.54745
			101	\rightarrow	103	0.10426
3.4172	362.82	0.0437	99	\rightarrow	102	0.61305
			99	\rightarrow	103	0.16994
			100	\rightarrow	102	0.11320
			100	\rightarrow	103	-0.23453
			101	\rightarrow	102	0.14482
3.4716	357.14	0.0571	99	\rightarrow	103	0.60958
			100	\rightarrow	103	0.32213
4.0012	309.87	0.0026	98	\rightarrow	102	0.70601
4.1263	300.47	0.103	98	\rightarrow	103	0.51578
			100	\rightarrow	104	-0.16619
			101	\rightarrow	104	0.41464
			101	\rightarrow	105	0.10513
4.2417	292.30	0.0644	98	\rightarrow	103	-0.29407
			100	\rightarrow	104	0.27926
			101	\rightarrow	104	0.53885
			101	\rightarrow	105	-0.14093
4.3238	286.75	0.0895	98	\rightarrow	103	0.25580
			100	\rightarrow	104	0.59693
			100	\rightarrow	106	-0.12264
			100	\rightarrow	107	0.10682
			101	\rightarrow	104	-0.12412

Table S50. 10 TDDFT singlet excitations of Re(4-PamH) from S₀ θ_{dihedral} = 97.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Table S51. 10 TDDFT singlet excitations of Re(4-PamH) from S₀ θ_{dihedral} = 112.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
3.162	392.11	0.0045	100	\rightarrow	102	0.33277
			101	\rightarrow	102	0.61902

3.2389	382.8	0.0136	100	\rightarrow	102	0.20811
			100	\rightarrow	103	0.14624
			101	\rightarrow	102	-0.10465
			101	\rightarrow	103	0.64561
3.2587	380.47	0.0784	99	\rightarrow	102	0.16582
			100	\rightarrow	102	0.55598
			100	\rightarrow	103	-0.20247
			101	\rightarrow	102	-0.28557
			101	\rightarrow	103	-0.19138
3.3531	369.75	0.0399	99	\rightarrow	102	0.35106
			99	\rightarrow	103	0.26158
			100	\rightarrow	103	0.52821
			101	\rightarrow	103	-0.15109
3.4079	363.81	0.048	99	\rightarrow	102	0.57185
			99	\rightarrow	103	-0.29344
			100	\rightarrow	102	-0.15186
			100	\rightarrow	103	-0.20331
			101	\rightarrow	102	0.11715
3.4649	357.83	0.0605	99	\rightarrow	102	0.12654
			99	\rightarrow	103	0.58244
			100	\rightarrow	103	-0.33052
			101	\rightarrow	103	0.11863
3.9857	311.07	0.0009	98	\rightarrow	102	0.70559
4.1356	299.79	0.1265	98	\rightarrow	103	0.55554
			100	\rightarrow	104	-0.18094
			101	\rightarrow	104	-0.33555
			101	\rightarrow	105	-0.13518
4.2636	290.80	0.0268	98	\rightarrow	103	0.18685
			100	\rightarrow	104	-0.30228
			101	\rightarrow	104	0.56879
			101	\rightarrow	105	-0.15135
4.3201	286.99	0.0766	98	\rightarrow	103	0.24436
			100	\rightarrow	104	0.50289
			100	\rightarrow	106	-0.21440
			100	\rightarrow	107	0.24007
			101	\rightarrow	104	0.19313
			101	\rightarrow	107	-0.10751

Table S52. 10 TDDFT singlet excitations of Re(4-PamH) from S ₀ θ _{dihedral} = 127.725°, B3LY	P/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).	

Energy (eV)	Wavelength (nm)	Oscillator Strength	Transitions				
3.1461	394.09	0	101	\rightarrow	102	0.70318	
3.2406	382.59	0.0938	99	\rightarrow	102	0.17058	

			100	\rightarrow	102	0.66159
			100	\rightarrow	103	-0.16582
3.2497	381.52	0.0028	101	\rightarrow	103	0.70098
3.3528	369.80	0.0392	99	\rightarrow	102	0.45783
			99	\rightarrow	103	0.19000
			100	\rightarrow	103	0.49929
3.3955	365.14	0.0505	99	\rightarrow	102	0.48270
			99	\rightarrow	103	-0.36679
			100	\rightarrow	102	-0.19747
			100	\rightarrow	103	-0.29688
3.4646	357.86	0.0617	99	\rightarrow	102	0.15811
			99	\rightarrow	103	0.56897
			100	\rightarrow	102	-0.13008
			100	\rightarrow	103	-0.35769
3.9754	311.87	0.0015	98	\rightarrow	102	0.70518
4.1415	299.37	0.1400	98	\rightarrow	103	0.57850
			100	\rightarrow	105	0.10629
			100	\rightarrow	106	-0.11962
			101	\rightarrow	104	0.35028
4.3058	287.95	0.0040	97	\rightarrow	102	0.10424
			100	\rightarrow	105	0.55128
			100	\rightarrow	106	0.18769
			100	\rightarrow	107	0.35431
4.3323	286.19	0.0425	98	\rightarrow	103	-0.19504
			100	\rightarrow	104	-0.28369
			100	\rightarrow	106	0.19968
			100	\rightarrow	107	0.12086
			101	\rightarrow	104	0.43573
			101	\rightarrow	105	0.32201

Table S53. 10 1	FDDFT singlet excitations	of Re(4-PamH) from S ₀ θ_{d}	_{dihedral} = 142.725°, B3L	.YP/LAL2DZ[Re]+6-
311G(d.p)[H,C,	N,O]/PCM(ACN).			

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
3.1635	391.92	0.004	100	\rightarrow	102	-0.31947
			101	\rightarrow	102	0.62454
3.2396	382.72	0.0172	100	\rightarrow	102	-0.26745
			100	\rightarrow	103	-0.14733
			101	\rightarrow	103	0.62584
3.2573	380.63	0.0752	99	\rightarrow	102	0.15488
			100	\rightarrow	102	0.53622
			100	\rightarrow	103	-0.23615
			101	\rightarrow	102	0.28041
			101	\rightarrow	103	0.22377

3.3572	369.31	0.0418	99	\rightarrow	102	0.34079
			99	\rightarrow	103	0.25617
			100	\rightarrow	103	0.52952
			101	\rightarrow	103	0.17018
3.4048	364.14	0.0428	99	\rightarrow	102	0.56832
			99	\rightarrow	103	-0.32779
			100	\rightarrow	102	-0.14758
			100	\rightarrow	103	-0.16405
			101	\rightarrow	102	-0.10938
3.4663	357.69	0.0621	99	\rightarrow	102	0.17449
			99	\rightarrow	103	0.56654
			100	\rightarrow	102	-0.10534
			100	\rightarrow	103	-0.32853
			101	\rightarrow	103	-0.12993
3.9916	310.62	0.0019	98	\rightarrow	102	0.70560
4.1360	299.77	0.1284	98	\rightarrow	103	0.55948
			100	\rightarrow	104	-0.18765
			101	\rightarrow	104	0.32453
			101	\rightarrow	105	0.13597
4.2653	290.68	0.022	98	\rightarrow	103	-0.16650
			100	\rightarrow	104	0.30658
			101	\rightarrow	104	0.56542
			101	\rightarrow	105	-0.16549
4.3154	287.31	0.0714	98	\rightarrow	103	0.24221
			100	\rightarrow	104	0.45648
			100	\rightarrow	106	-0.23810
			100	\rightarrow	107	-0.26304
			101	\rightarrow	104	-0.21461
			101	\rightarrow	106	-0.11289
			101	\rightarrow	107	-0.11696

Table S54. 10 TDDFT singlet excitations of Re(4-PamH) from S₀ θ_{dihedral} = 157.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
3.2078	386.51	0.0161	100	\rightarrow	102	-0.37254
			101	\rightarrow	102	0.59161
3.2296	383.89	0.0067	100	\rightarrow	103	-0.15698
			101	\rightarrow	103	0.67949
3.2954	376.24	0.0844	99	\rightarrow	102	0.14638
			100	\rightarrow	102	0.57406
			100	\rightarrow	103	-0.17907
			101	\rightarrow	102	0.33240
3.3632	368.65	0.0381	99	\rightarrow	102	0.20282

			99	\rightarrow	103	0.33073
			100	\rightarrow	103	0.56008
			101	\rightarrow	103	0.13296
3.4331	361.14	0.0305	99	\rightarrow	102	0.63469
			99	\rightarrow	103	-0.25886
			100	\rightarrow	102	-0.10392
			101	\rightarrow	102	-0.11400
3.4710	357.20	0.0642	99	\rightarrow	102	0.17227
			99	\rightarrow	103	0.56264
			100	\rightarrow	103	-0.33982
			101	\rightarrow	102	-0.10277
			101	\rightarrow	103	-0.11301
4.0344	307.32	0.0019	98	\rightarrow	102	0.70625
4.1271	300.42	0.1075	98	\rightarrow	103	0.52250
			100	\rightarrow	104	-0.17591
			101	\rightarrow	104	0.40110
			101	\rightarrow	105	0.11070
4.2427	292.23	0.0586	98	\rightarrow	103	-0.27777
			100	\rightarrow	104	0.27661
			101	\rightarrow	104	0.54864
			101	\rightarrow	105	-0.14424
4.3229	286.81	0.0882	98	\rightarrow	103	0.25474
			100	\rightarrow	104	0.57442
			100	\rightarrow	106	-0.15637
			100	\rightarrow	107	-0.15418
			101	\rightarrow	104	-0.12414
			101	\rightarrow	107	-0.10444

Table S55. 10 TDDFT triplet excitations of Re(4-PamH) from S₀ $\theta_{dihedral}$ = -82.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
2.9195	424.68	0	98	\rightarrow	103	-0.4039
			98	\rightarrow	104	-0.13595
			100	\rightarrow	103	-0.20548
			101	\rightarrow	103	0.47435
3.0138	411.39	0	100	\rightarrow	102	0.28614
			101	\rightarrow	102	0.60814
3.1285	396.31	0	100	\rightarrow	103	0.59705
			101	\rightarrow	103	0.31638
3.1714	390.94	0	100	\rightarrow	102	0.62618
			101	\rightarrow	102	-0.30278
3.2654	379.69	0	98	\rightarrow	103	0.50315
			99	\rightarrow	103	-0.1074

			100	\rightarrow	103	-0.23482
			101	\rightarrow	103	0.3826
3.3498	370.13	0	99	\rightarrow	102	0.65295
			99	\rightarrow	103	-0.23139
3.3905	365.68	0	99	\rightarrow	102	0.23832
			99	\rightarrow	103	0.64234
3.8013	326.16	0	97	\rightarrow	102	0.68572
3.8881	318.88	0	95	\rightarrow	103	0.10505
			95	\rightarrow	104	-0.11266
			95	\rightarrow	106	-0.11416
			96	\rightarrow	105	0.14068
			96	\rightarrow	106	-0.11612
			98	\rightarrow	103	-0.22671
			98	\rightarrow	104	0.46083
			98	\rightarrow	105	0.18873
			98	\rightarrow	106	0.14813
			100	\rightarrow	104	-0.11029
			100	\rightarrow	105	0.13682
			100	\rightarrow	106	-0.15494
3.9439	314.37	0	91	\rightarrow	102	0.21927
			92	\rightarrow	102	0.2524
			93	\rightarrow	102	-0.13485
			96	\rightarrow	102	-0.12741
			97	\rightarrow	104	0.26205
			97	\rightarrow	105	-0.25186
			97	\rightarrow	106	-0.28787
			98	\rightarrow	102	0.21415
			100	\rightarrow	102	-0.10225
			101	\rightarrow	102	-0.1279

Table S56. 10 TDDFT triplet excitations of Re(4-PamH) from S₀ θ_{dihedral} = -67.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
1.9197	424.65	0	95	\rightarrow	103	-0.10349
			98	\rightarrow	103	0.40531
			98	\rightarrow	104	0.13884
			100	\rightarrow	103	0.19827
			101	\rightarrow	103	0.47573
3.0358	408.41	0	100	\rightarrow	102	-0.44852
			101	\rightarrow	102	0.49745
3.1216	397.19	0	100	\rightarrow	103	0.61382
			101	\rightarrow	103	-0.29523
3.1612	392.21	0	100	\rightarrow	102	0.50955

1						1
			101	\rightarrow	102	0.47790
3.2687	379.31	0	98	\rightarrow	103	0.50698
			98	\rightarrow	104	0.10249
			100	\rightarrow	103	-0.21479
			101	\rightarrow	103	-0.39880
3.3599	369.01	0	99	\rightarrow	102	0.66873
			99	\rightarrow	103	0.17883
3.3870	366.06	0	99	\rightarrow	102	-0.17933
			99	\rightarrow	103	0.66822
3.8141	325.07	0	97	\rightarrow	102	0.68596
3.8872	318.95	0	95	\rightarrow	103	-0.11651
			95	\rightarrow	104	0.10362
			96	\rightarrow	105	-0.10773
			96	\rightarrow	106	-0.17844
			98	\rightarrow	103	-0.23793
			98	\rightarrow	104	0.45296
			98	\rightarrow	105	-0.23297
			100	\rightarrow	104	-0.10252
			100	\rightarrow	105	-0.10139
			100	\rightarrow	106	-0.18756
3.9589	313.18	0	91	\rightarrow	102	0.21762
			92	\rightarrow	102	0.25444
			93	\rightarrow	102	0.15603
			96	\rightarrow	102	0.11555
			97	\rightarrow	104	-0.25692
			97	\rightarrow	105	-0.34566
			97	\rightarrow	106	0.22925
			98	\rightarrow	102	-0.13616
			100	\rightarrow	102	0.13506
			101	\rightarrow	102	-0.10171

Table S57. 10 TDDFT triplet excitations of Re(4-PamH) from S₀ $\theta_{dihedral}$ = -52.275°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
2.9190	424.75	0	95	\rightarrow	103	0.10970
			98	\rightarrow	103	-0.40391
			98	\rightarrow	104	-0.16174
			101	\rightarrow	103	0.50773
3.0341	408.64	0	92	\rightarrow	102	0.12062
			100	\rightarrow	102	0.66182
			101	\rightarrow	102	0.10255
3.1177	397.68	0	100	\rightarrow	103	0.68024
3.1460	394.10	0	100	\rightarrow	102	-0.10488

			101	\rightarrow	102	0.68993
3.2704	379.12	0	98	\rightarrow	103	0.50435
			98	\rightarrow	104	0.11985
			101	\rightarrow	103	0.45326
3.3534	369.73	0	99	\rightarrow	102	0.69237
			100	\rightarrow	102	0.11118
3.3851	366.26	0	99	\rightarrow	103	0.69471
3.8145	325.03	0	97	\rightarrow	102	0.68585
3.8877	318.92	0	95	\rightarrow	103	-0.12011
			95	\rightarrow	104	0.10694
			96	\rightarrow	106	0.19514
			98	\rightarrow	102	-0.11563
			98	\rightarrow	103	-0.24641
			98	\rightarrow	104	0.50616
			100	\rightarrow	105	-0.13427
			100	\rightarrow	106	-0.21403
3.9620	312.93	0	92	\rightarrow	102	0.32725
			93	\rightarrow	102	-0.14671
			96	\rightarrow	102	0.10747
			97	\rightarrow	105	0.44268
			97	\rightarrow	106	-0.20548
			100	\rightarrow	102	-0.16851
			101	\rightarrow	105	0.10808

Table S58. 10 TDDFT triplet excitations of Re(4-PamH) from S₀ θ_{dihedral} = -37.275°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transit	tions
2.9166	425.09	0	95	\rightarrow	103	0.10267
			98	\rightarrow	103	-0.40154
			98	\rightarrow	104	-0.13964
			100	\rightarrow	103	-0.20524
			101	\rightarrow	103	0.47727
3.0803	402.50	0	100	\rightarrow	102	0.42478
			100	\rightarrow	103	0.11379
			101	\rightarrow	102	0.50171
3.1160	397.89	0	100	\rightarrow	103	0.60261
			101	\rightarrow	103	0.29590
3.2126	385.94	0	100	\rightarrow	102	0.52062
			101	\rightarrow	102	-0.46036
3.2670	379.50	0	98	\rightarrow	103	0.50770
			98	\rightarrow	104	0.10447
			100	\rightarrow	103	-0.21202
			101	\rightarrow	103	0.39026

3.3791	366.91	0	99	\rightarrow	102	0.12682
			99	\rightarrow	103	0.67865
3.4138	363.19	0	99	\rightarrow	102	0.67991
			99	\rightarrow	103	-0.12650
3.8463	322.35	0	97	\rightarrow	102	0.68229
3.8874	318.94	0	95	\rightarrow	103	-0.11694
			95	\rightarrow	104	0.10756
			96	\rightarrow	105	0.12078
			96	\rightarrow	106	-0.16750
			98	\rightarrow	103	-0.23361
			98	\rightarrow	104	0.45994
			98	\rightarrow	105	0.21541
			100	\rightarrow	104	-0.11083
			100	\rightarrow	105	0.11610
			100	\rightarrow	106	-0.18436
3.9766	311.79	0	91	\rightarrow	102	-0.18680
			92	\rightarrow	102	-0.22657
			93	\rightarrow	102	-0.13312
			96	\rightarrow	102	-0.10217
			97	\rightarrow	104	0.22699
			97	\rightarrow	105	-0.31466
			97	\rightarrow	106	-0.23298
			98	\rightarrow	102	0.15449
			100	\rightarrow	102	-0.12073
			100	\rightarrow	104	-0.17838
			101	\rightarrow	102	-0.10441
			101	\rightarrow	105	-0.11238

Table S59. 10 TDDFT trip	olet excitations of Re(4-Pa	mH) from S ₀ θ _{dihedral} = -	22.275°, B3LYP/LAL2D2	.[Re]+6-
311G(d.p)[H,C,N,O]/PCM	(ACN).			

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
2.9114	425.85	0	98	\rightarrow	103	-0.39345
			98	\rightarrow	104	-0.13473
			100	\rightarrow	103	-0.19954
			101	\rightarrow	103	0.48132
3.0335	408.72	0	100	\rightarrow	102	0.26225
			100	\rightarrow	103	0.10279
			101	\rightarrow	102	0.61049
3.1226	397.05	0	100	\rightarrow	103	0.58563
			101	\rightarrow	102	-0.11757
			101	\rightarrow	103	0.32004
3.2050	386.84	0	98	\rightarrow	103	-0.11464
			100	\rightarrow	102	0.62856

1						1
			101	\rightarrow	102	-0.26587
3.2623	380.06	0	98	\rightarrow	103	0.49601
			99	\rightarrow	103	0.10997
			100	\rightarrow	102	0.11161
			100	\rightarrow	103	-0.24922
			101	\rightarrow	103	0.36437
3.3575	369.27	0	99	\rightarrow	102	0.48156
			99	\rightarrow	103	0.48849
3.3999	364.67	0	99	\rightarrow	102	0.50019
			99	\rightarrow	103	-0.47602
3.8185	324.69	0	97	\rightarrow	102	0.68342
			97	\rightarrow	109	-0.10347
3.8881	318.88	0	95	\rightarrow	103	0.10623
			95	\rightarrow	104	-0.11362
			95	\rightarrow	106	-0.10465
			96	\rightarrow	105	0.15799
			98	\rightarrow	103	-0.22771
			98	\rightarrow	104	0.46453
			98	\rightarrow	105	0.16047
			98	\rightarrow	106	0.16735
			100	\rightarrow	104	-0.10931
			100	\rightarrow	105	0.15919
			100	\rightarrow	106	-0.13061
3.9545	313.53	0	91	\rightarrow	102	-0.21323
			92	\rightarrow	102	-0.25952
			93	\rightarrow	102	-0.13601
			96	\rightarrow	102	-0.12970
			97	\rightarrow	104	0.26433
			97	\rightarrow	105	-0.21328
			97	\rightarrow	106	-0.33857
			98	\rightarrow	102	0.15458
			100	\rightarrow	102	-0.10166
			100	\rightarrow	104	-0.10652
			101	\rightarrow	102	-0.13672

Table S60. 10 TDDFT triplet excitations of Re(4-PamH) from S₀ $\theta_{dihedral} = -7.275^{\circ}$, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator			Tranci	tions
(eV)	(nm)	Strength			IIdiisi	tions
2.9073	426.47	0	98	\rightarrow	103	-0.38155
			98	\rightarrow	104	-0.13324
			100	\rightarrow	103	-0.15848
			101	\rightarrow	102	0.1678
			101	\rightarrow	103	0.48348

3.0320	408.91	0	100	\rightarrow	102	0.17803
			101	\rightarrow	102	0.63088
3.1314	395.93	0	100	\rightarrow	102	0.15545
			100	\rightarrow	103	0.58656
			101	\rightarrow	103	0.28268
3.2365	383.08	0	98	\rightarrow	103	-0.33714
			100	\rightarrow	102	0.5191
			101	\rightarrow	102	-0.14015
			101	\rightarrow	103	-0.26214
3.2554	380.85	0	98	\rightarrow	103	0.36835
			99	\rightarrow	103	0.11413
			100	\rightarrow	102	0.40025
			100	\rightarrow	103	-0.26386
			101	\rightarrow	103	0.2878
3.3536	369.7	0	99	\rightarrow	102	0.41715
			99	\rightarrow	103	0.53226
			100	\rightarrow	103	0.13284
3.4131	363.26	0	99	\rightarrow	102	0.55418
			99	\rightarrow	103	-0.41347
3.8306	323.67	0	97	\rightarrow	102	0.67718
			97	\rightarrow	109	-0.10588
3.8880	318.89	0	95	\rightarrow	105	0.15033
			96	\rightarrow	105	-0.14032
			98	\rightarrow	103	-0.23717
			98	\rightarrow	104	0.47217
			98	\rightarrow	106	0.20412
			100	\rightarrow	105	0.20089
3.9516	313.76	0	91	\rightarrow	102	-0.22552
			92	\rightarrow	102	-0.26153
			93	\rightarrow	102	-0.10445
			96	\rightarrow	102	0.13947
			97	\rightarrow	104	0.25477
			97	\rightarrow	105	0.15517
			97	\rightarrow	106	-0.37623
			98	\rightarrow	102	0.11422
			101	\rightarrow	102	-0.14503
			101	\rightarrow	107	-0.12256

Table S61	. 10 TDDFT	triplet excitations	of Re(4-PamH)	from S ₀ θ _{dihedral}	= 7.725°,	B3LYP/LAL2DZ	ː[Re]+6-
311G(d.p)[[H,C,N,O]/P	CM(ACN).					

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
2.8982	427.80	0	98	\rightarrow	103	-0.36531
			98	\rightarrow	104	-0.12914

			100	\rightarrow	103	-0.10357
			101	\rightarrow	102	0.23450
			101	\rightarrow	103	0.48552
2.9923	414.35	0	98	\rightarrow	103	0.12250
			100	\rightarrow	102	0.10718
			101	\rightarrow	102	0.62811
			101	\rightarrow	103	-0.17181
3.1383	395.07	0	99	\rightarrow	103	-0.11762
			100	\rightarrow	102	0.23694
			100	\rightarrow	103	0.59041
			101	\rightarrow	103	0.21082
3.2309	383.75	0	98	\rightarrow	102	0.10188
			98	\rightarrow	103	0.47246
			98	\rightarrow	104	0.10370
			100	\rightarrow	102	-0.26792
			101	\rightarrow	103	0.38620
3.2481	381.71	0	98	\rightarrow	103	0.16471
			100	\rightarrow	102	0.59045
			100	\rightarrow	103	-0.27021
			101	\rightarrow	103	0.12322
3.3362	371.63	0	99	\rightarrow	102	0.49085
			99	\rightarrow	103	0.46167
			100	\rightarrow	103	0.15270
3.3939	365.31	0	99	\rightarrow	102	0.48887
			99	\rightarrow	103	-0.48674
3.8176	324.77	0	97	\rightarrow	102	0.67577
			97	\rightarrow	109	-0.10539
3.8890	318.81	0	95	\rightarrow	105	-0.13311
			96	\rightarrow	106	-0.12941
			98	\rightarrow	103	-0.23798
			98	\rightarrow	104	0.47170
			98	\rightarrow	105	0.14584
			98	\rightarrow	106	0.14082
			100	\rightarrow	105	-0.16837
			100	\rightarrow	106	0.13478
			101	\rightarrow	104	0.11128
3.9422	314.51	0	91	\rightarrow	102	0.23055
			92	\rightarrow	102	0.26449
			96	\rightarrow	102	-0.13532
			97	\rightarrow	104	0.23067
			97	\rightarrow	105	-0.28411
			97	\rightarrow	106	-0.28749
			98	\rightarrow	102	-0.13266
			101	\rightarrow	102	0.14072
						1

101	\rightarrow	104	0.12561
101	\rightarrow	107	0.16511

Table S62. 10 TDDFT triplet exci	tations of Re(4-PamH) from S	$\boldsymbol{\delta}_0 \boldsymbol{\theta}_{dihedral} = 22.725^\circ,$	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).			

Energy	Wavelength	Oscillator			Tranci	tions
(eV)	(nm)	Strength			TIAIISI	tions
2.8976	427.88	0	98	\rightarrow	103	0.38016
			98	\rightarrow	104	0.13820
			101	\rightarrow	102	0.11720
			101	\rightarrow	103	0.52624
2.9665	417.95	0	101	\rightarrow	102	0.66562
3.1491	393.72	0	99	\rightarrow	103	0.13910
			100	\rightarrow	102	0.10360
			100	\rightarrow	103	0.64630
			101	\rightarrow	103	-0.12537
3.2215	384.87	0	98	\rightarrow	103	0.51877
			98	\rightarrow	104	0.11923
			100	\rightarrow	103	-0.12288
			101	\rightarrow	103	-0.41588
3.2524	381.20	0	100	\rightarrow	102	0.68745
3.3439	370.78	0	99	\rightarrow	102	0.31902
			99	\rightarrow	103	0.59897
			100	\rightarrow	103	-0.15327
3.3707	367.83	0	99	\rightarrow	102	0.61783
			99	\rightarrow	103	-0.31432
3.8196	324.60	0	97	\rightarrow	102	0.67993
			97	\rightarrow	109	-0.10345
3.8903	318.70	0	95	\rightarrow	105	0.10930
			95	\rightarrow	106	-0.10497
			96	\rightarrow	106	-0.14119
			98	\rightarrow	103	-0.23136
			98	\rightarrow	104	0.48078
			98	\rightarrow	105	0.14958
			100	\rightarrow	105	-0.15224
			100	\rightarrow	106	0.16622
			101	\rightarrow	104	-0.13124
3.9451	314.27	0	91	\rightarrow	102	-0.23966
			92	\rightarrow	102	-0.25767
			96	\rightarrow	102	-0.11798
			97	\rightarrow	104	0.17016
			97	\rightarrow	105	-0.34546
			97	\rightarrow	106	-0.24164
			98	\rightarrow	102	-0.13952

101	\rightarrow	102	-0.13668
101	\rightarrow	104	-0.11649
101	\rightarrow	105	0.12217
101	\rightarrow	107	-0.18949
101 101	\rightarrow \rightarrow	105 107	0.12217 -0.18949

Table S63	. 10 TDDFT	triplet e	xcitations	of Re(4-PamH)	from S	$_0 \theta_{dihedral} =$	= 37.725°,	B3LYP/LAL	_2DZ[Re]+6	-
311G(d.p)	[H,C,N,O]/P	CM(ACN).							

Energy	Wavelength	Oscillator			Transiti	ons
(eV)	(nm)	Strength			110115111	0115
2.8944	428.35	0	95	\rightarrow	103	0.10722
			98	\rightarrow	103	0.38210
			98	\rightarrow	104	0.14972
			101	\rightarrow	103	0.54056
2.9498	420.31	0	101	\rightarrow	102	0.67641
3.1513	393.44	0	99	\rightarrow	103	0.14946
			100	\rightarrow	103	0.66618
3.2158	385.54	0	98	\rightarrow	103	0.52641
			98	\rightarrow	104	0.13187
			100	\rightarrow	102	0.10384
			101	\rightarrow	103	-0.42350
3.2480	381.72	0	100	\rightarrow	102	0.68902
3.3412	371.07	0	99	\rightarrow	102	-0.15460
			99	\rightarrow	103	0.66125
			100	\rightarrow	103	-0.15733
3.3541	369.65	0	99	\rightarrow	102	0.67812
			99	\rightarrow	103	0.15248
3.8133	325.14	0	97	\rightarrow	102	0.68172
			101	\rightarrow	105	0.10515
3.8915	318.60	0	95	\rightarrow	103	0.13126
			95	\rightarrow	104	-0.11265
			96	\rightarrow	105	-0.12020
			96	\rightarrow	106	0.18002
			98	\rightarrow	103	-0.22881
			98	\rightarrow	104	0.50923
			100	\rightarrow	105	0.15547
			100	\rightarrow	106	-0.17444
			101	\rightarrow	103	-0.10054
			101	\rightarrow	104	-0.13250
3.9430	314.44	0	91	\rightarrow	102	-0.24195
			92	\rightarrow	102	-0.25767
			95	\rightarrow	102	-0.15096
			97	\rightarrow	105	0.38757
			97	\rightarrow	106	0.23270
			98	\rightarrow	102	-0.14449

101	\rightarrow	102	-0.13573
101	\rightarrow	105	-0.18121
101	\rightarrow	107	-0.19430

Table S64	. 10 TDDFT	triplet	excitations	of Re(4-PamH) from S	$_0 \theta_{dihedral} =$	= 52.725°,	B3LYP/LAL	.2DZ[Re]+6-
311G(d.p)	[H,C,N,O]/P	CM(ACI	N).	-					

Energy	Wavelength	Oscillator			Tranci	tions
(eV)	(nm)	Strength			11 01151	tions
2.8928	428.59	0	98	\rightarrow	103	-0.36162
			98	\rightarrow	104	-0.13307
			101	\rightarrow	102	-0.23600
			101	\rightarrow	103	0.49957
2.9517	420.04	0	98	\rightarrow	103	-0.12027
			101	\rightarrow	102	0.63405
			101	\rightarrow	103	0.18948
3.1431	394.46	0	99	\rightarrow	103	0.13423
			100	\rightarrow	102	-0.21687
			100	\rightarrow	103	0.62317
			101	\rightarrow	103	0.11414
3.2221	384.79	0	98	\rightarrow	103	0.51473
			98	\rightarrow	104	0.11944
			100	\rightarrow	103	-0.10356
			101	\rightarrow	103	0.41795
3.2325	383.55	0	100	\rightarrow	102	0.66105
			100	\rightarrow	103	0.19619
3.3262	372.75	0	99	\rightarrow	102	0.54719
			99	\rightarrow	103	-0.40489
			100	\rightarrow	103	0.13633
3.3652	368.43	0	99	\rightarrow	102	0.42719
			99	\rightarrow	103	0.53878
			100	\rightarrow	103	-0.10027
3.8041	325.92	0	97	\rightarrow	102	0.67916
3.8904	318.69	0	95	\rightarrow	105	-0.10912
			95	\rightarrow	106	-0.10668
			96	\rightarrow	106	-0.13990
			98	\rightarrow	103	-0.23518
			98	\rightarrow	104	0.47911
			98	\rightarrow	105	-0.14928
			100	\rightarrow	105	0.15231
			100	\rightarrow	106	0.16719
			101	\rightarrow	104	0.13101
3.9369	314.93	0	91	\rightarrow	102	-0.23793
			92	\rightarrow	102	0.26357
			96	\rightarrow	102	0.12473

97	\rightarrow	104	-0.16934
97	\rightarrow	105	-0.34502
97	\rightarrow	106	0.24000
98	\rightarrow	102	0.16180
101	\rightarrow	102	-0.13794
101	\rightarrow	104	0.11103
101	\rightarrow	105	0.11964
101	\rightarrow	107	-0.17907

Table S65. 10 TDDFT triplet excitations of Re(4-PamH) from S₀ θ_{dihedral} = 67.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator			Transi	tions
(eV)	(nm)	Strength				
2.8967	428.02	0	98	\rightarrow	103	-0.36333
			98	\rightarrow	104	-0.12853
			100	\rightarrow	103	-0.10536
			101	\rightarrow	102	-0.23880
			101	\rightarrow	103	0.48662
2.9733	416.99	0	98	\rightarrow	103	-0.12795
			100	\rightarrow	102	0.10329
			101	\rightarrow	102	0.62779
			101	\rightarrow	103	0.17570
3.1341	395.59	0	99	\rightarrow	103	0.11553
			100	\rightarrow	102	-0.23976
			100	\rightarrow	103	0.59241
			101	\rightarrow	103	0.20636
3.2198	385.07	0	98	\rightarrow	103	0.20152
			100	\rightarrow	102	0.61334
			100	\rightarrow	103	0.15907
			101	\rightarrow	103	0.17869
3.2362	383.12	0	98	\rightarrow	103	0.46206
			99	\rightarrow	103	-0.13293
			100	\rightarrow	102	-0.20896
			100	\rightarrow	103	-0.22426
			101	\rightarrow	103	0.36287
3.3274	372.61	0	99	\rightarrow	102	0.56293
			99	\rightarrow	103	-0.37773
			100	\rightarrow	103	0.13336
3.3789	366.93	0	99	\rightarrow	102	0.40433
			99	\rightarrow	103	0.55409
3.8014	326.15	0	97	\rightarrow	102	0.67982
3.8883	318.86	0	95	\rightarrow	105	-0.12932
			96	\rightarrow	106	-0.13027
			98	\rightarrow	103	-0.24223

			98	\rightarrow	104	0.46883
			98	\rightarrow	105	0.14740
			98	\rightarrow	106	0.13263
			100	\rightarrow	105	-0.16546
			100	\rightarrow	106	0.13914
			101	\rightarrow	104	0.10803
3.9349	315.09	0	91	\rightarrow	102	0.23345
			92	\rightarrow	102	0.27053
			96	\rightarrow	102	0.13848
			97	\rightarrow	104	-0.22504
			97	\rightarrow	105	0.29195
			97	\rightarrow	106	0.27876
			98	\rightarrow	102	0.16210
			101	\rightarrow	102	-0.14236
			101	\rightarrow	104	0.11861
			101	\rightarrow	107	-0.15137

Table S66. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ θ _{dihedral} = 82.725°, B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength	Transitions				
2.9060	426.65	0	98	\rightarrow	103	-0.38090	
			98	\rightarrow	104	-0.13270	
			100	\rightarrow	103	-0.15970	
			101	\rightarrow	102	-0.15992	
			101	\rightarrow	103	0.48801	
3.0233	410.09	0	100	\rightarrow	102	0.17171	
			101	\rightarrow	102	0.63500	
3.1295	396.18	0	100	\rightarrow	102	-0.14885	
			100	\rightarrow	103	0.58767	
			101	\rightarrow	103	0.28506	
3.2313	383.69	0	98	\rightarrow	103	0.27998	
			100	\rightarrow	102	0.57479	
			101	\rightarrow	102	-0.14712	
			101	\rightarrow	103	0.21677	
3.2542	381.00	0	98	\rightarrow	103	0.41735	
			99	\rightarrow	103	-0.12337	
			100	\rightarrow	102	-0.32175	
			100	\rightarrow	103	-0.26197	
			101	\rightarrow	103	0.31613	
3.3501	370.09	0	99	\rightarrow	102	-0.43981	
			99	\rightarrow	103	0.51474	
			100	\rightarrow	103	-0.12918	
3.4058	364.03	0	99	\rightarrow	102	0.53637	

			99	\rightarrow	103	0.43553
3.8243	324.20	0	97	\rightarrow	102	0.67930
3.8873	318.94	0	95	\rightarrow	104	-0.10026
			95	\rightarrow	105	0.14854
			96	\rightarrow	105	-0.14212
			98	\rightarrow	103	-0.23640
			98	\rightarrow	104	0.47184
			98	\rightarrow	106	0.20485
			100	\rightarrow	105	0.20023
3.9494	313.93	0	91	\rightarrow	102	0.22592
			92	\rightarrow	102	0.26402
			93	\rightarrow	102	-0.10484
			96	\rightarrow	102	0.13999
			97	\rightarrow	104	0.25380
			97	\rightarrow	105	0.15209
			97	\rightarrow	106	-0.37679
			98	\rightarrow	102	0.11995
			101	\rightarrow	102	-0.14391
			101	\rightarrow	107	-0.13255

Table S67. 10 TDDFT triplet excitations of Re(4-PamH) from S₀ $\theta_{dihedral}$ = 97.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator	Transitions				
(eV)	(nm)	Strength			1101131	10113	
2.9158	425.22	0	98	\rightarrow	103	-0.39720	
			98	\rightarrow	104	-0.13428	
			100	\rightarrow	103	-0.19826	
			101	\rightarrow	102	-0.10258	
			101	\rightarrow	103	0.47639	
3.0215	410.34	0	100	\rightarrow	102	0.27051	
			101	\rightarrow	102	0.60695	
3.1272	396.47	0	100	\rightarrow	103	0.58303	
			101	\rightarrow	102	0.12706	
			101	\rightarrow	103	0.31501	
3.1880	388.91	0	98	\rightarrow	103	0.10363	
			100	\rightarrow	102	0.62329	
			101	\rightarrow	102	-0.26895	
3.2645	379.80	0	98	\rightarrow	103	0.49588	
			99	\rightarrow	103	-0.10812	
			100	\rightarrow	103	-0.24726	
			101	\rightarrow	103	0.37206	
3.3495	370.15	0	99	\rightarrow	102	0.57921	
			99	\rightarrow	103	-0.37102	
3.3988	364.79	0	99	\rightarrow	102	0.38195	

			99	\rightarrow	103	0.57248
3.8078	325.60	0	97	\rightarrow	102	0.68445
3.8876	318.92	0	95	\rightarrow	103	0.10607
			95	\rightarrow	104	-0.11153
			95	\rightarrow	106	-0.10618
			96	\rightarrow	105	0.15749
			98	\rightarrow	103	-0.22717
			98	\rightarrow	104	0.46372
			98	\rightarrow	105	0.16752
			98	\rightarrow	106	0.16740
			100	\rightarrow	104	-0.10517
			100	\rightarrow	105	0.15609
			100	\rightarrow	106	-0.13307
3.9481	314.04	0	91	\rightarrow	102	0.22036
			92	\rightarrow	102	0.25524
			93	\rightarrow	102	-0.13670
			96	\rightarrow	102	-0.13081
			97	\rightarrow	104	0.26577
			97	\rightarrow	105	-0.21459
			97	\rightarrow	106	-0.32750
			98	\rightarrow	102	0.19459
			100	\rightarrow	102	-0.10144
			101	\rightarrow	102	-0.13281

Table S68. 10 TDDFT triplet excitations of Re(4-PamH) from S₀ θ_{dihedral} = 112.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

ĺ	Energy	Wavelength	Oscillator	Transitions			tions
	(eV)	(nm)	Strength			TTatist	10113
	2.9188	424.77	0	95	\rightarrow	103	-0.10309
				98	\rightarrow	103	0.40461
				98	\rightarrow	104	0.13761
				100	\rightarrow	103	0.19671
				101	\rightarrow	103	0.47890
	3.0265	409.66	0	100	\rightarrow	102	-0.44149
				101	\rightarrow	102	0.50242
	3.1210	397.26	0	100	\rightarrow	103	0.61485
				101	\rightarrow	103	-0.28898
	3.1520	393.35	0	100	\rightarrow	102	0.51821
				101	\rightarrow	102	0.46842
	3.2681	379.37	0	98	\rightarrow	103	0.50847
				98	\rightarrow	104	0.10210
				100	\rightarrow	103	-0.21169
				101	\rightarrow	103	-0.39832
	3.3476	370.37	0	99	\rightarrow	102	0.65631

			99	\rightarrow	103	0.22022
3.3873	366.03	0	99	\rightarrow	102	-0.22137
			99	\rightarrow	103	0.65542
3.8056	325.79	0	97	\rightarrow	102	0.68662
3.8862	319.03	0	95	\rightarrow	103	-0.11546
			95	\rightarrow	104	0.10318
			96	\rightarrow	105	0.11057
			96	\rightarrow	106	-0.17469
			98	\rightarrow	102	-0.12036
			98	\rightarrow	103	-0.23555
			98	\rightarrow	104	0.44951
			98	\rightarrow	105	0.23282
			100	\rightarrow	104	-0.10541
			100	\rightarrow	105	0.10473
			100	\rightarrow	106	-0.18418
3.9549	313.50	0	91	\rightarrow	102	0.21692
			92	\rightarrow	102	0.25119
			93	\rightarrow	102	0.15682
			96	\rightarrow	102	0.11798
			97	\rightarrow	104	-0.25618
			97	\rightarrow	105	0.33225
			97	\rightarrow	106	0.23262
			98	\rightarrow	102	-0.18481
			100	\rightarrow	102	0.13122
			101	\rightarrow	102	-0.10256
			100	\rightarrow	102	-0.10144
			101	\rightarrow	102	-0.13281

Table S69. 10 TDDFT triplet excitations of Re(4-PamH) from S₀ $\theta_{dihedral}$ = 127.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength	Transitions			
2.9194	424.69	0	95	\rightarrow	103	-0.10977
			98	\rightarrow	103	-0.4049
			98	\rightarrow	104	-0.16199
			101	\rightarrow	103	0.51089
3.0204	410.49	0	92	\rightarrow	102	0.11804
			100	\rightarrow	102	0.67032
3.1176	397.69	0	100	\rightarrow	103	0.68446
3.1308	396.01	0	101	\rightarrow	102	0.69887
3.2705	379.1	0	98	\rightarrow	103	0.5053
			98	\rightarrow	104	0.11996
			101	\rightarrow	103	0.45643
3.338	371.44	0	99	\rightarrow	102	0.69157

			100	\rightarrow	102	0.1111
3.3848	366.29	0	99	\rightarrow	103	0.69358
3.8034	325.99	0	97	\rightarrow	102	0.68691
3.8869	318.98	0	95	\rightarrow	103	0.11864
			95	\rightarrow	104	-0.10614
			96	\rightarrow	106	0.19398
			98	\rightarrow	102	-0.14262
			98	\rightarrow	103	-0.24689
			98	\rightarrow	104	0.50316
			100	\rightarrow	105	0.13439
			100	\rightarrow	106	-0.21334
3.9566	313.36	0	92	\rightarrow	102	0.32897
			93	\rightarrow	102	-0.15361
			96	\rightarrow	102	0.10997
			97	\rightarrow	105	-0.44581
			97	\rightarrow	106	-0.20461
			100	\rightarrow	102	-0.16961
			101	\rightarrow	105	-0.10673

Table S70. 10 TDDFT triplet excitations of Re(4-PamH) from S₀ θ_{dihedral} = 142.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

	Energy (eV)	Wavelength (nm)	Oscillator Strength	Transitions			tions
ŀ	2.9172	425.01	0	95	\rightarrow	103	0.10407
				98	\rightarrow	103	-0.40329
				98	\rightarrow	104	-0.13939
				100	\rightarrow	103	-0.20721
				101	\rightarrow	103	0.47300
ſ	3.0289	409.34	0	100	\rightarrow	102	0.44443
				101	\rightarrow	102	0.50314
ſ	3.1167	397.81	0	100	\rightarrow	103	0.60691
				101	\rightarrow	103	0.30827
	3.1546	393.03	0	100	\rightarrow	102	0.51332
				101	\rightarrow	102	-0.47185
	3.2681	379.38	0	98	\rightarrow	103	0.50788
				98	\rightarrow	104	0.10356
				100	\rightarrow	103	-0.22145
				101	\rightarrow	103	0.39378
	3.3541	369.65	0	99	\rightarrow	102	0.68729
	3.3835	366.43	0	99	\rightarrow	103	0.68601
	3.8079	325.60	0	97	\rightarrow	102	0.68585
				97	\rightarrow	109	-0.10099
	3.8879	318.90	0	95	\rightarrow	103	-0.11790
				95	\rightarrow	104	0.10385

			96	\rightarrow	105	0.10653
			96	\rightarrow	106	-0.18000
			98	\rightarrow	103	-0.23657
			98	\rightarrow	104	0.45438
			98	\rightarrow	105	0.23189
			100	\rightarrow	104	-0.10507
			100	\rightarrow	105	0.10084
			100	\rightarrow	106	-0.18963
3.9549	313.50	0	91	\rightarrow	102	-0.20165
			92	\rightarrow	102	-0.25613
			93	\rightarrow	102	-0.14714
			96	\rightarrow	102	-0.11077
			97	\rightarrow	104	0.24403
			97	\rightarrow	105	-0.34069
			97	\rightarrow	106	-0.21732
			98	\rightarrow	102	0.19314
			100	\rightarrow	102	-0.12620
			101	\rightarrow	102	-0.10326

Table S71. 10 TDDFT triplet excitations of Re(4-PamH) from S ₀ θ _{dihedral} = 157.725°, B3LYP/LAL2DZ[Re]+	6-
311G(d.p)[H,C,N,O]/PCM(ACN).	

Energy (eV)	Wavelength (nm)	Oscillator Strength	Transitions			
2.9153	425.29	0	98	\rightarrow	103	-0.39991
			98	\rightarrow	104	-0.13679
			100	\rightarrow	103	-0.20891
			101	\rightarrow	103	0.47914
3.0447	407.21	0	100	\rightarrow	102	0.27217
			101	\rightarrow	102	0.61370
3.1226	397.05	0	100	\rightarrow	103	0.59345
			101	\rightarrow	103	0.32612
3.2094	386.31	0	100	\rightarrow	102	0.63258
			101	\rightarrow	102	-0.29441
3.2634	379.92	0	98	\rightarrow	103	0.50768
			98	\rightarrow	104	0.10160
			99	\rightarrow	103	0.10172
			100	\rightarrow	103	-0.24456
			101	\rightarrow	103	0.37118
3.3755	367.31	0	99	\rightarrow	102	0.33183
			99	\rightarrow	103	0.60082
3.3965	365.04	0	99	\rightarrow	102	0.61028
			99	\rightarrow	103	-0.32676
3.8258	324.08	0	97	\rightarrow	102	0.68389
			97	\rightarrow	109	-0.10181

3.8882	318.88	0	95	\rightarrow	103	0.10531
			95	\rightarrow	104	-0.11566
			95	\rightarrow	106	-0.11011
			96	\rightarrow	105	0.14502
			96	\rightarrow	106	-0.10948
			98	\rightarrow	103	-0.22609
			98	\rightarrow	104	0.46367
			98	\rightarrow	105	0.17795
			98	\rightarrow	106	0.14769
			100	\rightarrow	104	-0.11409
			100	\rightarrow	105	0.14286
			100	\rightarrow	106	-0.14732
3.9580	313.25	0	91	\rightarrow	102	-0.21168
			92	\rightarrow	102	-0.25617
			93	\rightarrow	102	-0.13470
			96	\rightarrow	102	-0.12519
			97	\rightarrow	104	0.26052
			97	\rightarrow	105	-0.24969
			97	\rightarrow	106	-0.31274
			98	\rightarrow	102	0.13612
			100	\rightarrow	102	-0.10363
			100	\rightarrow	104	-0.12460
			101	\rightarrow	102	-0.13353

Re(4-EtPy) TDDFT Tables

Table S72. 6 TDDFT singlet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = -82.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Trans	sitions
3.1567	392.76	0.0087	97	\rightarrow	99	-0.23671
			98	\rightarrow	99	0.66204
3.3051	375.13	0.0618	96	\rightarrow	99	-0.22874
			97	\rightarrow	99	0.62908
			98	\rightarrow	99	0.21344
3.4078	363.82	0.0277	96	\rightarrow	99	0.66419
			97	\rightarrow	99	0.20443
			98	\rightarrow	99	0.10554
4.1095	301.70	0.0582	95	\rightarrow	99	-0.44002
			97	\rightarrow	100	-0.22840
			98	\rightarrow	100	0.47792
4.2031	294.98	0.0585	95	\rightarrow	99	0.31250
			97	\rightarrow	100	0.22835
			97	\rightarrow	101	-0.12077
			98	\rightarrow	100	0.45851

			98	\rightarrow	101	-0.30179
			98	\rightarrow	102	0.11966
4.2585	291.14	0.0176	97	\rightarrow	100	0.16044
			97	\rightarrow	101	0.54435
			97	\rightarrow	103	0.10622
			98	\rightarrow	101	-0.33792

Table S73. 6 TDDFT singlet excitation	ons of Re(4-EtPy) from S ₀ θ _{dihed}	_{lral} = -67.725°, B3LYP/LAL2DZ[Re]+6
311G(d.p)[H,C,N,O]/PCM(ACN).		

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
3.1786	390.06	0.0060	97	\rightarrow	99	0.41825
			98	\rightarrow	99	0.56572
3.2875	377.14	0.0757	96	\rightarrow	99	0.16183
			97	\rightarrow	99	0.55273
			98	\rightarrow	99	-0.40255
3.3965	365.03	0.0138	96	\rightarrow	99	0.68423
			97	\rightarrow	99	-0.11790
			98	\rightarrow	99	0.11226
4.1136	301.40	0.0657	95	\rightarrow	99	0.45730
			97	\rightarrow	100	0.34422
			98	\rightarrow	100	0.37805
4.2192	293.86	0.0379	95	\rightarrow	99	-0.21205
			97	\rightarrow	100	-0.25875
			98	\rightarrow	100	0.55904
			98	\rightarrow	101	-0.21191
			98	\rightarrow	102	0.13907
4.2337	292.85	0.0431	95	\rightarrow	99	-0.26588
			97	\rightarrow	100	0.43877
			97	\rightarrow	101	0.43698
			97	\rightarrow	103	0.11407
			98	\rightarrow	102	0.14227

Table \$	S74. 6	5 TDDFT	singlet	excitations	of Re	(4-EtPy)	from	S ₀ θ _{dihedra}	_{al} = -52.275,	B3LYP/L	AL2DZ[Re]+6	ô-
311G(d	l.p)[H	,C,N,O]/F	PCM(AC	N).								

Energy	Wavelength	Oscillator		Transitions			
(eV)	(nm)	Strength		Transitions			
3.1876	388.96	0.0024	97	\rightarrow	99	0.70382	
3.2780	378.23	0.0838	96	\rightarrow	99	0.13019	
			98	\rightarrow	99	0.69060	
3.3930	365.41	0.0087	96	\rightarrow	99	0.69133	
			98	\rightarrow	99	-0.13004	
4.1139	301.38	0.0665	95	\rightarrow	99	-0.45726	
			97	\rightarrow	100	0.51104	

			98	\rightarrow	102	0.12813
4.2221	293.66	0.0253	97	\rightarrow	102	-0.13446
			98	\rightarrow	100	0.67545
4.2303	293.08	0.0778	95	\rightarrow	99	0.35635
			97	\rightarrow	100	0.41501
			97	\rightarrow	101	-0.31040
			98	\rightarrow	102	-0.27781

Table S75. 6 TDDFT singlet excitations	of Re(4-EtPy) from S ₀ θ _{dihedral}	= -37.275°, B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		

Energy	Wavelength	Oscillator	Transitions			
(ev)	(nm)	Strength				
3.1774	390.20	0.0056	97	\rightarrow	99	0.41542
			98	\rightarrow	99	0.56785
3.2867	377.23	0.0766	96	\rightarrow	99	-0.15925
			97	\rightarrow	99	0.55511
			98	\rightarrow	99	-0.40035
3.3958	365.11	0.0134	96	\rightarrow	99	0.68485
			97	\rightarrow	99	0.11677
			98	\rightarrow	99	-0.10957
4.1143	301.35	0.0676	95	\rightarrow	99	0.46190
			97	\rightarrow	100	0.34009
			98	\rightarrow	100	0.37524
4.2225	293.62	0.0381	95	\rightarrow	99	-0.21518
			97	\rightarrow	100	-0.24587
			98	\rightarrow	100	0.56071
			98	\rightarrow	101	0.21124
			98	\rightarrow	102	0.14708
4.2339	292.84	0.0367	95	\rightarrow	99	0.24763
			97	\rightarrow	100	-0.43107
			97	\rightarrow	101	0.45410
			98	\rightarrow	102	-0.13913

Table S76. 6 TDDFT singlet excitations	of Re(4-EtPy) from S	$_0 \theta_{dihedral} = -22.275^\circ$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).			

Energy	Wavelength	Oscillator		Transitions		
(eV)	(nm)	Strength			IId	IISILIOIIS
3.1528	393.26	0.0087	97	\rightarrow	99	-0.23082
			98	\rightarrow	99	0.66413
3.3017	375.51	0.0612	96	\rightarrow	99	0.22969
			97	\rightarrow	99	0.63074
			98	\rightarrow	99	0.20762
3.4050	364.13	0.0281	96	\rightarrow	99	0.66384
			97	\rightarrow	99	-0.20615

			98	\rightarrow	99	-0.10420
4.1079	301.82	0.0564	95	\rightarrow	99	0.43566
			97	\rightarrow	100	-0.22800
			98	\rightarrow	100	0.48224
4.1997	295.22	0.0603	95	\rightarrow	99	-0.31514
			97	\rightarrow	100	0.23874
			97	\rightarrow	101	0.11075
			98	\rightarrow	100	0.45668
			98	\rightarrow	101	0.29687
			98	\rightarrow	102	0.11906
4.2579	291.18	0.0221	97	\rightarrow	101	0.51969
			97	\rightarrow	102	-0.10243
			98	\rightarrow	101	-0.39283
			98	\rightarrow	103	-0.10350

Table S77. 6 TDDFT sin	iglet excitations of	Re(4-EtPy) from	$S_0 \theta_{dihedral} = -7.275^\circ$,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM	I(ACN).			

Energy	Wavelength	Oscillator			Tran	sitions
(eV)	(nm)	Strength			man	SILIOIIS
3.1237	396.91	0.0070	97	\rightarrow	99	-0.12461
			98	\rightarrow	99	0.69193
3.3080	374.81	0.0432	96	\rightarrow	99	0.30495
			97	\rightarrow	99	0.62581
3.4158	362.97	0.0488	96	\rightarrow	99	0.63233
			97	\rightarrow	99	-0.29336
4.0858	303.45	0.0397	95	\rightarrow	99	-0.36839
			97	\rightarrow	100	-0.13562
			98	\rightarrow	100	0.56863
4.1905	295.87	0.0977	95	\rightarrow	99	0.39045
			97	\rightarrow	100	0.30788
			97	\rightarrow	101	0.14088
			97	\rightarrow	103	0.10955
			98	\rightarrow	100	0.35289
			98	\rightarrow	101	0.25704
			98	\rightarrow	102	0.10007
4.2583	291.16	0.0403	97	\rightarrow	100	-0.25909
			97	\rightarrow	101	-0.35787
			97	\rightarrow	102	0.14607
			97	\rightarrow	105	0.10903
			98	\rightarrow	101	0.44287
			98	\rightarrow	102	-0.12032
			98	\rightarrow	103	0.17745

Table S78. 6 TDDFT singlet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 7.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
3.0929	400.86	0.0047	98	\rightarrow	99	0.70092
3.3098	374.60	0.0306	96	\rightarrow	99	0.36360
			97	\rightarrow	99	0.60071
3.4197	362.56	0.0641	96	\rightarrow	99	0.60077
			97	\rightarrow	99	-0.35847
4.0632	305.14	0.0352	95	\rightarrow	99	-0.33013
			98	\rightarrow	100	0.60359
4.1943	295.60	0.1313	95	\rightarrow	99	0.40043
			97	\rightarrow	100	0.28695
			97	\rightarrow	101	0.16892
			97	\rightarrow	103	0.12286
			98	\rightarrow	100	0.24932
			98	\rightarrow	101	0.32848
			98	\rightarrow	103	0.10700
4.2285	293.21	0.0438	97	\rightarrow	100	-0.30834
			97	\rightarrow	101	-0.33654
			97	\rightarrow	103	-0.11542
			98	\rightarrow	101	0.41078
			98	\rightarrow	102	-0.19486
			98	\rightarrow	103	0.17004

Table S79. 6 TDDFT singlet excitations of Re(4-EtPy) from S ₀ θ_c	dihedral = 22.725°, B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).	

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
3.0701	403.84	0.0034	98	\rightarrow	99	0.70349
3.3121	374.34	0.0244	96	\rightarrow	99	0.40761
			97	\rightarrow	99	0.57321
3.4178	362.76	0.0716	96	\rightarrow	99	0.57227
			97	\rightarrow	99	-0.40458
4.0545	305.79	0.0296	95	\rightarrow	99	0.32775
			98	\rightarrow	100	0.60760
4.1726	297.14	0.1468	95	\rightarrow	99	-0.17075
			97	\rightarrow	105	0.10083
			98	\rightarrow	100	0.10469
			98	\rightarrow	101	0.60838
			98	\rightarrow	102	-0.10246
			98	\rightarrow	103	0.16320
			98	\rightarrow	104	0.15481
4.2087	294.59	0.0230	95	\rightarrow	99	-0.19877
			97	\rightarrow	100	0.31132

97	\rightarrow	101	0.52555
97	\rightarrow	103	0.18798
97	\rightarrow	104	0.15149

Table S80	. 6 TDDFT	singlet	excitations	of Re(4	-EtPy) from	n S₀ θ	dihedral =	37.725°,	B3LYP/LA	L2DZ[Re]+	+6-
311G(d.p)	[H,C,N,O]/I	PCM(ACN	۱).								

Energy	Wavelength	Oscillator			Transitions		
(eV)	(nm)	Strength			Transitions)	
3.0607	405.08	0.0031	98	\rightarrow	99	0.70405	
3.3135	374.18	0.0226	96	\rightarrow	99	0.42842	
			97	\rightarrow	99	0.55808	
3.4146	363.11	0.0733	96	\rightarrow	99	0.55708	
			97	\rightarrow	99	-0.42580	
4.0529	305.91	0.0232	95	\rightarrow	99	0.33447	
			98	\rightarrow	100	0.60584	
4.1532	298.53	0.1497	97	\rightarrow	105	0.10519	
			98	\rightarrow	101	0.64389	
			98	\rightarrow	102	-0.10827	
			98	\rightarrow	103	0.14432	
			98	\rightarrow	104	0.17084	
4.2058	294.79	0.0091	95	\rightarrow	99	-0.13021	
			97	\rightarrow	101	0.63709	
			97	\rightarrow	103	0.18625	
			97	\rightarrow	104	0.17974	

Table S81. 6 TDDFT singlet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 52.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator			Transition	s
(ev)	(nm)	Strength				
3.0692	403.97	0.0036	98	\rightarrow	99	0.70325
3.3113	374.43	0.0245	96	\rightarrow	99	-0.40866
			97	\rightarrow	99	0.57237
3.4152	363.04	0.0706	96	\rightarrow	99	0.57148
			97	\rightarrow	99	0.40541
4.0529	305.91	0.0299	95	\rightarrow	99	-0.32719
			98	\rightarrow	100	0.60813
4.1756	296.92	0.1423	95	\rightarrow	99	-0.17802
			97	\rightarrow	105	-0.10101
			98	\rightarrow	100	-0.10532
			98	\rightarrow	101	0.60456
			98	\rightarrow	102	0.10223
			98	\rightarrow	103	0.16793
			98	\rightarrow	104	0.15236
4.2118	294.37	0.0311	95	\rightarrow	99	-0.22422

97	\rightarrow	100	-0.31134
97	\rightarrow	101	0.50419
97	\rightarrow	103	0.1829
97	\rightarrow	104	0.14238
98	\rightarrow	102	-0.12385

Table S82	. 6 TDDFT	singlet exci	itations of Re	e(4-EtPy) from \$	$S_0 \theta_{dihedral} =$	67.725°,	B3LYP/LAL2DZ[Re]+6-
311G(d.p)	[H,C,N,O]/	PCM(ACN).					-	_

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitior	าร
3.0963	400.43	0.0054	98	\rightarrow	99	0.69971
3.3111	374.45	0.0327	96	\rightarrow	99	-0.35797
			97	\rightarrow	99	0.60317
3.4180	362.73	0.0611	96	\rightarrow	99	0.60419
			97	\rightarrow	99	0.35195
4.0658	304.94	0.0365	95	\rightarrow	99	-0.33241
			98	\rightarrow	100	0.60165
4.1919	295.77	0.1182	95	\rightarrow	99	0.40416
			97	\rightarrow	100	0.29883
			97	\rightarrow	101	-0.17407
			97	\rightarrow	103	-0.12472
			98	\rightarrow	100	0.26130
			98	\rightarrow	101	-0.30606
4.2360	292.69	0.0500	97	\rightarrow	100	0.29175
			97	\rightarrow	101	-0.32096
			97	\rightarrow	102	-0.10239
			97	\rightarrow	103	-0.10411
			97	\rightarrow	105	-0.10248
			98	\rightarrow	101	0.42755
			98	\rightarrow	102	0.19746
			98	\rightarrow	103	0.18597

Table S83. 6 TDDFT	singlet excitations of	f Re(4-EtPy) from	$S_0 \theta_{dihedral} = 82.725^\circ$, B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/	PCM(ACN).			

Energy	Wavelength	Oscillator			Tra	nsitions
(eV)	(nm)	Strength			ma	
3.1248	396.78	0.0076	97	\rightarrow	99	-0.13331
			98	\rightarrow	99	0.69023
3.3089	374.7	0.0440	96	\rightarrow	99	-0.30287
			97	\rightarrow	99	0.62551
			98	\rightarrow	99	0.10523
3.4149	363.07	0.0472	96	\rightarrow	99	0.63336
			97	\rightarrow	99	0.29018
4.0876	303.32	0.0408	95	\rightarrow	99	-0.37435

			97	\rightarrow	100	-0.14115
			98	\rightarrow	100	0.56401
4.1913	295.81	0.0942	95	\rightarrow	99	0.39132
			97	\rightarrow	100	0.29643
			97	\rightarrow	101	-0.13575
			97	\rightarrow	103	-0.10234
			98	\rightarrow	100	0.36428
			98	\rightarrow	101	-0.25626
			98	\rightarrow	102	0.10885
4.2628	290.85	0.0447	97	\rightarrow	100	0.23681
			97	\rightarrow	101	-0.35096
			97	\rightarrow	102	-0.12746
			97	\rightarrow	105	-0.11346
			98	\rightarrow	101	0.46245
			98	\rightarrow	102	0.12761
			98	\rightarrow	103	0.19260

Table S84. 6 TDDFT singlet excitations	of Re(4-EtPy) from	$S_0 \theta_{dihedral} = 97.72$	5°, B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).			

Energy	Wavelength	Oscillator	Transitions				
(eV)	(nm)	Strength			Transitions		
3.1572	392.70	0.0087	97	\rightarrow	99	-0.23616	
			98	\rightarrow	99	0.66222	
3.3042	375.23	0.0604	96	\rightarrow	99	-0.22831	
			97	\rightarrow	99	0.62953	
			98	\rightarrow	99	0.21286	
3.4078	363.83	0.0274	96	\rightarrow	99	0.66429	
			97	\rightarrow	99	0.20391	
			98	\rightarrow	99	0.10572	
4.1100	301.67	0.0587	95	\rightarrow	99	0.44132	
			97	\rightarrow	100	-0.23097	
			98	\rightarrow	100	0.47526	
4.2037	294.94	0.0581	95	\rightarrow	99	-0.31280	
			97	\rightarrow	100	0.23254	
			97	\rightarrow	101	-0.11380	
			98	\rightarrow	100	0.46517	
			98	\rightarrow	101	-0.29058	
			98	\rightarrow	102	0.12315	
4.2609	290.98	0.0199	97	\rightarrow	100	0.11688	
			97	\rightarrow	101	0.53390	
			98	\rightarrow	101	-0.36690	

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
3.1812	389.75	0.0059	97	\rightarrow	99	0.42282
			98	\rightarrow	99	0.56236
3.2896	376.90	0.0755	96	\rightarrow	99	0.15768
			97	\rightarrow	99	0.54995
			98	\rightarrow	99	-0.40797
3.3977	364.91	0.0127	96	\rightarrow	99	0.68525
			97	\rightarrow	99	-0.11469
			98	\rightarrow	99	0.10944
4.1156	301.26	0.0675	95	\rightarrow	99	0.46127
			97	\rightarrow	100	0.34367
			98	\rightarrow	100	0.37299
4.2223	293.64	0.0407	95	\rightarrow	99	-0.21804
			97	\rightarrow	100	-0.24163
			98	\rightarrow	100	0.56420
			98	\rightarrow	101	-0.20296
			98	\rightarrow	102	0.14792
4.2365	292.66	0.0407	95	\rightarrow	99	-0.25818
			97	\rightarrow	100	0.45005
			97	\rightarrow	101	0.43233
			97	\rightarrow	103	0.10755
			98	\rightarrow	102	0.14149

Table S85. 6 TDDFT singlet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 112.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Table S86. 6 TDDFT singlet excitations of Re(4-EtPy) from S ₀ $\theta_{dihedral}$ = 127.725°, B3LYP/LAL2DZ[Re]·	+6-
311G(d.p)[H,C,N,O]/PCM(ACN).	

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transi	tions
3.1873	388.99	0.0025	97	\rightarrow	99	0.69300
			98	\rightarrow	99	-0.12301
3.2770	378.35	0.0828	96	\rightarrow	99	-0.12373
			97	\rightarrow	99	0.12173
			98	\rightarrow	99	0.68097
3.3910	365.62	0.0076	96	\rightarrow	99	0.69252
			98	\rightarrow	99	0.12261
4.1125	301.48	0.0634	95	\rightarrow	99	-0.45089
			97	\rightarrow	100	0.51135
			98	\rightarrow	102	0.12793
4.2163	294.06	0.0294	97	\rightarrow	102	-0.13547
			98	\rightarrow	100	0.67359
4.2282	293.23	0.0796	95	\rightarrow	99	0.36207
			97	\rightarrow	100	0.42027
			97	\rightarrow	101	0.29665

Energy	Wavelength	Oscillator			Transitions	
(eV)	(nm)	Strength			Transitions	
3.1752	390.48	0.0066	97	\rightarrow	99	-0.39881
			98	\rightarrow	99	0.57958
3.2872	377.17	0.0737	96	\rightarrow	99	0.16217
			97	\rightarrow	99	0.56604
			98	\rightarrow	99	0.38338
3.3951	365.19	0.0134	96	\rightarrow	99	0.68414
			97	\rightarrow	99	-0.12174
			98	\rightarrow	99	-0.10868
4.1125	301.48	0.0637	95	\rightarrow	99	0.4547
			97	\rightarrow	100	-0.33287
			98	\rightarrow	100	0.39143
4.2162	294.07	0.0409	95	\rightarrow	99	-0.22983
			97	\rightarrow	100	0.24906
			98	\rightarrow	100	0.54852
			98	\rightarrow	101	0.22674
			98	\rightarrow	102	0.14338
4.2355	292.73	0.0390	95	\rightarrow	99	0.25295
			97	\rightarrow	100	0.45070
			97	\rightarrow	101	-0.43597
			97	\rightarrow	103	-0.11947
			98	\rightarrow	102	-0.13251

Table S87. 6 TDDFT singlet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 142.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Table S88. 6 TDDFT singlet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 157.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator			Transiti	ons
(ev)	(nm)	Strength				
3.1478	393.88	0.0085	97	\rightarrow	99	-0.22021
			98	\rightarrow	99	0.66772
3.3009	375.61	0.0584	96	\rightarrow	99	0.23860
			97	\rightarrow	99	0.63112
			98	\rightarrow	99	0.19607
3.4028	364.36	0.0290	96	\rightarrow	99	0.66067
			97	\rightarrow	99	-0.21617
			98	\rightarrow	99	-0.10378
4.1043	302.09	0.0527	95	\rightarrow	99	0.42812
			97	\rightarrow	100	-0.21572
			98	\rightarrow	100	0.49601
4.2003	295.18	0.0609	95	\rightarrow	99	-0.32560

			97	\rightarrow	100	0.24403
			97	\rightarrow	101	0.12224
			98	\rightarrow	100	0.44348
			98	\rightarrow	101	0.29834
			98	\rightarrow	102	0.12254
4.2597	291.06	0.0216	95	\rightarrow	99	-0.10529
			97	\rightarrow	100	-0.14634
			97	\rightarrow	101	0.53397
			97	\rightarrow	103	0.10549
			98	\rightarrow	101	-0.35820

Table S89. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = -82.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator	Transitions			
(ev)	(nm)	Strength				
2.8926	428.63	0	95	\rightarrow	99	0.35800
			95	\rightarrow	100	0.14241
			97	\rightarrow	99	-0.28803
			98	\rightarrow	99	0.47960
3.0536	406.03	0	97	\rightarrow	99	0.53850
			98	\rightarrow	99	0.41533
3.2406	382.60	0	95	\rightarrow	99	0.53014
			95	\rightarrow	100	0.13613
			96	\rightarrow	99	0.10553
			97	\rightarrow	99	0.30720
			98	\rightarrow	99	-0.27716
3.3491	370.20	0	96	\rightarrow	99	0.68849
3.7337	332.07	0	93	\rightarrow	101	-0.26449
			93	\rightarrow	102	-0.18760
			94	\rightarrow	104	-0.28980
			97	\rightarrow	101	0.14685
			98	\rightarrow	101	0.44055
			98	\rightarrow	102	0.19930
3.8827	319.33	0	91	\rightarrow	99	0.11272
			91	\rightarrow	100	-0.12090
			92	\rightarrow	101	-0.11037
			92	\rightarrow	102	0.15472
			95	\rightarrow	99	-0.23017
			95	\rightarrow	100	0.48312
			97	\rightarrow	100	0.14376
			97	\rightarrow	101	-0.15436
			97	\rightarrow	102	0.16186
			98	\rightarrow	102	0.15967
Energy	Wavelength	Oscillator			Transitio	inc
--------	------------	------------	----	---------------	-----------	----------
(eV)	(nm)	Strength			manishtie	115
2.8979	427.85	0	91	\rightarrow	99	0.10488
			95	\rightarrow	99	-0.36873
			95	\rightarrow	100	-0.14063
			97	\rightarrow	99	0.39538
			98	\rightarrow	99	0.38314
3.0448	407.20	0	97	\rightarrow	99	-0.44741
			98	\rightarrow	99	0.52150
3.2485	381.67	0	95	\rightarrow	99	0.53373
			95	\rightarrow	100	0.13177
			97	\rightarrow	99	0.34172
			98	\rightarrow	99	0.24329
3.3493	370.18	0	96	\rightarrow	99	0.69535
3.7330	332.13	0	93	\rightarrow	100	-0.11427
			93	\rightarrow	101	-0.25012
			93	\rightarrow	102	-0.19351
			94	\rightarrow	103	0.14756
			94	\rightarrow	104	-0.26930
			97	\rightarrow	100	-0.10846
			97	\rightarrow	101	-0.14536
			97	\rightarrow	102	-0.10559
			98	\rightarrow	100	0.22708
			98	\rightarrow	101	0.35982
			98	\rightarrow	102	0.18533
3.8827	319.32	0	91	\rightarrow	99	-0.11894
			91	\rightarrow	100	0.10212
			92	\rightarrow	101	-0.13658
			92	\rightarrow	102	0.15726
			95	\rightarrow	99	-0.23085
			95	\rightarrow	100	0.45943
			95	\rightarrow	101	-0.14469
			97	\rightarrow	100	0.13180
			97	\rightarrow	101	-0.14595
			97	\rightarrow	102	0.14443
			98	\rightarrow	101	0.10789
			98	\rightarrow	102	-0.18343

Table S90. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = -67.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Table S91. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = -52.275°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
2.8984	427.77	0	91	\rightarrow	99	-0.10904

			95	\rightarrow	99	0.37314
			95	\rightarrow	100	0.13755
			97	\rightarrow	99	0.54701
3.0413	407.67	0	98	\rightarrow	99	0.68943
3.2503	381.46	0	95	\rightarrow	99	0.5351
			95	\rightarrow	100	0.12719
			97	\rightarrow	99	-0.42233
3.3501	370.09	0	96	\rightarrow	99	0.69815
3.7283	332.55	0	93	\rightarrow	100	-0.13685
			93	\rightarrow	101	0.30203
			94	\rightarrow	103	0.17756
			94	\rightarrow	104	0.25204
			98	\rightarrow	100	-0.29777
			98	\rightarrow	101	0.40584
3.8829	319.31	0	91	\rightarrow	99	-0.1258
			91	\rightarrow	100	0.1061
			92	\rightarrow	102	0.20487
			95	\rightarrow	99	-0.23195
			95	\rightarrow	100	0.45173
			95	\rightarrow	101	0.17955
			97	\rightarrow	100	-0.12678
			98	\rightarrow	102	-0.29744

Table S92. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = -37.275°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength	Transitio		tions	
2.8957	428.16	0	91	\rightarrow	99	0.10391
			95	\rightarrow	99	-0.36780
			95	\rightarrow	100	-0.14016
			97	\rightarrow	99	0.39477
			98	\rightarrow	99	0.38495
3.0448	407.20	0	97	\rightarrow	99	-0.45296
			98	\rightarrow	99	0.51718
3.2482	381.70	0	95	\rightarrow	99	0.53461
			95	\rightarrow	100	0.13146
			97	\rightarrow	99	0.33472
			98	\rightarrow	99	0.24941
3.3492	370.19	0	96	\rightarrow	99	0.69485
3.7323	332.19	0	93	\rightarrow	100	-0.11072
			93	\rightarrow	101	0.25493
			93	\rightarrow	102	-0.18837
			94	\rightarrow	103	-0.16315
			94	\rightarrow	104	0.25992

		9	$7 \rightarrow$	100	0.11122
		9	$7 \rightarrow$	101	-0.15641
		9	$7 \rightarrow$	102	0.10934
		9	8 →	100	-0.21496
		9	8 →	101	0.36413
		9	8 →	102	-0.17847
3.8843	319.20	09	$1 \rightarrow$	99	-0.11828
		9	$1 \rightarrow$	100	0.10431
		9	$2 \rightarrow$	101	0.13079
		9	$2 \rightarrow$	102	0.16163
		9	$5 \rightarrow$	99	-0.22993
		9	$5 \rightarrow$	100	0.46089
		9	$5 \rightarrow$	101	0.14207
		9	$7 \rightarrow$	100	0.13383
		9	$7 \rightarrow$	101	0.14414
		9	$7 \rightarrow$	102	0.15292
		9	8 →	101	-0.10292
		9	8 →	102	-0.18130

Table S93. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = -22.275°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator			Trans	itions
(eV)	(nm)	Strength			mans	
2.8892	429.12	0	95	\rightarrow	99	-0.35530
			95	\rightarrow	100	-0.14130
			97	\rightarrow	99	-0.28630
			98	\rightarrow	99	0.48320
3.0515	406.31	0	97	\rightarrow	99	0.54137
			98	\rightarrow	99	0.41148
3.2401	382.66	0	95	\rightarrow	99	0.53216
			95	\rightarrow	100	0.13608
			96	\rightarrow	99	0.10733
			97	\rightarrow	99	-0.30314
			98	\rightarrow	99	0.27671
3.3460	370.54	0	96	\rightarrow	99	0.68821
3.7313	332.28	0	93	\rightarrow	101	0.26579
			93	\rightarrow	102	-0.18435
			94	\rightarrow	104	-0.28232
			97	\rightarrow	101	0.14941
			98	\rightarrow	101	0.44491
			98	\rightarrow	102	-0.19925
3.8837	319.24	0	91	\rightarrow	99	-0.10941
			91	\rightarrow	100	0.12378
			92	\rightarrow	101	-0.10438

92	\rightarrow	102	-0.15148
95	\rightarrow	99	-0.22905
95	\rightarrow	100	0.48346
97	\rightarrow	100	-0.15112
97	\rightarrow	101	-0.14649
97	\rightarrow	102	-0.16470
98	\rightarrow	102	-0.16047

Table	S94.	6 TDDF1	f triplet	excitations	of	Re(4-EtPy)	from	S ₀	$\theta_{dihedral} =$	= -7.275°,	B3LYP/LAL2D	Z[Re]+6-
311G(d.p)[⊦	I,C,N,O]/	PCM(AC	;N).								

Energy	Wavelength	Oscillator			Transitions	
(eV)	(nm)	Strength			Transitions	
2.8773	430.91	0	95	\rightarrow	99	0.34141
			95	\rightarrow	100	0.12985
			97	\rightarrow	99	-0.19795
			98	\rightarrow	99	0.53739
3.0671	404.24	0	95	\rightarrow	99	-0.12465
			97	\rightarrow	99	0.59230
			98	\rightarrow	99	0.31819
3.2239	384.58	0	95	\rightarrow	99	0.53132
			95	\rightarrow	100	0.13052
			96	\rightarrow	99	-0.13926
			97	\rightarrow	99	0.26405
			98	\rightarrow	99	-0.30012
3.3371	371.54	0	95	\rightarrow	99	0.10319
			96	\rightarrow	99	0.67951
			97	\rightarrow	99	0.11321
3.7099	334.19	0	93	\rightarrow	101	0.24446
			93	\rightarrow	102	-0.14922
			94	\rightarrow	104	-0.27232
			98	\rightarrow	100	0.18061
			98	\rightarrow	101	0.44437
			98	\rightarrow	102	-0.22286
			98	\rightarrow	103	0.12050
3.8823	319.36	0	91	\rightarrow	99	0.11218
			91	\rightarrow	100	-0.12041
			92	\rightarrow	102	0.15372
			95	\rightarrow	99	-0.22882
			95	\rightarrow	100	0.46502
			95	\rightarrow	101	-0.10974
			97	\rightarrow	100	0.13661
			97	\rightarrow	101	0.14490
			97	\rightarrow	102	0.17289
			98	\rightarrow	100	-0.11997

	Energy (eV)	Wavelength (nm)	Oscillator Strength			Transiti	ions
ŀ	2.8619	433.22	0	95	\rightarrow	99	0.32599
				95	\rightarrow	100	0.12136
				97	\rightarrow	99	-0.11730
				98	\rightarrow	99	0.57250
ſ	3.0866	401.68	0	95	\rightarrow	99	-0.13130
				97	\rightarrow	99	0.62929
				98	\rightarrow	99	0.22188
	3.2039	386.98	0	95	\rightarrow	99	0.54070
				95	\rightarrow	100	0.13380
				96	\rightarrow	99	-0.13193
				97	\rightarrow	99	0.21309
				98	\rightarrow	99	-0.32219
	3.3241	372.99	0	96	\rightarrow	99	0.67739
				97	\rightarrow	99	0.13303
	3.6655	338.25	0	93	\rightarrow	101	0.23486
				94	\rightarrow	103	-0.11198
				94	\rightarrow	104	0.21554
				98	\rightarrow	100	0.24626
				98	\rightarrow	101	0.48418
				98	\rightarrow	102	-0.15639
ļ				98	\rightarrow	103	0.11794
	3.8822	319.36	0	91	\rightarrow	99	0.12121
				91	\rightarrow	100	-0.10812
				92	\rightarrow	102	0.18049
				95	\rightarrow	99	-0.22812
				95	\rightarrow	100	0.44850
				95	\rightarrow	101	-0.14018
				96	\rightarrow	102	-0.10020
				97	\rightarrow	101	0.10002
				97	\rightarrow	102	0.21579
				98	\rightarrow	100	-0.16989
				98	\rightarrow	101	0.10581

Table S95. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 7.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Table S96. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 22.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator			Transitions	Francitions		
(eV)	(nm)	Strength	Transitions					
2.8498	435.07	0	95	\rightarrow	99	-0.31461		

			95	\rightarrow	100	-0.12050
			98	\rightarrow	99	0.59035
3.1024	399.64	0	96	\rightarrow	99	-0.11329
			97	\rightarrow	99	0.65940
			98	\rightarrow	99	0.11903
3.1879	388.93	0	95	\rightarrow	99	0.56039
			95	\rightarrow	100	0.14722
			97	\rightarrow	99	-0.13202
			98	\rightarrow	99	0.34482
3.3149	374.02	0	96	\rightarrow	99	0.68245
			97	\rightarrow	99	0.13487
3.6232	342.19	0	93	\rightarrow	101	0.23321
			94	\rightarrow	103	-0.16110
			94	\rightarrow	104	0.15935
			98	\rightarrow	100	0.19718
			98	\rightarrow	101	0.54925
			98	\rightarrow	104	0.10407
3.8806	319.5	0	91	\rightarrow	99	0.12457
			91	\rightarrow	100	-0.10676
			92	\rightarrow	102	0.19492
			95	\rightarrow	99	-0.22473
			95	\rightarrow	100	0.44258
			95	\rightarrow	101	-0.11597
			96	\rightarrow	102	0.11028
			97	\rightarrow	102	-0.24635
			98	\rightarrow	100	0.22508

Table S97. 6 TDDFT triplet excitations of Re(4-EtPy) from S ₀	$\theta_{dihedral} = 37.725^{\circ},$	B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).		

Energy (eV)	Wavelength (nm)	Oscillator Strength			Trans	itions
2.8448	435.83	0	95	\rightarrow	99	-0.30964
			95	\rightarrow	100	-0.12435
			98	\rightarrow	99	0.59606
3.1074	399.00	0	96	\rightarrow	99	-0.12167
			97	\rightarrow	99	0.67514
3.1813	389.72	0	95	\rightarrow	99	0.57279
			95	\rightarrow	100	0.15955
			98	\rightarrow	99	0.35576
3.3115	374.40	0	96	\rightarrow	99	0.68567
			97	\rightarrow	99	0.13040
3.6071	343.72	0	93	\rightarrow	101	0.23751
			94	\rightarrow	103	-0.17249
			94	\rightarrow	104	0.13956

		98	\rightarrow	101	0.59117
		98	\rightarrow	104	0.10910
3.8785	319.67	0 91	\rightarrow	99	-0.12437
		91	\rightarrow	100	0.11079
		92	\rightarrow	102	0.19416
		95	\rightarrow	99	-0.22277
		95	\rightarrow	100	0.45164
		96	\rightarrow	102	0.10817
		97	\rightarrow	102	-0.25293
		98	\rightarrow	100	0.25824

Table S98. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 52.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transit	tions
2.8476	435.4	0	95	\rightarrow	99	0.31367
			95	\rightarrow	100	0.12062
			98	\rightarrow	99	0.59047
3.0990	400.08	0	95	\rightarrow	99	-0.10602
			96	\rightarrow	99	0.10938
			97	\rightarrow	99	0.65510
			98	\rightarrow	99	0.13329
3.1895	388.73	0	95	\rightarrow	99	0.55893
			95	\rightarrow	100	0.14655
			97	\rightarrow	99	0.15153
			98	\rightarrow	99	-0.33927
3.3136	374.17	0	96	\rightarrow	99	0.68314
			97	\rightarrow	99	-0.13248
3.6259	341.94	0	93	\rightarrow	101	-0.23663
			94	\rightarrow	103	0.16110
			94	\rightarrow	104	-0.16223
			98	\rightarrow	100	-0.18966
			98	\rightarrow	101	0.54955
			98	\rightarrow	104	0.10095
3.8799	319.56	0	91	\rightarrow	99	0.12293
			91	\rightarrow	100	-0.10484
			92	\rightarrow	102	0.19320
			95	\rightarrow	99	-0.22399
			95	\rightarrow	100	0.44329
			95	\rightarrow	101	0.10986
			96	\rightarrow	102	0.10883
			97	\rightarrow	102	0.24440
			98	\rightarrow	100	-0.22505

Energy	Wavelength	Oscillator			Transitions	5
	(nm)	Strength	05		00	0.22640
2.8634	432.99	0	95	\rightarrow	99	0.32640
			95	\rightarrow	100	0.12179
			97	\rightarrow	99	-0.12675
			98	\rightarrow	99	0.57010
3.0816	402.33	0	95	\rightarrow	99	-0.14053
			97	\rightarrow	99	0.62177
			98	\rightarrow	99	0.23882
3.2073	386.57	0	95	\rightarrow	99	0.53863
			95	\rightarrow	100	0.13280
			96	\rightarrow	99	0.12993
			97	\rightarrow	99	0.23151
			98	\rightarrow	99	-0.31410
3.3262	372.75	0	96	\rightarrow	99	0.67882
			97	\rightarrow	99	-0.12836
3.6708	337.76	0	93	\rightarrow	101	-0.23648
			94	\rightarrow	104	-0.22539
			98	\rightarrow	100	-0.23870
			98	\rightarrow	101	0.47816
			98	\rightarrow	102	0.17398
			98	\rightarrow	103	0.12058
3.8813	319.44	0	91	\rightarrow	99	0.11715
			91	\rightarrow	100	-0.10725
			92	\rightarrow	102	0.17306
			95	\rightarrow	99	-0.22850
			95	\rightarrow	100	0.44943
			95	\rightarrow	101	0.13614
			97	\rightarrow	101	-0.11212
			97	\rightarrow	102	0.20740
			98	\rightarrow	100	-0.16337
			98	\rightarrow	101	-0.10941
			98	\rightarrow	102	0.10093

Table S99. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 67.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Table S100. 6 TDDFT	triplet excitations of	f Re(4-EtPy) froi	n S₀ θ _{dihedral} =	• 82.725°,	B3LYP/LAL2D2	[Re]+6-
311G(d.p)[H,C,N,O]/P(CM(ACN).					

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
2.8772	430.91	0	95	\rightarrow	99	0.34129
			95	\rightarrow	100	0.13091
			97	\rightarrow	99	-0.20039
			98	\rightarrow	99	0.53663
3.0652	404.49	0	95	\rightarrow	99	-0.13041

			97	\rightarrow	99	0.58730
			98	\rightarrow	99	0.32473
3.2257	384.37	0	95	\rightarrow	99	0.53394
			95	\rightarrow	100	0.13208
			96	\rightarrow	99	0.11468
			97	\rightarrow	99	0.27625
			98	\rightarrow	99	-0.29479
3.3367	371.57	0	96	\rightarrow	99	0.68422
			97	\rightarrow	99	-0.10610
3.7131	333.91	0	93	\rightarrow	101	-0.25121
			93	\rightarrow	102	-0.15146
			94	\rightarrow	104	-0.27566
			98	\rightarrow	100	-0.15472
			98	\rightarrow	101	0.45261
			98	\rightarrow	102	0.21742
			98	\rightarrow	103	0.11800
3.8813	319.44	0	91	\rightarrow	99	0.10648
			91	\rightarrow	100	-0.12077
			92	\rightarrow	102	0.14770
			95	\rightarrow	99	-0.23035
			95	\rightarrow	100	0.47129
			97	\rightarrow	100	0.13450
			97	\rightarrow	101	-0.13755
			97	\rightarrow	102	0.17297
			98	\rightarrow	100	-0.11096
			98	\rightarrow	102	0.13323

Table S101. 6 TDDFT triplet excitations	of Re(4-EtPy) from	$S_0 \theta_{dihedral} = 97.725^\circ$,	, B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).			

Energy (eV)	Wavelength (nm)	Oscillator Strength			Trans	itions
2.8925	428.63	0	95	\rightarrow	99	-0.35838
			95	\rightarrow	100	-0.14272
			97	\rightarrow	99	-0.28866
			98	\rightarrow	99	0.47889
3.0546	405.89	0	97	\rightarrow	99	0.53738
			98	\rightarrow	99	0.41657
3.2415	382.49	0	95	\rightarrow	99	0.53102
			95	\rightarrow	100	0.13613
			97	\rightarrow	99	-0.30882
			98	\rightarrow	99	0.27658
3.3486	370.26	0	96	\rightarrow	99	0.68958
3.7329	332.14	0	93	\rightarrow	101	-0.26889
			93	\rightarrow	102	-0.18468

			94	\rightarrow	104	-0.28669
			97	\rightarrow	101	0.15137
			98	\rightarrow	101	0.44165
			98	\rightarrow	102	0.19697
3.8833	319.28	0	91	\rightarrow	99	-0.10351
			91	\rightarrow	100	0.12242
			92	\rightarrow	102	-0.14436
			95	\rightarrow	99	-0.23047
			95	\rightarrow	100	0.48590
			97	\rightarrow	100	-0.14508
			97	\rightarrow	101	0.14426
			97	\rightarrow	102	-0.16276
			98	\rightarrow	102	-0.16103

Table S102. 6 TDDFT triplet excit	ations of Re(4-EtPy) fron	$n S_0 \theta_{dihedral} = 112.725^\circ$, B3LYP/LAL2DZ[Re]+6-
311G(d.p)[H,C,N,O]/PCM(ACN).			

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
2,8989	427.69	0	91	\rightarrow	99	0.10262
2.0303	127103	Ŭ	95	ý	99	-0.37014
			95	ý	100	-0.14050
			97	÷	99	0.39602
			98	\rightarrow	99	0.38088
3.0469	406.92	0	97	\rightarrow	99	-0.44514
			98	\rightarrow	99	0.52340
3.2498	381.51	0	95	\rightarrow	99	0.53314
			95	\rightarrow	100	0.13076
			97	\rightarrow	99	0.34406
			98	\rightarrow	99	0.24249
3.3511	369.98	0	96	\rightarrow	99	0.69569
3.7337	332.07	0	93	\rightarrow	100	-0.11742
			93	\rightarrow	101	-0.25336
			93	\rightarrow	102	-0.19045
			94	\rightarrow	103	0.15309
			94	\rightarrow	104	0.26699
			97	\rightarrow	100	-0.11221
			97	\rightarrow	101	-0.14735
			97	\rightarrow	102	-0.10702
			98	\rightarrow	100	0.22747
			98	\rightarrow	101	0.35833
			98	\rightarrow	102	0.18009
3.884	319.22	0	91	\rightarrow	99	-0.11696
			91	\rightarrow	100	0.10426
			92	\rightarrow	101	-0.12852
	Energy (eV) 2.8989 3.0469 3.2498 3.3511 3.7337 3.7337	Energy Wavelength (eV) (nm) 2.8989 427.69 3.0469 406.92 3.2498 381.51 3.3511 369.98 3.7337 332.07 3.3511 369.98 3.7337 332.07	Energy (eV) Wavelength (nm) Oscillator Strength 2.8989 427.69 0 3.0469 406.92 0 3.2498 381.51 0 3.3511 369.98 0 3.7337 332.07 0 3.884 319.22 0	Energy (eV) Wavelength (nm) Oscillator (strength) 2.8989 427.69 0 91 2.8989 427.69 0 95	Energy (eV)Wavelength (nm)Oscillator Strength2.8989427.69091 \Rightarrow 2.8989427.69095 \Rightarrow 1195 \Rightarrow \Rightarrow \Rightarrow 1111 \Rightarrow \Rightarrow 3.0469406.92097 \Rightarrow 3.0469406.92097 \Rightarrow 3.2498381.51095 \Rightarrow 3.2498381.51095 \Rightarrow 3.3511369.98096 \Rightarrow 3.7337332.07093 \Rightarrow 3.7337332.07093 \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow $=$ <td< td=""><td>Energy (eV) Wavelength (nm) Oscillator Strength Transitions 2.8989 427.69 0 91 \rightarrow 99 2.8989 427.69 0 91 \rightarrow 99 100 95 \rightarrow 100 91 \rightarrow 99 100 97 \rightarrow 99 91 \rightarrow 99 3.0469 406.92 0 97 \rightarrow 99 91 3.2498 381.51 0 95 \rightarrow 91 91 3.2498 381.51 0 91 \rightarrow 91 91 3.2498 381.51 0 91</td></td<>	Energy (eV) Wavelength (nm) Oscillator Strength Transitions 2.8989 427.69 0 91 \rightarrow 99 2.8989 427.69 0 91 \rightarrow 99 100 95 \rightarrow 100 91 \rightarrow 99 100 97 \rightarrow 99 91 \rightarrow 99 3.0469 406.92 0 97 \rightarrow 99 91 3.2498 381.51 0 95 \rightarrow 91 91 3.2498 381.51 0 91 \rightarrow 91 91 3.2498 381.51 0 91

92	\rightarrow	102	0.16193
95	\rightarrow	99	-0.23110
95	\rightarrow	100	0.45989
95	\rightarrow	101	-0.14631
97	\rightarrow	100	0.12769
97	\rightarrow	101	-0.14009
97	\rightarrow	102	0.14501
98	\rightarrow	101	0.10823
98	\rightarrow	102	-0.18760

Table S103. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 127.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transition	s
2.8986	427.74	0	91	\rightarrow	99	-0.10897
			95	\rightarrow	99	0.37324
			95	\rightarrow	100	0.13710
			97	\rightarrow	99	0.54002
3.0389	407.99	0	97	\rightarrow	99	0.10221
			98	\rightarrow	99	0.68191
3.2502	381.47	0	95	\rightarrow	99	0.53494
			95	\rightarrow	100	0.12702
			97	\rightarrow	99	-0.41904
3.3490	370.22	0	96	\rightarrow	99	0.69835
3.7263	332.73	0	93	\rightarrow	100	-0.14213
			93	\rightarrow	101	-0.30649
			94	\rightarrow	103	-0.16884
			94	\rightarrow	104	0.25635
			98	\rightarrow	100	0.30652
			98	\rightarrow	101	0.40376
3.8822	319.36	0	91	\rightarrow	99	-0.12562
			91	\rightarrow	100	0.10509
			92	\rightarrow	102	0.20904
			95	\rightarrow	99	-0.23175
			95	\rightarrow	100	0.44735
			95	\rightarrow	101	-0.18715
			97	\rightarrow	100	-0.12611
			98	\rightarrow	102	-0.30462

Table S104. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 142.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator		Transitions		
(eV)	(nm)	Strength			TIAIISILIOIIS	
2.8955	428.20	0	91	\rightarrow	99	0.10226

			95	\rightarrow	99	-0.36597
			95	\rightarrow	100	-0.14028
			97	\rightarrow	99	-0.38574
			98	\rightarrow	99	0.39601
3.0421	407.56	0	97	\rightarrow	99	0.45727
			98	\rightarrow	99	0.51189
3.2484	381.68	0	95	\rightarrow	99	0.53501
			95	\rightarrow	100	0.13254
			97	\rightarrow	99	-0.33919
			98	\rightarrow	99	0.24334
3.3477	370.35	0	96	\rightarrow	99	0.69530
3.7340	332.04	0	93	\rightarrow	100	-0.11359
			93	\rightarrow	101	0.24974
			93	\rightarrow	102	-0.19677
			94	\rightarrow	103	-0.13811
			94	\rightarrow	104	-0.27420
			97	\rightarrow	100	-0.10577
			97	\rightarrow	101	0.14293
			97	\rightarrow	102	-0.10359
			98	\rightarrow	100	-0.22535
			98	\rightarrow	101	0.36173
			98	\rightarrow	102	-0.18711
3.8833	319.28	0	91	\rightarrow	99	-0.11691
			91	\rightarrow	100	0.10378
			92	\rightarrow	101	0.13348
			92	\rightarrow	102	0.15728
			95	\rightarrow	99	-0.23035
			95	\rightarrow	100	0.45869
			95	\rightarrow	101	0.14144
			97	\rightarrow	100	-0.13136
			97	\rightarrow	101	-0.14952
			97	\rightarrow	102	-0.14454
			98	\rightarrow	101	-0.10725
			98	\rightarrow	102	-0.18443

Table S105. 6 TDDFT triplet excitations of Re(4-EtPy) from S₀ $\theta_{dihedral}$ = 157.725°, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator			Tranciti	0.05
(eV)	(nm)	Strength			ITAIISIU	UIIS
2.8861	429.59	0	95	\rightarrow	99	-0.35215
			95	\rightarrow	100	-0.14049
			97	\rightarrow	99	-0.27409
			98	\rightarrow	99	0.49310
3.0509	406.38	0	95	\rightarrow	99	0.10083

		97	\rightarrow	99	0.55013
		98	\rightarrow	99	0.39813
3.2377	382.94	0 95	\rightarrow	99	0.53377
		95	\rightarrow	100	0.13741
		96	\rightarrow	99	0.10330
		97	\rightarrow	99	-0.29885
		98	\rightarrow	99	0.27905
3.3424	370.94	0 96	\rightarrow	99	0.68871
3.7343	332.01	0 93	\rightarrow	101	0.26508
		93	\rightarrow	102	-0.19024
		94	\rightarrow	104	-0.29317
		97	\rightarrow	101	0.14829
		98	\rightarrow	101	0.43836
		98	\rightarrow	102	-0.20454
3.8835	319.26	0 91	\rightarrow	99	-0.10503
		91	\rightarrow	100	0.12067
		92	\rightarrow	101	-0.10138
		92	\rightarrow	102	-0.14356
		95	\rightarrow	99	-0.22996
		95	\rightarrow	100	0.48277
		97	\rightarrow	100	-0.14132
		97	\rightarrow	101	-0.15516
		97	\rightarrow	102	-0.16201
		98	\rightarrow	102	-0.15937

Solvent Coordinated TDDFT Tables

Table S106. TDDFT singlet excitations of Re(bpy)(4-Pam)CO₂(MeCN), B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy (eV)	Wavelength (nm)	Oscillator Strength			Transitions	
	(1111)	Strength				
2.3452	528.67	0.0048	105	\rightarrow	106	0.70493
2.5646	483.44	0.0744	104	\rightarrow	106	0.70081
2.8761	431.08	0.0006	105	\rightarrow	107	0.70447
3.0360	408.38	0.0011	103	\rightarrow	106	0.70161
3.1670	391.49	0.2460	104	\rightarrow	107	0.69407
3.3515	369.94	0.0045	105	\rightarrow	108	0.70039
3.4664	357.67	0.0035	104	\rightarrow	108	0.61764
			105	\rightarrow	109	0.34123
3.5838	345.96	0.078	103	\rightarrow	107	0.19638
				、		-
			104	\rightarrow	108	0.32436
			105	\rightarrow	109	0.58395
3.6036	344.05	0.0100	103	\rightarrow	107	0.67445
			105	\rightarrow	109	-

						0.16692
3.6325	341.32	0.0113	101	\rightarrow	106	- 0.12877
			104	\rightarrow	109	0.6905
3.8542	321.69	0.0213	105	\rightarrow	105	0.68134
			105	\rightarrow	105	0.17215
3.9276	315.68	0.0010	102	\rightarrow	106	0.70434
3.9311	315.39	0.0001	104	\rightarrow	110	0.66082
			104	\rightarrow	111	0.22067
3.9917	310.61	0.0256	105	\rightarrow	110	۔ 0.17982
			105	\rightarrow	111	0.65969
			105	\rightarrow	114	0.10201
4.0647	305.03	0.0000	104	\rightarrow	110	- 0.21804
			104	\rightarrow	111	0.6622

Table S107. TDDFT singlet excitations of $Re(bpy)(4-Pam)CO_2(DCM)$, B3LYP/LAL2DZ[Re]+6-311G(d.p)[H,C,N,O]/PCM(ACN).

Energy	Wavelength	Oscillator	Transitions			
(eV)	(nm)	Strength			Transitions	
2.4223	511.83	0.0132	114	\rightarrow	116	-0.1885
			115	\rightarrow	116	0.67804
2.6895	460.99	0.0779	114	\rightarrow	116	0.67328
			115	\rightarrow	116	0.1859
		0 0185		<u>ح</u>		-
2.9722	417.14	0.0105	114		117	0.29088
			115	\rightarrow	117	0.63767
3.0295	409.25	0.0001	113	\rightarrow	116	0.70037
3.2739	378.71	0.2268	114	\rightarrow	117	0.63347
			115	\rightarrow	117	0.28049
3.4061	364.01	0.0052	115	\rightarrow	118	0.67953
3.5998	344.42	0.0045	113	\rightarrow	117	0.55114
			114	\rightarrow	118	0.40075
			115	\rightarrow	119	0.11334
		0.00/1		<u>د</u>		-
3.6103	343.42	0.0041	113		117	0.41237
			114	\rightarrow	118	0.44623
			115	\rightarrow	119	0.32766
3.672	337.65	0.0543	113	\rightarrow	117	0.1174
				\rightarrow		-
			114		118	0.31251
			115	\rightarrow	119	0.58468
			115	\rightarrow	121	0.12536
		0.0091		\rightarrow		-
3.7796	328.03		114	•	119	0.28224
					5122	

			115	\rightarrow	118	0.13234
			115	\rightarrow	120	- 0.22798
			115	\rightarrow	121	0.48332
			115	\rightarrow	122	0 10751
			115	,	122	
			115	\rightarrow	123	0.26085
3.8202	324.55	0.029	111	\rightarrow	116	0.12294
			112	\rightarrow	116	0.10444
			114	\rightarrow	118	0.10039
			114	\rightarrow	119	0.60838
				<u>ح</u>		-
			115		120	0.13255
			115	\rightarrow	121	0.19963
				\rightarrow		-
			115		123	0.11558
3.8626	320.99	0.0035	112	\rightarrow	116	0.69739
				\rightarrow		-
3.9418	314.54	0.0047	114		122	0.11256
			115	\rightarrow	120	0.62281
			115	\rightarrow	121	0.19713
			115	\rightarrow	122	0.1867
4.0053	309.55	0.0042	114	\rightarrow	121	-0.1602
			114	\rightarrow	122	- 0.23959
			115	\rightarrow	120	0.14885
			115	\rightarrow	1 7 1	-
			112	、	121	0.28725
			115	~	122	0.51496
4.0407	306.84	0.0305	113	\rightarrow	118	0.13272
			114	\rightarrow	120	۔ 0.22759
			114	\rightarrow	121	0.53293
			114	\rightarrow	122	0.10066
			114	\rightarrow	123	-0.2391
			115	\rightarrow	122	0.17758

DFT Optimized Geometries

Re(4-Pam) Fully Optimized Singlet

Re	-1.01510941	-0.87761753	-0.12731555
Ν	1.22112020	-0.51374978	-0.04470939
Ν	-1.08410021	1.04647788	-1.20985739
С	1.92446444	-0.23681056	-1.15959292
С	1.90252330	-0.58653842	1.11650477
Ν	-1.13159539	0.68117473	1.43252372

С	-2.93279099	-1.08654856	-0.18776113
С	-0.87969554	-2.42129724	1.02550544
С	-0.83789861	-2.05326887	-1.64979014
С	-1.12341580	1.16180785	-2.54986526
С	-1.07140723	2.17379887	-0.45260811
С	3.29377938	-0.02440315	-1.15605745
Н	1.37068997	-0.18867430	-2.08642790
С	3.27114431	-0.39656346	1.20088225
Н	1.32997064	-0.80492027	2.00654997
С	-1.21929276	0.42791287	2.75114274
С	-1.09697177	1.97162676	1.01090462
0	-4.07711440	-1.20613908	-0.22365507
0	-0.79938503	-3.32913043	1.73105306
0	-0.73444384	-2.73724525	-2.57166694
С	-1.13117413	2.38746787	-3.19729969
Н	-1.15117176	0.23949069	-3.11291899
С	-1.07042240	3.43569663	-1.04633294
С	4.00015080	-0.10840029	0.04568663
Н	3.79905861	0.18434217	-2.08931451
Н	3.75316135	-0.46062781	2.16761785
С	-1.25411951	1.43162771	3.70659522
Н	-1.26672965	-0.61259234	3.04036761
С	-1.12102752	3.02474434	1.92496365
С	-1.09655683	3.54601402	-2.43011804
Н	-1.16277034	2.42104165	-4.27779594
Н	-1.05445632	4.32770549	-0.43804623
С	5.48867019	0.06943998	0.10089967
С	-1.19572966	2.75468878	3.28492701
Н	-1.32438247	1.17073127	4.75378276
Н	-1.08722022	4.04876683	1.58375595
Н	-1.09631476	4.52214923	-2.89808939
N	6.26865184	-0.60893190	0.86067358
N	5.99368690	0.98244086	-0.79177922
Н	-1.21496351	3.56672916	4.00054601
Н	5.74808976	-1.31275142	1.37946328
Н	5.42367616	1.77789086	-1.03782846
Н	6.97839368	1.18429856	-0.68832088

Re(4-Pam) Fully Optimized Triplet

Re	0.82440345	-0.91929800	-0.04974524
Ν	-1.33816115	-0.38729601	-0.01945471
Ν	1.17527630	0.63219197	1.36380676
С	-1.74462377	0.89207111	0.11458456
С	-2.29278258	-1.33818070	-0.13965836
Ν	1.17547795	0.77417285	-1.28598642
С	2.78136753	-1.27837265	-0.06947513
С	0.53340929	-2.26679945	-1.46760140
С	0.52391643	-2.40732371	1.22324822
С	1.11149064	0.51737780	2.71502877
С	1.58107215	1.86216557	0.80803279
С	-3.07956926	1.25679524	0.12791486
Н	-0.97546281	1.64235127	0.21705263
С	-3.64460301	-1.05049061	-0.12485233
Н	-1.95442485	-2.35778362	-0.25422639
С	1.11180481	0.80578063	-2.64218680
С	1.57511784	1.93976967	-0.60077886
0	3.90193178	-1.47112321	-0.08027485

0	0.38617648	-3.05512904	-2.28343284
0	0.36896383	-3.27123978	1.95606601
С	1.42830274	1.53831054	3.57415091
Н	0.78912052	-0.44313672	3.09329724
С	1.93381282	2.93392216	1.67712052
С	-4.06611808	0.27380775	0.01244290
Н	-3.34073362	2.29963806	0.24602527
Н	-4.35555088	-1.85845506	-0.23632024
С	1.41799431	1.91635824	-3.38558947
Н	0.79889674	-0.11096136	-3.12290468
С	1.91234399	3.10388713	-1.34884092
С	1.86016897	2.78196342	3.03228756
Н	1.35150913	1.38461040	4.64153549
Н	2.26083227	3.87329604	1.25432237
С	-5.52634708	0.61177068	0.07044185
С	1.83643080	3.09928194	-2.71218168
Н	1.34157075	1.87822032	-4.46333483
Н	2.22617925	3.99691028	-0.82703481
Н	2.12811454	3.59935677	3.68988315
Ν	-6.40388261	-0.10665472	0.66998086
Ν	-5.86630928	1.81046122	-0.50384949
Н	2.09134797	3.98690272	-3.27746059
Н	-5.97015052	-0.90436972	1.12928200
Н	-5.33578855	2.13120488	-1.30002590
Н	-6.85823568	1.99680627	-0.55407148

Re(4-PamH) Fully Optimized Singlet

-1.00507277	-0.89470708	-0.12594183
1.22464070	-0.45440288	-0.06516562
-1.17034505	1.02875680	-1.19804902
1.90243352	-0.15170547	-1.18827957
1.91751124	-0.52615908	1.08699529
-1.16733608	0.64975107	1.44225965
-2.91318080	-1.18011116	-0.16845339
-0.79932166	-2.43666545	1.02059192
-0.79719719	-2.05805750	-1.65582814
-1.24233653	1.14758966	-2.53669110
-1.19296465	2.15259925	-0.43535331
3.26929241	0.07979159	-1.20628457
1.33537528	-0.10182256	-2.10617263
3.28593318	-0.31630613	1.15887354
1.36141512	-0.76328803	1.98213465
-1.23414995	0.38648597	2.76034914
-1.19090537	1.94286815	1.02714137
-4.05124283	-1.34447820	-0.19392885
-0.67809816	-3.34188170	1.72281141
-0.67471695	-2.73426616	-2.58037359
-1.31358160	2.37464214	-3.17751727
-1.24710040	0.22720922	-3.10362968
-1.25519430	3.41568831	-1.02275826
3.97992794	-0.00847543	-0.01029532
3.75587675	0.29222424	-2.14843233
3.77926917	-0.37409750	2.11960173
-1.30205037	1.38320798	3.72128606
-1.23788854	-0.65645139	3.04440867
-1.24970521	2.98934717	1.94697596
-1.31109870	3.53038501	-2.40539913
	-1.00507277 1.22464070 -1.17034505 1.90243352 1.91751124 -1.16733608 -2.91318080 -0.79932166 -0.79719719 -1.24233653 -1.19296465 3.26929241 1.33537528 3.28593318 1.36141512 -1.23414995 -1.19090537 -4.05124283 -0.67809816 -0.67471695 -1.31358160 -1.24710040 -1.25519430 3.97992794 3.75587675 3.77926917 -1.30205037 -1.23788854 -1.24970521 -1.31109870	-1.00507277-0.894707081.22464070-0.45440288-1.170345051.028756801.90243352-0.151705471.91751124-0.52615908-1.167336080.64975107-2.91318080-1.18011116-0.79932166-2.43666545-0.79719719-2.05805750-1.242336531.14758966-1.192964652.152599253.269292410.079791591.33537528-0.101822563.28593318-0.316306131.36141512-0.76328803-1.234149950.38648597-1.190905371.94286815-4.05124283-1.34447820-0.67809816-3.34188170-0.67471695-2.73426616-1.313581602.37464214-1.247100400.22720922-1.255194303.415688313.97992794-0.008475433.755876750.292224243.77926917-0.37409750-1.302050371.38320798-1.249705212.98934717-1.311098703.53038501

Н	-1.36927953	2.41132347	-4.25691292
Н	-1.26703222	4.30493806	-0.41036503
С	5.45042766	0.20902555	0.01665333
С	-1.30110057	2.70955700	3.30618024
Н	-1.35386381	1.11432615	4.76750284
Н	-1.26183952	4.01555274	1.61090986
Н	-1.36035879	4.50756467	-2.86852675
Ν	6.19790270	-0.61351919	0.72245032
Ν	5.95821329	1.21353257	-0.66648573
Н	-1.34771013	3.51655625	4.02620065
Н	7.19930513	-0.49471158	0.80509712
Н	5.79873313	-1.44207993	1.13852113
Н	5.35572150	1.89584886	-1.10276511
Н	6.95433554	1.38387279	-0.71419487

Re(4-Pam) Fully Optimized Quintet

Re	-7.77925067	-4.75382884	0.00000000
Ν	-5.59375664	-4.39205726	-0.04046873
Ν	-7.91495832	-3.26966703	-1.49372978
С	-4.87898654	-4.45344146	-1.19955141
С	-4.89267324	-4.10478043	1.09424685
Ν	-7.87204088	-2.95026404	1.14812973
С	-9.76190559	-4.90746397	0.04831550
С	-7.58278907	-6.06110668	1.48345699
С	-7.62120746	-6.32824559	-1.16767414
С	-8.00730928	-3.47935224	-2.83493154
С	-7.89771514	-1.93755055	-1.01743510
С	-3.52658671	-4.24584253	-1.27181085
Н	-5.43708887	-4.66788392	-2.10031458
С	-3.54069373	-3.88776568	1.11542459
Н	-5.46029999	-4.05400376	2.01232834
С	-7.92570167	-2.84781634	2.49751834
С	-7.87791467	-1.77348170	0.38182497
0	-10.89853531	-4.97564597	0.07673901
0	-7.47439277	-6.82823261	2.32422044
0	-7.53125564	-7.25185800	-1.83964110
С	-8.04670394	-2.46710449	-3.75565979
Н	-8.04670895	-4.51376848	-3.14931703
С	-7.92135148	-0.86659891	-1.95695842
С	-2.78193004	-3.95163897	-0.09007958
Н	-3.05520059	-4.28324477	-2.24489592
Н	-3.05617641	-3.68114381	2.06025981
С	-7.94885895	-1.64723470	3.16558621
Н	-7.94804951	-3.78093475	3.04515754
С	-7.88821479	-0.51184142	1.04525238
С	-7.99204356	-1.11635849	-3.29628792
Н	-8.11361971	-2.70133802	-4.80898394
Н	-7.89029430	0.15253942	-1.59834394
С	-1.38951976	-3.73641669	-0.09557305
С	-7.92062215	-0.44466053	2.40929766
Н	-7.98517682	-1.63503785	4.24604598
Н	-7.87864220	0.39606300	0.45915365
Н	-8.01258894	-0.29892475	-4.00597870
Ν	-0.72103501	-3.39643057	1.07881804
N	-0.60885833	-3.91507487	-1.20375089
Н	-7.93124062	0.51550722	2.90977480
Н	-0.34290823	-2.44103514	1.03151339

Н	-0.86291230	-4.63998370	-1.86178896
Н	0.38767636	-3.78048722	-1.10439447

Re(4-PamH) Fully Optimized Triplet

Re	0.95292677	-0.86124810	-0.05722862
N	-1.15635690	-0.55681674	-0.02925742
N	1.18930008	0.76209317	1.38552849
C	-1.87360507	-0.45737433	1.15175607
C	-1.89306264	-0.41639412	-1.19432754
N	1.18896797	0.92833791	-1.27644422
С	2.91180091	-1.31567786	-0.09072802
С	0.77895798	-2.10899266	-1.57805517
С	0.78782602	-2.29575712	1.29949687
С	1.27977350	0.60318700	2.72057933
С	1.20570660	2.01972862	0.86726136
С	-3.21043480	-0.21398171	1.20562780
Н	-1.30953444	-0.56826080	2.06605292
С	-3.22929931	-0.16456022	-1.21770295
Н	-1.34766174	-0.51975430	-2.12115606
С	1.26906680	0.93598044	-2.62182058
С	1.19577194	2.11224279	-0.60553572
0	4.01275041	-1.59662264	-0.11276327
0	0.70117046	-2.81190164	-2.47181976
0	0.71559630	-3.10576307	2.09654930
С	1.35513656	1.67368041	3.59615597
Н	1.29073057	-0.41006835	3.09430686
С	1.27355004	3.13341143	1.69902383
С	-3.97283326	-0.04610228	0.00261320
Н	-3.66914945	-0.11848026	2.18058453
Н	-3.71584737	-0.10189199	-2.18174400
С	1.31905973	2.10695825	-3.35904157
Н	1.29558432	-0.02431116	-3.11528026
С	1.23477384	3.32069620	-1.29466121
С	1.34247699	2.96201895	3.07630048
Н	1.42267018	1.48850986	4.65917856
Н	1.28150233	4.12889235	1.28186288
С	-5.37392408	0.20969653	0.01925830
С	1.29005772	3.32071739	-2.68343404
Н	1.37890781	2.05579121	-4.43730993
Н	1.22818366	4.25886852	-0.76034665
Н	1.39593189	3.82423861	3.72832660
Ν	-6.01619863	0.63183458	-1.09062298
Ν	-6.09701209	0.03711006	1.14626061
Н	1.32104980	4.25745016	-3.22479039
Н	-7.01463788	0.77367264	-1.07823783
Н	-5.51056088	1.11375917	-1.81636163
Н	-5.77633888	-0.59702394	1.86020754
Н	-7.08217455	0.25173529	1.15627363

Re(4-EtPy) Fully Optimized Singlet

Re	-0.70999855	-0.96854651	0.01638610
Ν	1.41659194	-0.18798603	-0.01104371
Ν	-1.14379118	0.72566240	-1.33347498
С	2.07366526	0.01686006	-1.17040054
С	2.09105192	0.05907022	1.13003478
Ν	-1.11475485	0.75764459	1.33398112

С	-2.55389869	-1.53876834	0.03616569
С	-0.28864387	-2.27159691	1.37745828
С	-0.30677829	-2.30330903	-1.31940976
С	-1.21199882	0.62890713	-2.67376060
С	-1.34906571	1.93481428	-0.75036006
С	3.38589783	0.45470054	-1.22691051
Н	1.52583531	-0.18080150	-2.08120348
С	3.40348032	0.49882435	1.15077564
Н	1.55735442	-0.10554748	2.05559955
С	-1.14226549	0.69559564	2.67779968
С	-1.31942851	1.95499097	0.72676963
0	-3.65532649	-1.87482162	0.04748561
0	-0.04016750	-3.03449230	2.20535723
0	-0.06882742	-3.08585163	-2.13191958
С	-1.46628669	1.71796189	-3.49286159
Н	-1.06169927	-0.35522007	-3.09472186
С	-1.60714557	3.06787358	-1.52162882
С	4.09317652	0.70499242	-0.04755809
Н	3.85017034	0.59795774	-2.19497054
Н	3.88180469	0.67806232	2.10596305
С	-1.34795080	1.80989056	3.47636157
Н	-0.99642084	-0.28043636	3.11874981
С	-1.51929798	3.11388758	1.47670176
С	-1.66216226	2.96197706	-2.90484363
Н	-1.50874891	1.58222653	-4.56493223
Н	-1.77158126	4.02613344	-1.05192606
С	-1.53020250	3.04385691	2.86327000
Н	-1.35982126	1.70174225	4.55233563
Н	-1.66733910	4.06545737	0.98818417
Н	-1.86163259	3.83717138	-3.50992085
Н	-1.68485259	3.93903080	3.45200434
С	6.49770913	-0.07322220	-0.02269473
Н	7.53432931	0.27073137	-0.03769782
Н	6.34728081	-0.66278224	0.88498822
Н	6.34331277	-0.72887860	-0.88314440
С	5.53793426	1.13137067	-0.06570887
Н	5.73317617	1.78123922	0.79134135
Н	5.73023272	1.71691522	-0.96842879

Re(4-EtPy) Fully Optimized Triplet

-0.61457940	-0.93063364	-0.10894085
1.47941209	-0.28782662	0.19869453
-0.91953704	0.79846971	-1.31275225
1.79663354	1.01317507	0.37829208
2.49648983	-1.18199924	0.21050916
-1.23027091	0.53241705	1.30924581
-2.53686433	-1.38821251	-0.38693872
-0.38717666	-2.46136158	1.12563321
-0.07265013	-2.19535207	-1.53201562
-0.69298995	0.89697302	-2.64870410
-1.47528520	1.90220604	-0.63865012
3.09503850	1.44767615	0.56698832
0.97991226	1.71887469	0.37147913
3.81563680	-0.81545713	0.39382776
2.23350982	-2.22080659	0.07070817
-1.32044399	0.35949358	2.65397478
-1.64180373	1.76037814	0.75698234
	-0.61457940 1.47941209 -0.91953704 1.79663354 2.49648983 -1.23027091 -2.53686433 -0.38717666 -0.07265013 -0.69298995 -1.47528520 3.09503850 0.97991226 3.81563680 2.23350982 -1.32044399 -1.64180373	-0.61457940-0.930633641.47941209-0.28782662-0.919537040.798469711.796633541.013175072.49648983-1.18199924-1.230270910.53241705-2.53686433-1.38821251-0.38717666-2.46136158-0.07265013-2.19535207-0.692989950.89697302-1.475285201.902206043.095038501.447676150.979912261.718874693.81563680-0.815457132.23350982-2.22080659-1.320443990.35949358-1.641803731.76037814

0	-3.63486902	-1.63599610	-0.54532902
0	-0.27436030	-3.35345567	1.83242063
0	0.22058201	-2.93597487	-2.35283986
С	-0.98235820	2.01876446	-3.38152669
Н	-0.25892534	0.02598825	-3.12058020
С	-1.79979539	3.07487451	-1.37675636
С	4.15125722	0.52980844	0.57916561
Н	3.27773409	2.50550135	0.70903379
Н	4.57733530	-1.58515715	0.39592568
С	-1.79852832	1.32003809	3.50702842
Н	-0.98594003	-0.59738329	3.03138065
С	-2.15825898	2.76989805	1.61704732
С	-1.56087026	3.13863209	-2.72047862
Н	-0.77236253	2.03609384	-4.44194401
Н	-2.23687659	3.91979478	-0.86353714
С	-2.23711382	2.56103082	2.96492331
Н	-1.83889308	1.12262572	4.56923775
Н	-2.48663061	3.70918014	1.19455483
Н	-1.80836138	4.03322649	-3.27813761
Н	-2.62901694	3.33247814	3.61589940
С	6.26116605	1.25437238	-0.60602358
Н	7.29416576	1.56959749	-0.44433811
Н	6.27167207	0.36178295	-1.23619264
Н	5.74292848	2.04864842	-1.14861684
С	5.57978790	0.97070713	0.74725689
Н	6.13573257	0.19318156	1.27748836
Н	5.60819508	1.87201578	1.36465944

Re(bpy)(4-Pam)CO₂(MeCN) Fully Optimized Singlet

Re	-0.78679798	-0.86573273	-0.11743580
Ν	1.38728862	-0.57236608	-0.05458845
Ν	-0.89648814	1.06582083	-1.20118972
С	2.09261118	-0.29923336	-1.17249551
С	2.07649173	-0.62710574	1.10617251
Ν	-0.93511660	0.70449722	1.43994603
С	-0.70828311	-2.38627692	1.02450690
С	-0.67304160	-2.02875577	-1.62033349
С	-0.93234415	1.17871688	-2.54132015
С	-0.93260397	2.19508942	-0.44783795
С	3.45916797	-0.07237902	-1.17133094
Н	1.53706248	-0.27151318	-2.09854912
С	3.44276288	-0.42219896	1.18607849
Н	1.50657290	-0.84691156	1.99694251
С	-1.01108199	0.45286402	2.75952006
С	-0.95306281	1.99478735	1.01723637
0	-0.66265386	-3.29667830	1.74732729
0	-0.60512519	-2.71488907	-2.55723860
С	-0.98488267	2.40162539	-3.19268323
Н	-0.91842497	0.25360462	-3.10104566
С	-0.97929358	3.45568544	-1.04388681
С	4.17022920	-0.13663461	0.02907838
Н	3.95996720	0.13000613	-2.10860934
Н	3.92482031	-0.47363173	2.15375859
С	-1.08478516	1.45593603	3.71395713
Н	-1.01428469	-0.58866548	3.05031436
С	-1.01830589	3.04902235	1.92895313
С	-1.00189163	3.56275441	-2.42813964

Н	-1.01066506	2.43203538	-4.27360404
Н	-1.00279099	4.34896833	-0.43739011
С	5.65564662	0.05744241	0.08159712
С	-1.08046477	2.77989953	3.28987147
Н	-1.14245555	1.19482443	4.76204310
Н	-1.02534009	4.07292086	1.58526259
Н	-1.03790340	4.53724751	-2.89837124
Ν	6.44429646	-0.59239748	0.85798687
Ν	6.15338571	0.95531855	-0.83172510
Н	-1.13074025	3.59217044	4.00385845
Н	5.93136972	-1.29146760	1.39066889
Н	5.57589606	1.74070763	-1.09230146
Н	7.13543068	1.17023073	-0.72904061
Ν	-2.86436486	-0.86479352	-0.14587758
С	-4.01517267	-0.80727327	-0.15562169
С	-5.46375346	-0.74663444	-0.17058296
Н	-5.79356296	0.14805240	-0.70208815
Н	-5.86668764	-1.62748809	-0.67431589
Н	-5.84684381	-0.71514069	0.85114303

Re(bpy)(4-Pam)CO₂(DCM) Fully Optimized Singlet

Re	-0.58195694	-0.44001755	0.57746634
Ν	1.53951090	-0.56810892	0.27105971
Ν	-0.71792067	0.42761171	-1.45360472
С	2.06315187	-1.24022651	-0.77760736
С	2.41078525	0.04987161	1.10046727
Ν	-0.35753945	1.74873137	0.83160024
С	-0.43894876	-0.94639137	2.40629184
С	-0.82680080	-2.27522710	0.13201065
С	-0.94486611	-0.29053146	-2.56918475
С	-0.53264173	1.76895667	-1.56730610
С	3.42321007	-1.31132735	-1.02764916
Н	1.36287011	-1.74522421	-1.42619320
С	3.78122390	0.01673659	0.91733305
Н	1.98601746	0.58074439	1.93904013
С	-0.24069310	2.36379768	2.02447932
С	-0.34046479	2.50339815	-0.29859211
0	-0.34979425	-1.22464169	3.53091754
0	-0.97416085	-3.39017948	-0.16120142
С	-0.98337438	0.27484852	-3.83457891
Н	-1.10365840	-1.35117476	-2.43326569
С	-0.55387950	2.39573009	-2.81330793
С	4.32199256	-0.67832076	-0.16628247
Н	3.77204070	-1.88065229	-1.87880892
Н	4.41569076	0.54327005	1.61857767
С	-0.08501269	3.73517613	2.15136275
Н	-0.27704474	1.72709828	2.89798379
С	-0.18072999	3.88784724	-0.23552710
С	-0.77826421	1.64406784	-3.95914875
Н	-1.17087655	-0.35240027	-4.69563098
Н	-0.39989181	3.46167832	-2.89457790
С	5.80513067	-0.76653118	-0.36285011
С	-0.04816904	4.51113566	0.99807960
Н	0.00388979	4.17514285	3.13543932
Н	-0.16556580	4.48012108	-1.13856479
Н	-0.79660528	2.12269061	-4.93001764
Ν	6.65717145	-0.85708468	0.59122416

N 6.211	75439 -	0.81988548	-1.67505932
H 0.075	517129	5.58517746	1.05491564
H 6.188	871845 -	-0.91799230	1.49252149
H 5.672	250510 -	-0.31599303	-2.36314317
H 7.212	21584 -	0.78031375	-1.81210099
C -4.179	943316 -	-1.35315146	0.51192860
H -3.717	/31909 -	-2.19995624	1.00367373
H -5.145	509081 -	-1.09204891	0.92876665
CI -3.110)11478	0.08937086	0.83709354
Cl -4.362	275515 -	1.69985815	-1.21958590