Di-tert-butyl tin(IV) 2-pyridyl and 4,6-dimethyl-2-pyrimidyl thiolates: versatile single source precursors for the preparation of SnS nanoplatelets as anode material for lithium ion batteries

AdishTyagi,^{a,b} Gourab Karmakar,^{a,b} B. P. Mandal,^{a,b} Dipa Dutta Pathak,^{a,b}Amey Wadawale,^a G. Kedarnath,^{a,b} A. P. Srivastava^c and Vimal K. Jain^{a,d}

^aChemistry Division, Bhabha Atomic Research Centre, Mumbai- 400 085 (India), ^bHomiBhabha National Institute, Anushaktinagar, Mumbai- 400 094 (India) ^cMaterials Science Division, Bhabha Atomic Research Centre, Mumbai- 400 085 (India). ^dUM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai-400 098 (India)

Figure Captions

Figure S1 ¹H NMR spectrum of [¹Bu₂Sn(Spy)₂] (1) acquired in CDCl₃.

Figure S2 ${}^{13}C{}^{1H}$ NMR spectrum of $[{}^{1}Bu_2Sn(Spy)_2]$ (1) acquired in CDCl₃.

Figure S3 119 Sn{ ^{1}H } NMR spectrum of [$^{1}Bu_2$ Sn(Spy)₂] (1) acquired in CDCl₃.

Figure S4 ¹H NMR spectrum of [¹Bu₂SnCl(Spy)] (2) acquired in CDCl₃.

Figure S5 ${}^{13}C_{1}^{(1}H$ NMR spectrum of [${}^{t}Bu_{2}SnCl(Spy)$] (2) acquired in CDCl₃.

Figure S6 ¹¹⁹Sn{¹H} NMR spectrum of ['Bu₂SnCl(Spy)] (2) acquired in CDCl₃.

Figure S7 ¹H NMR spectrum of $[{}^{t}Bu_{2}SnCl(SpymMe_{2})]$ (3) acquired in CDCl₃.

Figure S8 ${}^{13}C_{\{}^{1}H_{\}}$ NMR spectrum of [${}^{1}Bu_2SnCl(SpymMe_2)$] (3) acquired in CDCl₃.

Figure S9 ¹¹⁹Sn{¹H} NMR spectrum of [${}^{1}Bu_{2}SnCl(SpymMe_{2})$] (3) acquired in CDCl₃.

Figure S 10 Disorder molecular structure of $[{}^{t}Bu_{2}Sn(Spy)_{2}]$ (1) mirrored through (202) plane.

Figure S11 EDS spectrum of SnS nanoplatelets prepared from the thermolysis of $[{}^{t}Bu_{2}Sn(Spy)_{2}]$ (1) in *OAm*.

Figure S12 EDS spectrum of SnS nanoplatelets prepared from the thermolysis of $[Bu_2SnCl(Spy)]$ (2) in OAm.

Figure S13 EDS spectrum of SnS nanoplatelets prepared from the thermolysis of $[^{1}Bu_{2}SnCl(SpymMe_{2})]$ (3) in OAm.

Figure S14 XPS spectrum of SnS nanoplatelets prepared from the thermolysis of ['Bu₂SnCl(SpymMe₂)] (3) in OAm (a) survey scan, (b) Sn 3d region, (c) S 2p region.

Figure S15 The elemental imaging of SnS nanoplatelets obtained by the thermolysis of (a) $[{}^{1}Bu_{2}Sn(Spy)_{2}]$ (1), (b) $[{}^{1}Bu_{2}Sn(Cl)(Spy)]$ (2) and (c) $[{}^{1}Bu_{2}Sn(Cl)(SpymMe_{2})]$ (3), respectively in OAm. Figure S16 The SAED patterns of SnS nanoplatelets obtained by the thermolysis of (a) $[{}^{1}Bu_{2}Sn(Spy)_{2}]$ (1), (b) $[{}^{1}Bu_{2}Sn(Cl)(Spy)]$ (2) and (c) $[{}^{1}Bu_{2}Sn(Cl)(SpymMe_{2})]$ (3), respectively in OAm. Figure S17 pXRD spectra of orthorhombic phase of SnS thin films deposited on (a) glass and (b) silicon substrate by the AACVD of $[{}^{L}Bu_{2}Sn(Spy)_{2}]$ (1) at 400 °C for 1 h. (c) represents the standard SnS XRD patter (JCPDS file no. 39-0354).

Figure S18 AFM images of micro regions, 30.0×30.0 , 10.0×10.0 and $5.0 \times 5.0 \ \mu\text{m}^2$ SnS thin film deposited on (a,b,c) silicon and (d,e,f) glass substrate by the AACVD of [${}^{t}Bu_2Sn(Spy)_2$] (1) at 400 °C for 1 h.

Figure S19 Estimation of lithium diffusion coefficient of SnS nanoplatelets obtained from the thermolysis of $[{}^{t}Bu_{2}Sn(Spy)_{2}]$ (1). Linear relation between Z' and square root of frequency. The warburg constant (σ) could be obtained from the slop of the plot.

Figure S20 Electrochemical performance of SnS anode after removal of capping agent.

Figure S1 ¹H NMR spectrum of $[{}^{t}Bu_{2}Sn(Spy)_{2}]$ (1) acquired in CDCl₃.

Figure S2 ${}^{13}C_{\{}^{f1}H_{\}}$ NMR spectrum of $[{}^{t}Bu_2Sn(Spy)_2]$ (1) acquired in CDCl₃.

Figure S3 $^{119}Sn{^{1}H}$ NMR spectrum of $[^{1}Bu_2Sn(Spy)_2]$ (1) acquired in CDCl₃.

Figure S4 ¹H NMR spectrum of [¹Bu₂SnCl(Spy)] (2) acquired in CDCl₃.

Figure S5 ${}^{13}C{}^{1}H$ NMR spectrum of [${}^{t}Bu_{2}SnCl(Spy)$] (2) acquired in CDCl₃.

Figure S6 $^{119}Sn\{^{1}H\}$ NMR spectrum of [$^{t}Bu_{2}SnCl(Spy)$] (2) acquired in CDCl₃.

Figure S7 ¹H NMR spectrum of [¹Bu₂SnCl(SpymMe₂)] (3) acquired in CDCl₃.

Figure S8 ${}^{13}C_{{}^{1}H_{{}^{2}}}$ NMR spectrum of [${}^{1}Bu_{2}SnCl(SpymMe_{2})$] (3) acquired in CDCl₃.

Figure S9 $^{119}Sn{^{1}H}$ NMR spectrum of [$^{1}Bu_2SnCl(SpymMe_2)$] (3) acquired in CDCl₃.

Figure S 10 Disorder molecular structure of $[{}^{t}Bu_{2}Sn(Spy)_{2}]$ (1) mirrored through (202) plane.

Figure S11 EDS spectrum of SnS nanoplatelets prepared from the thermolysis of $[{}^{t}Bu_{2}Sn(Spy)_{2}]$ (1) in *OAm*.

Figure S12 EDS spectrum of SnS nanoplatelets prepared from the thermolysis of $[{}^{t}Bu_{2}SnCl(Spy)]$ (2) in OAm.

Figure S13 EDS spectrum of SnS nanoplatelets prepared from the thermolysis of $[^{t}Bu_{2}SnCl(SpymMe_{2})]$ (3) in OAm.

Figure S14 XPS spectrum of SnS nanoplatelets prepared from the thermolysis of [^tBu₂SnCl(SpymMe₂)] (3) in OAm (a) survey scan, (b) Sn 3d region, (c) S 2p region.

Figure S15 The elemental imaging of SnS nanoplatelets obtained by the thermolysis of (a) $[{}^{t}Bu_{2}Sn(Spy)_{2}]$ (1), (b) $[{}^{t}Bu_{2}Sn(Cl)(Spy)]$ (2) and (c) $[{}^{t}Bu_{2}Sn(Cl)(SpymMe_{2})]$ (3), respectively in OAm.

Figure S16 The SAED patterns of SnS nanoplatelets obtained by the thermolysis of (a) $[{}^{t}Bu_{2}Sn(Spy)_{2}]$ (1), (b) $[{}^{t}Bu_{2}Sn(Cl)(Spy)]$ (2) and (c) $[{}^{t}Bu_{2}Sn(Cl)(SpymMe_{2})]$ (3), respectively in OAm.

Figure S17 pXRD spectra of orthorhombic phase of SnS thin films deposited on (a) glass and (b) silicon substrate by the AACVD of $[{}^{t}Bu_{2}Sn(Spy)_{2}]$ (1) at 400 °C for 1 h. (c) represents the standard SnS XRD patter (JCPDS file no. 39-0354).

Figure S18 AFM images of micro regions, 30.0×30.0 , 10.0×10.0 and $5.0 \times 5.0 \ \mu m^2$ SnS thin film deposited on (a,b,c) silicon and (d,e,f) glass substrate by the AACVD of ['Bu₂Sn(Spy)₂] (1) at 400 °C for 1 h.

Figure S19 Estimation of lithium diffusion coefficient of SnS nanoplatelets obtained from the thermolysis of $[{}^{t}Bu_{2}Sn(Spy)_{2}]$ (1). Linear relation between Z' and square root of frequency. The warburg constant (σ) could be obtained from the slop of the plot.

Figure S20 Electrochemical performance of SnS anode after removal of capping agent.

Substrate	Micro-area scanned (µm ²)	Average roughness (nm)
Silicon	30.0 × 30.0	175
	10.0×10.0	86.9
	5.0×5.0	31.3
Glass	30.0 × 30.0	178.9
	10.0×10.0	133.7
	5.0×5.0	47.4

|--|