Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information

for

Synthesis and Electrochemical Properties of Low-crystalline Iron Silicate Derived from Reed Leaves as a Supercapacitor Electrode Material

Xingyu Chen, Yifu Zhang*, Chen Wang, Xueying Dong, Changgong Meng*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of

Technology, Dalian, 116024, China

*Corresponding authors.

Yifu Zhang: e-mail address: yfzhang@dlut.edu.cn, tel: +86-13654946624

Changong Meng: e-mail address: cgmeng@dlut.edu.cn

Figure S1

Figure S1. XRD pattern of SiO₂ derived from reed leaves.

Figure S2

Figure S2. XRD pattern of FeSi 1-4

Figure S3

Figure S3. The FTIR spectrum of FeSi.

Figure S4. FE-SEM images of SiO_2 derived from reed leaves.

Figure S5. TEM images of SiO₂ derived from reed leaves.

Figure S6. FE-SEM images of FeSi-1 (a), FeSi-2 (b), FeSi-4 (c)

Figure S7

Figure S7. CV curves of FeSi in different voltage windows at 50 mV \cdot s⁻¹

Figure S8. (a) CV curves of FeSi-1~4 at 50 mV \cdot s⁻¹; (b) GCD curves of FeSi-1~4 at 1 A \cdot g⁻¹.

Figure S9. FE-SEM images of the FeSi electrode after 10000 cycles.

Figure S10. CV curves of FeSi at different scan rates from 0.2 to 0.5 mV \cdot s⁻¹.

Table S1

Table S1. Comparison of the electrochemical performance between FeSi and the reported silicate-based

Silicate-based materials	Electrolvte	Potential /V	Capacitance	Cvcle	Ref.
in situ CNT/nanoclav/PANI	1 M KCl	0~0.8	331 F g^{-1} . 10 mV·s ⁻¹	92%. 2000 cvcles	1
ex situ CNT/nanoclay/PANI	1 M KCl	0~0.8	$202 \text{ F g}^{-1}, 10 \text{ mV} \cdot \text{s}^{-1}$	92%, 2000 cycles	1
Co _x Ni _{3-x} Si ₂ O ₅ (OH) ₄ /C	3 М КОН	-0.8~0.6	$226 \text{ F} \cdot \text{g}^{-1}, 0.5 \text{ A} \cdot \text{g}^{-1}$	99%, 10000 cycles	2
C-zinc silicate	3 М КОН	-1~-0.3	$450 \text{ mF} \cdot \text{cm}^{-2}, 5 \text{ mV} \cdot \text{s}^{-1}$	83%, 10000 cycles	3
Ni ₃ Si ₂ O ₅ (OH) ₄	3 М КОН	-0.1~-0.3	132.4 $F \cdot g^{-1}$, 0.5 $A \cdot g^{-1}$	100%, 10000 cycles	4
C-MnSi	3 М КОН	-0.1~0.55	511 $F \cdot g^{-1}$, 0.5 A g^{-1}	84%, 10000 cycles	5
Co ₂ SiO ₄	3 М КОН	0~0.5	453 $F \cdot g^{-1}$, 0.5 $A \cdot g^{-1}$	89%, 10000 cycles	6
MnSiO ₃	3 М КОН	-0.5~0.2	517 $F \cdot g^{-1}$, 0.5 $A \cdot g^{-1}$	34%, 10000 cycles	6
Ni ₃ Si ₂ O ₅ (OH) ₄	3 М КОН	0~0.6	$67 \text{ F} \cdot \text{g}^{-1}, 0.5 \text{ A} \cdot \text{g}^{-1}$	44%, 10000 cycles	6
CoSi NBs@MnO2	3 М КОН	-0.5~0.6	490.5 F·g ⁻¹ , 1 A·g ⁻¹	80%, 5000 cycles	7
CSO NN/RGO	3 М КОН	-0.1~0.55	483 $F \cdot g^{-1}$, 0.5 $A \cdot g^{-1}$	58%, 10000 cycles	8
e-CoSi-3	6 M KOH	0~0.5	267 F·g ⁻¹ ,1 A·g ⁻¹	90%, 10000 cycles	9
e-NiSi-3	6 M KOH	0~0.5	$272 \text{ F} \cdot \text{g}^{-1}$, $1 \text{ A} \cdot \text{g}^{-1}$	96%, 10000 cycles	9
e-MnSi-3	6 M KOH	0~0.5	$439 \text{ F} \cdot \text{g}^{-1}$, 1 A $\cdot \text{g}^{-1}$	80%, 10000 cycles	9
C/Co ₃ Si ₂ O ₅ (OH) ₄	3 М КОН	-0.05~0.4	$1600 \text{ F g}^{-1}, 1 \text{ A} \cdot \text{g}^{-1}$	91%, 6000 cycles	10
Ni ₃ Si ₂ O ₅ (OH) ₄ /GO	3 М КОН	0.1~0.55	$165 \text{ F} \cdot \text{g}^{-1}, 0.5 \text{ A} \cdot \text{g}^{-1}$	84%, 5000 cycles	11
nt-MnSiO3/rGO	3 М КОН	-0.6~0.6	860 F·g ⁻¹ , 0.5 A·g ⁻¹	80%, 5000 cycles	12
(Ni, Co) ₃ Si ₂ O ₅ (OH) ₄	1 M KOH	0-0.5	144 F·g ⁻¹ ,1 A·g ⁻¹	99%,10000 cycles	13
MnSiO ₃ /MWCNTs	1 M Na2SO4	-0.2-0.8	236 F·g ⁻¹ ,0.5 A·g ⁻¹	41%,1000 cycles	14
CoSi hollow sphere	3 М КОН	0-0.5	452.8 F g ⁻¹ , 0.5 A g ⁻¹	89%, 10,000 cycles	15
NiSi hollow sphere	3 М КОН	0-0.6	66.7 F g ⁻¹ , 0.5 A g ⁻¹	44%, 5000 cycles	15
CoNiSi/C	3 М КОН	-0.8~0.6	$226 \text{ F} \cdot \text{g}^{-1}, 0.5 \text{ A} \cdot \text{g}^{-1}$	99%, 10000 cycles	16
MnSiOx/C	3 М КОН	-1~-0.3	$162 \text{ F} \cdot \text{g}^{-1}, 0.5 \text{ A} \cdot \text{g}^{-1}$	85%, 10000 cycles	17
CoSi NBs@MnO ₂	3 М КОН	-0.5~0.6	490.4 $F \cdot g^{-1}$, 1.0 $A \cdot g^{-1}$	45%, 5000 cycles	18
Mn ₃ O ₄ doped MnSi/C	3 М КОН	-0.9~0.4	$108 \text{ F} \cdot \text{g}^{-1}, 1 \text{ A} \cdot \text{g}^{-1}$	82%, 8400 cycles	19
NiSi-Ni(OH) ₂	3 М КОН	0.1~0.6	$476 \text{ F} \cdot \text{g}^{-1}, 2 \text{ A} \cdot \text{g}^{-1}$	103%, 10000 cycles	20
Co ₂ SiO ₄ @Ni(OH) ₂	3 М КОН	-0.1~0.55	1101 $F \cdot g^{-1}$, 1.0 $A \cdot g^{-1}$	46%, 4000 cycles	21
Co ₃ (Si ₂ O ₅) ₂ (OH) ₂	6 M KOH	0.1-0.55	$237F \cdot g^{-1}, 5.7 \text{ mA} \cdot \text{cm}^{-2}$	95%, 150 cycles	22
Ni ₃ Si ₂ O ₅ (OH) ₄	6 M KOH	0~0.5	887 $F \cdot g^{-1}$, 0.7 $A \cdot g^{-1}$	97%, 2000 cycles	23
Mesoporous-Li ₂ MnSiO ₄	2 M KOH	0~0.55	$150 \text{ F} \cdot \text{g}^{-1}, 0.5 \text{ A} \cdot \text{g}^{-1}$	86%, 500 cycles	24
Manganese silicate drapes	1 M KOH	-0.5~0.4	283 F·g ⁻¹ , 0.5 A·g ⁻¹	75%, 1000 cycles	25
Ni ₃ Si ₂ O ₅ (OH) ₄ spheres	2 M KOH	0.2~0.6	$138 \text{ F} \cdot \text{g}^{-1}, 1 \text{ A} \cdot \text{g}^{-1}$	-	26
MnSiO ₃	6 M KOH	0.2~0.6	251 $F \cdot g^{-1}$, 0.6 $A \cdot g^{-1}$	-	27
FeSi	3 M KOH	-1~-0.5	575 F·g ⁻¹ , 0.5 A·g ⁻¹	76%, 10000 cycles	This work

material

References

- R. Oraon, A. De Adhikari, S. K. Tiwari and G. C. Nayak, ACS Sustain. Chem. Eng., 2016, 4, 1392-1403.
- Z. Yifu, W. Chen, J. Hanmei, W. Qiushi, Z. Jiqi and M. Changgong, *Chemical Engineering Journal*, 2019, DOI: 10.1016/j.cej.2019.121938.
- 3. Y. Zhang, H. Jiang, Q. Wang and C. Meng, *Chem. Eng. J.*, 2018, **352**, 519-529.
- W. Qiushi, Z. Yifu, J. Hanmei, H. Tao and M. Changgong, ACS Applied Energy Materials, 2018, DOI: 10.1021/acsaem.8b00556.
- 5. Y. Cheng, Y. Zhang and C. Meng, ACS Appl. Energy Mater., 2019, 2, 3830-3839.
- 6. Q. Wang, Y. Zhang, H. Jiang, X. Li, Y. Cheng and C. Meng, *Chem. Eng. J.*, 2019, **362**, 818-829.
- Z. Yunfeng, Z. Yifu, C. Yan, T. Fuping, J. Hanmei, D. Xueying and M. Changgong, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2020, DOI: 10.1016/j.colsurfa.2020.124951.
- C. Yan, Z. Yifu, J. Hanmei, D. Xueying, M. Changgong and K. Zongkui, *Journal of Power Sources*, 2019, DOI: 10.1016/j.jpowsour.2019.227407.
- Y. Zhang, C. Wang, X. Dong, H. Jiang, T. Hu, C. Meng and C. Huang, *Chem. Eng. J.*, 2021, DOI: https://doi.org/10.1016/j.cej.2020.127964, 127964.
- X. Li, S. Ding, X. Xiao, J. Shao, J. Wei, H. Pang and Y. Yu, J. Mater. Chem. A, 2017, 5, 12774-12781.
- X. Dong, Y. Zhang, Q. Wang, X. Zhang, M. Gao and M. Changgong, *Dalton Trans.*, 2019, 48, 11749-11762.
- D. Xueying, Z. Yifu, C. Qiang, J. Hanmei, W. Qiushi, M. Changgong and K. Zongkui, Sustainable Energy & Fuels, 2020, DOI: 10.1039/d0se00042f.
- 13. R. Qing, L. Lu-Lu, Z. Xing, H. Yu-Xi and Y. Han-Qing, *Appl. Energy*, 2014, 153, 63-69.
- W. Qiushi, Z. Yifu, J. Shengzhe, H. Yuhang, X. Jingshu, L. Fen and M. Changgong, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2018, DOI: 10.1016/j.colsurfa.2018.03.072.
- W. Qiushi, Z. Yifu, J. Hanmei, L. Xiaojuan, C. Yan and M. Changgong, *Chemical Engineering Journal*, 2019, DOI: 10.1016/j.cej.2019.01.102.
- 16. Y. Zhang, C. Wang, H. Jiang, Q. Wang, J. Zheng and C. Meng, Chem. Eng. J., 2019, 375,

121938.

- 17. Q. Wang, Y. Zhang, H. Jiang and C. Meng, J. Colloid Interface Sci., 2019, 534, 142-155.
- Y. Zhao, Y. Zhang, Y. Cheng, F. Tian, H. Jiang, X. Dong and C. Meng, Colloid Surf. A-Physicochem. Eng. Asp., 2020, 600, 124951.
- H. Jiang, Y. Zhang, C. Wang, Q. Wang, C. Meng and J. Wang, *Inorg. Chem. Front.*, 2019, 6, 2788-2800.
- Q. Wang, Y. Zhang, J. Xiao, H. Jiang, X. Li and C. Meng, *Mater. Chem. Front.*, 2019, 3, 2090-2101.
- Y. Zhao, Y. Zhang, Y. Cheng, W. Zhao, W. Chen, C. Meng and C. Huang, *Mater. Lett.*, 2021, 282, 128774.
- 22. G.-Q. Zhang, Y.-Q. Zhao, F. Tao and H.-L. Li, J. Power Sources, 2006, 161, 723-729.
- J. Zhao, Y. Zhang, T. Wang, P. Li, C. Wei and H. Pang, *Adv. Mater. Interfaces*, 2015, 2, 1400377.
- 24. P. Chaturvedi, A. Kumar, A. Sil and Y. Sharma, *RSC Adv.*, 2015, 5, 25156-25163.
- H.-Y. Wang, Y.-Y. Wang, X. Bai, H. Yang, J.-P. Han, N. Lun, Y.-X. Qi and Y.-J. Bai, *RSC Adv.*, 2016, 6, 105771-105779.
- Y. Zhang, W. Zhou, H. Yu, T. Feng, Y. Pu, H. Liu, W. Xiao and L. Tian, *Nanoscale Res. Lett.*, 2017, 12, 325.
- 27. C. Tian, S. Zhao and Q. Lu, Ceram. Inter., 2018, 44, 17007-17012.